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Abstract

In this paper we propose the use of incremental learning for creating and impro-

ving multivariate analysis models in the field of chemometrics of spectral data.

As main advantages, our proposed incremental subspace-based learning allows

creating models faster, progressively improving previously created models and

sharing them between laboratories and institutions without requiring transfer-

ring or disclosing individual spectra samples. In particular, our approach allows

to improve the generalization and adaptability of previously generated models

with a few new spectral samples to be applicable to real-world situations. The

potential of our approach is demonstrated using vegetable oil type identifica-

tion based on spectroscopic data as case study. Results show how incremental

models maintain the accuracy of batch learning methodologies while reducing

their computational cost and handicaps.
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1. Introduction1

In the last decade the use of chemometrics in food analysis is steadily gro-2

wing. This is caused because the output of most analytical methods is nowadays3

multivariate data matrices (spectroscopic, chromatographic/mass spectrometry4

data, isotopic, sensorial, etc) which cannot be manually analysed and demand5

appropriate chemometric analysis in order to process and capture the most im-6

portant and relevant information in the data. Selection of multivariate methods7

(e.g. classification methods) however is often limited to a set of well known8

standard methods (e.g. PLS-DA and SIMCA classification methods) and rese-9

archers are faced with some persisting problem with the chemometric models10

that they generate [1].11

Among these problems that must be addressed, the generality of the models12

created to new conditions is the most important one. While extensive research13

has been done to create models under controlled conditions, for a small problem14

or dataset, the applicability of those models in real world -e.g. in food testing15

in the food industry or in routine analysis in a regulated testing laboratory-16

is very scarce. This is due to the overfitting of the model to the calibration17

set when only one instrument, one analytical laboratory or, in general, one set18

of assumptions are taken into consideration to create the models. Thus, when19

these models are tested in other slightly different conditions, they report much20

lower performances than the expected one. Recalibrating or recreating similar21

models to work in those situations may be an extremely arduous task, with a22

similar time and effort scale to the design, and tuning of the first model.23

To avoid a full recalibration, model updating and calibration transfer techni-24

ques have been proposed to cover the transfer of multivariate classification mo-25

dels between different spectrometers [2, 3], temperatures [3, 4], harvesting sea-26

sons [4] and even different geographical regions [5]. Calibration transfer techni-27

ques [2] allow mapping the new spectra to the primary model spectra domain28

by calculating a transformation matrix from one domain to the other. Different29

calibration transfer techniques have been recently explored in chemical sensor30
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arrays to overcome inherent sensor variability [6, 7, 8]. Only a small set of sam-31

ples are required to be measured in both the primary and secondary conditions.32

However, in many applications it is not realistic that exactly the same sample33

can be measured, e.g. the same food sample from two different geographical lo-34

cations. More interesting are methods based on model updating by augmenting35

sample spectra from a new condition. While many sample would normally be36

required to span to the new conditions [4], which amounts to a full recalibra-37

tion, approaches based on Tikhonov regularisation (TR) [3, 5] only needs a few38

samples to update the model. As disadvantage, TR still requires access to the39

initial samples to recompute the updated model, with the consequent compu-40

tational cost of involving all samples in the optimisation, and its performance41

heavily relies on a meta-parameter that controls the balance between the initial42

model and the augmented samples, and which can only be tuned empirically.43

Finally, some recursive learning approaches [9, 10] propose a framework where44

both incremental and decremental stages are used to improve the initial model.45

However, to fully exploit their potential and being able to remove old samples,46

access to the initial samples is also required.47

Moreover, new samples are analysed on a routine basis and new data is ge-48

nerated including cases when new component classes are needed to be created49

(in authentication/adulteration studies, in traceability, proximate analysis pre-50

diction etc). As a result, existing and validated models may stop being useful51

and/or applicable. It is then necessary to retrain them. However, this requires52

access to the original samples, which may be lost or unavailable. Similarly, if53

an external laboratory, or other third party such as a company or an institution54

wishes to improve an existing model, the access to the original samples may55

be tricky or impossible, with privacy or confidentiality issues playing a role. In56

all these previously described situations, it is clear that evolving a chemometric57

model may be a better solution than recreating or retraining it as a full new58

batch. This will only require access to the existing models and the new samples.59

It will also be a more efficient manner to store the information, reducing the60

memory and physical space required and it can potentially decrease the time to61
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create an improved model.62

While incremental learning has been used and proposed in other fields [11,63

12, 13, 9, 10], its intrinsic advantages have been scarcely exploited in the field64

of food analysis and chemometrics [14, 15, 16, 17, 18, 19]. Bhattacharyya et65

al. [14, 15] applied neural networks for identification of seven different black66

tea classes. Their incremental approach allow to add new classes of black tea67

to the original set. In Tudu et al. (2009) [16], the same researchers applied68

incremental fuzzy logic to the black tea identification. Cernuda et al. [17, 18, 19]69

proposed a flexible fuzzy inference system for the monitor of the concentration70

of sulphuric acid (H2SO4), sodium sulfate (Na2SO4) and zinc sulfate (ZnSO4) in71

viscose production and in the melamine resin production process, which allows72

online adaptation of parameters and structural changes in the model. However,73

techniques based on neural networks and fuzzy logic are scarcely used in food74

science, reducing the impact of these incremental approaches, and they require75

huge amounts of calibration samples to generate the calibration models, which76

is unlikely for most food analysis scenarios.77

In this paper we aim to extend the use of incremental learning in the field78

of food analysis and chemometrics. Among the variety of incremental learning79

techniques, we have chosen subspace based learning as the family of machine80

learning to apply due to their proved ability to evolve online [13], the ability81

to generate efficient models using a reduced number of calibration samples,82

and the extensive use of some of the basic subspace based methods such as83

Principal Component Analysis (PCA), and Soft independent modelling of class84

analogies (SIMCA)- in food science [20, 21], both for exploratory analysis [22]85

and classification [23, 24, 25]. Thus, the present work introduces the use of an86

incremental subspace based learning technique, called Incremental Generalized87

Discriminative Common Vectors (IGDCV), which allows efficiently adding new88

data samples and classes to a knowledge base. In this way, our methodology89

is able to update the model to the new scenario without recalculating the full90

projection or accessing the previously processed calibration data, while retaining91

the previously acquired knowledge. Our approach is evaluated using vegetable92
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oil type identification [22, 26, 27, 28] as case study and results are compared93

against a non incremental learning technique, i.e. an equivalent batch method.94

Three different incremental scenarios are tested in this application area: when95

new samples are available to improve the model, when new classes must be96

identified by the model, and when new instruments are used in the identification97

process.98

2. Incremental Learning Framework99

Several incremental feature extraction based on linear subspace methods100

have been proposed and used on many practical applications. Among them, we101

find the Incremental approaches of the PCA [29], Linear Discriminant Analysis102

(LDA) [30] and DCV [31]. While PCA-based incremental approaches are simple103

and versatile, they are not optimal for discrimination and classification purposes104

since no class information is used to obtain principal components which may lead105

to unsuited subspaces. On the contrary, LDA is a supervised technique which106

makes use of the class information to obtain the most discriminative space by107

maximizing the distance between classes while minimizing the distance between108

the samples within the same class. However, LDA-based approaches cannot109

be applied when the dimension of the sample space is larger than the number110

of samples in the calibration set, since the within-class scatter matrix will be111

singular. This problem is known as the Small Sample Size SSS problem [32],112

and it is frequent in spectroscopic and chromatographic application, where the113

number of variables per sample is in the order of thousands while the total114

number of samples used for calibration rarely goes above the hundreds [22].115

Among the approaches that have been proposed to solve the SSS problem,116

the Generalized Discriminative Common Vectors (GDCV) has been proved [13]117

to provide discriminative subspaces for classification regardless of the SSS as-118

sumption. GDCV is a variation of LDA [33, 34] which introduces the idea119

of approximate extended null and reduced range subspaces of the within-class120

scatter matrix. Given the good performance of GDCV batch approaches, we121

5



proposed the use of Incremental GDCV [13] as the base of our online learning122

framework for food analysis, where new information is added while retaining123

the previously acquired knowledge, without accessing the previously processed124

calibration data.125

2.1. IGDCV126

Formally, let the calibration set X be composed of c classes, where every127

class j has mj samples. The total number of samples in the calibration set is128

M =
∑c
j=1mj . Let xij be a d-dimensional column vector which denotes the ith129

sample from the jth class. The within-class scatter matrix, SXw , is defined as,130

SXw =

c∑
j=1

mj∑
i=1

(xij − xj)(xij − xj)T = XcXc
T (1)

131

where xj is the average of the samples in the jth class, and the centered132

data matrix, Xc consists of column vectors (xij − xj) for all j = 1 . . . c and133

i = 1 . . .mj .134

The extension of the null space of SXw (which implies restricting the corre-135

sponding range space) is done from the Eigen-Value Decomposition (EVD) of136

SXw .137

EVD(SXw ) : UrΛrU
T
r (2)

where Ur ∈ Rd×r are the eigenvectors associated to the nonzero eigenvalues138

Λr. The scattering added to the null space can be measured as the trace139

tr(UTα S
X
w Uα). This quantity is up to tr(SXw ) when no directions are remo-140

ved, Uα = Ur, and decreases as more and more important directions disappear141

from Ur. Consequently, the scattering preserved after a projection, Uα, can be142

written as follows143

α = 1− tr(UTα S
X
w Uα)

tr(SXw )
(3)

144
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The projection basis fulfilling the above conditions for a given value of α145

can be obtained through Ur, such that r is reassigned. The α value is the main146

parameter of GDCV, which can be tuned by using cross-validation over the147

training set. The GDCV method can be the summarized as148

1. Obtain Uα such that SXw = UrΛrU
T
r . where Λα contains the smallest149

eigenvalues in Λr and tr(Λα) = α · tr(Λr)150

2. Project class means as xjgcv = xj − UαU
T
α xj . These are the so-called151

generalized common vectors of each class.152

3. Define Xcom = [x1gcv . . . x
c
gcv] and let Xcom

c be its centered version with153

regard to the mean, xgcv = 1
c

∑c
j=1 x

j
gcv154

4. Obtain the projection W ∈ <d×(c−1) such that tr(WTXcom
c Xcom

c
TW ) is155

maximum.156

Thus, by using the projection matrix W , any sample xi can be projected in

the discriminative subspace gdcv for an easier classification, according to

xgdcvi = WT · (xi− xgcv) (4)

In an incremental learning scenario, once an initial dataset X has been used157

to obtain Uα,Λα and W , a new set of sample Y will be available in a later stage158

to improve the learned projection. This new set of data Y may be composed159

of a single sample or several ones that may belong to pre existing classes or160

to fully new categories. In the general case, the new dataset Y consists of nj161

samples from each class, resulting in a total of N =
∑c
j=1 nj new samples to be162

considered in the learning process.163

The IGDCV method allows obtaining U ′α,Λ
′
α and W ′ corresponding to the164

new complete dataset, [X Y ], without having to reapply the GDCV algorithm165

to [X Y ]. Instead, they will be obtained incrementally by adding the effect of166

new data, Y , into the previous solution corresponding to X, such that167

SZw = SXw + YcY
T
c +AAT (5)
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where Yc consists of column vectors (yij − yj) for all j = 1 . . . c and i = 1 . . . nj .168

A = [a1 . . . ac] is a matrix whose columns are the c weighted average differences169

given by170

aj =

√
mjnj
mj + nj

(xj − yj), j = 1 . . . c (6)

171

The IGDCV algorithm is summarized as

Algorithm 1. IGDCV Algorithm

Parameter: α, 0 < α ≤ 1

Input: Y ∈ Rd×N , {nj}cj=1, N =
∑c
j=1 nj

From previous iteration: Uα ∈ Rd×r, Λα ∈ Rr×r, xj ∈ Rd, {mj}cj=1

Output: U ′α ∈ Rd×r
′
, Λ′α ∈ Rr

′×r′ , x′j ∈ Rd, {m′j}cj=1

Method:

1. Compute yj , Yc, A

2. Compute V = orth([Yc A]− UαUTα [Yc A])

3. Build Mα =

Λα 0

0 0

 + [Uα V ]TYcYc
T [Uα V ] + [Uα V ]TAAT [Uα V ]

4. Compute R and Λ′ by eigendecomposing Mα

5. Compute β = (1− α) tr(Λr)
tr(Λ′) + α

6. Split R and Λ′ in Rβ and Λβ by β

7. Let U ′α = [Uα V ]Rβ and Λ′α = Λβ

8. Update: m′j = mj + nj , j = 1, . . . , c

x′j = (mjxj + njyj)/m
′
j

9. Project class means as xjgcv = x′j − U ′αU ′Tα x′j .

Figure 1: Incremental Generalized Discriminant Common Vector (IGDCV) algorithm.

172

If some of the data vectors in Y correspond to new classes which are not173

present in X, the expressions of the IGDCV algorithm are valid by extending174

the value of c and setting mj = 0 in X for all new classes. Both if mj or nj are175

zero for any class j, the corresponding mean is undefined and the corresponding176

column in A, aj , should be set to zero. If all data vectors in Y correspond to177
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new classes, then the whole matrix A is the zero matrix and can be removed178

from all expressions.179

The overall cost of the IGDCV is dominated by the cost of step 7 in Fig. 1,180

O(dr′2) where r′ is the expected rank of the range space preserved that heavily181

depends on the parameter α.182

2.2. Classification183

After applying IGDCV, samples can be projected into a discriminative sub-184

space where meaningful conclusion can be extracted, if used as exploratory185

analysis, or an automatic classification can be achieved. The performed super-186

vised learning ensures that the different classes to be recognized are as separate187

as possible, making the classification problem very simple, since the complexity188

of the problem has been moved to the previous stage. Thus, we have coupled189

our incremental subspace learning with a k-Nearest Neighbors (kNN) classifier190

in order to provide this functionality.191

Two advantages are derived from the use of the KNN classifier. First, given192

its simplicity, the performance of IGDCV will be directly reflected in the experi-193

ments, which could otherwise be masked by a more complex classifier. Second,194

since no calibration is required in KNN, the online learning of the classifier will195

be automatic when the subspace is updated.196

3. Case of study197

In order to evaluate the potential and advantages of incremental learning,198

the problem of identifying vegetable oil types using spectroscopic analysis was199

chosen as case study. This is a relevant case of study [22, 26, 27, 28, 25] brought200

into attention due to European Regulation 1169/2011, which requires producers201

of foods that contain refined vegetable oil blends to label the oil types. In this202

context, deliberate or accidental errors in the label are common, leading to con-203

sumer misinformation [21], so automatic identification and verification of the204

provided information is required. From an analytical point of view, testing an205
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unknown vegetable oil to identify its origin and composition is a very difficult206

task [27, 35], but where spectroscopy -such as FTIR- and subspace-based met-207

hods have demonstrated their capabilities [22]. However, the performed single208

lab validation [22, 36, 37] of current approaches, which is common but undesi-209

rable in the field, indicates that the real performance in realistic conditions may210

be far from the reported accuracy.211

4. Materials and methods212

4.1. Samples213

A data set of 630 vegetable oil samples was used in this study. Two different214

classification problems are considered with respect to the number of classes.215

Calibration models were developed for 6 classes and 12 classes of vegetable oils216

(see Table 1). For the 6-class problem, the classes to be predicted are labelled217

as PO: palm oil /palm stearin /palm olein, RS: sunflower /rapeseed oil and218

their mixtures, PKOC: palm kernel oil /coconut oil and binary mixtures of the219

above. For the 12-class problem, the classes are PO: palm oil /palm stearin220

/palm olein, RO: rapeseed, SO: sunflower, PKO: palm kernel, CCO: coconut,221

and all the binary combinations of the above oils. The 12-class model provides222

more resolution because it clearly distinguishes between the individual botanical223

origins, and it is therefore a more complex problem, while the 6-class modeld224

groups some origins together according to their similarities. This allows us to225

test our approach at to different levels of complexity, which are related to the226

expected level of resolution to be detected.227

4.2. FT-IR spectral acquisition228

The acquisition of most FT-IR spectra samples was performed using a Nico-229

let iS5 Thermo spectrometer (Thermo Fisher Scientific, Dublin, Ireland) equip-230

ped with a DTGS KBr detector and a KBr beam splitter. Spectra were acquired231

from 4000 to 550 cm-1 co-adding 32 interferograms at 4 cm-1 resolution with232

10



Table 1: Different oil types for the 6 and 12-class problem.

Class Samples Class Samples

1 PO 104 1 PO 104

2 RS 114 2 RO 36

3 PKOC 36 3 SO 23

4 RS-PKOC 83 4 PKO 26

5 RS-PO 181 5 CCO 10

6 PO-PKOC 112 6 RO-PO 98

7 SO-PO 83

8 RO-PKO 51

9 SO-PKO 32

10 RO-SO 55

11 PO-PKO 66

12 PO-CCO 46

a diamond attenuated total reflectance (iD5 ATR) accessory. Absorbance va-233

lues were recorded at each spectrum point. The final sample spectrum was the234

average of three replicates with initial 7157 data points.235

Through an interlaboratory experiment sixteen extra FT-IR instruments236

were used to acquire several extra oil spectra, as shown in Table 2. A total of237

nine samples including pure oils and oil admixtures were prepared in our lab and238

sent to each of the instruments participated to collect spectra representatives239

of most classes with all instruments. The acquisition parameters have been240

harmonized so that they are compatible with every FT-IR instrument. Linear241

interpolation was applied to spectra from different instruments in order to get242

the desirable number of variables.243

4.3. Data pre-treatment244

The resulting FT-IR spectral profiles underwent some typical preprocessing245

techniques in order to reduce or remove any random or systematic variation in246

the data [38]. Five steps are involved in this phase. Specifically, prior to the ap-247

plication of the multivariate models, Standard Normal Variate (SNV) [39], first248

order derivative [40], S-Golay filter [41] [polynomial order=2,frame size=9] and249
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Table 2: Instruments for the interlaboratory experiment. (Note: N/a - not available)

Id Participant FT-IR Instrument Detector Year Samples

1 Our lab (Institute for glo-

bal food security, QUB)

Thermo Fisher Scien-

tific Nicolet iS5

DTGS 2012 486

2 Teagasc, Food Research

Centre

Bio-Rad Excalibur

FTS 3100

DTGS 2001 9

3 PerkinElmer Ltd PerkinElmer

Spectrum 2

DTGS 2012 9

4 PerkinElmer Ltd PerkinElmer Frontier DTGS 2013 9

5 Brennan and Co. Bruker Alpha DTGS 2013 9

6 Public Analyst Scientific

Services

PerkinElmer

Spectrum 100

LiTaO3 2007 9

7 LGC Limited (UK) PerkinElmer

Spectrum One

DTGS 2001 9

8 Premier Analytical Servi-

ces (Premierfoods)

Bio-Rad Excalibur

FTS300MX

DTGS 2002 9

9 Institute of Food Rese-

arch (IFR)

Nicolet MagnaIR 860 DTGS 1998 9

10 Institute of Food Rese-

arch (IFR)

Bio-Rad FTS6000 DTGS 1996 9

11 Institute of Food Rese-

arch (IFR)

Thermo Fisher

Scientific Nicolet

iN10MX/iZ10

DTGS 2011 9

12 Shimadzu (Mason

Technology)

Shimadzu IRA nity-1S DLaTGS n/a 9

13 Antech(IRE) Thermo Fisher Scien-

tific TruDefender FTX

DLaTGS n/a 9

14 Agri-Food and Bioscien-

ces Institute (AFBI)

PerkinElmer

Spectrum One

MIR

TGS

n/a 9

15 Walloon Agricultural Re-

search Centre (CRA-W)

Bruker Vertex 70 DLaTGS 2007 9

16 Walloon Agricultural Re-

search Centre (CRA-W)

Bruker Vertex 70 DLaTGS 2012 9

17 Walloon Agricultural Re-

search Centre (CRA-W)

Bruker Vertex 70 MCT 2012 9
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Pareto scaling [42] were applied for removing the scatter, correcting the baseline,250

smoothing the data points and scaling the data for preventing the dominance of251

high absorbances respectively. At the end of this preprocessing procedure, the252

irrelevant spectra area was cut out by selecting only the wavelengths between253

654.23 and 1875.43 cm-1 and between 2520.02 and 3120.74 cm-1, corresponding254

to relevant fatty acid involved in oil identification [22, 25]. In total, 3781 varia-255

bles are resulted. All chemometric data preprocessing was performed by means256

of in-house Matlab routines (The MathWorks Inc., USA).257

5. Results258

Using our case of study, three scenarios where the potential of incremental259

learning is relevant will be tested. In the first scenario, an oil type identification260

model is trained with a few calibration samples. After this initial calibration,261

new samples for each of the oil types to identify become available and are added262

to the model for improving the initial performance. In the second scenario, a263

simple model is initially trained to distinguish between just two oil types, and264

then extended to identify new oil types, up to 12. In the third scenario, the oil265

type identification model created by a single lab and using a single spectroscopy266

analyser is extended and enhanced to be effective when used in other laboratories267

and instruments.268

For comparison purposes, the batch version of IGDCV, batch GDCV, is269

used as a baseline. By using the exact batch equivalent version, we ensure the270

comparison is performed in the same conditions. The batch version requires to271

recreate the model every time that several, or even one single sample is available272

and added to the calibration set and therefore, access to the original samples273

is always obliged. The aim is then to ensure the same or similar classification274

performance to the batch method while reducing the computational time and275

removing the requirement of having access to the original calibration samples276

by the incremental approach. The α parameter was empirically optimised in277

the range (0, 0.3] with steps of 0.01 for each scenario, so that the batch GDCV278
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provided the best accuracy result prior to any incremental step or addition of279

any new data. Then, the same value of α is used for both GDCV and IGDCV280

and keep constant over all the iterations. Thus, we aim to simulate a carefully281

fined-tuned initial pre-existing model to be further evolved.282

5.1. First scenario: New samples283

In this experiment, we simulate a scenario where, for a given problem, an284

initial dataset is captured and the corresponding model is created. Then, new285

samples become available for calibration at different stages that can be used to286

improve the initial model and its performance. To do so, the 6 classes dataset is287

used. Cross validation is applied as evaluation protocol to avoid bias regarding288

the chosen samples. Ten iterations are performed, each with a random 70/30289

split, i.e. the dataset is divided in 70% for calibration and 30% for validation290

in each iteration with no overlap between calibration and validation sets to291

avoid bias in the results. Results are then averaged over the splits to generate292

the final value. From the calibration samples, initially only 12 samples with293

representatives of all classes are used to generate a model. Then, in incremental294

step of 4 samples each, the model is evolved.295

296

Fig. 2 shows the results of both incremental and batch methods, with the297

preserved scattering parameter set to α = 0.13. As expected, models perform298

better as more calibration samples are available for learning from. Regarding299

the incremental learning, it can be observed how the accuracy of the incremental300

approach does not suffer, when compared with the batch algorithm, from not301

having access to the initial samples but only to the previous model. Moreover,302

when comparing the computational time required to generate the models (see303

Fig. 2b), one can notice the great difference in efficiency of using an incremental304

method regarding regenerating larger and larger models from scratch.305

5.2. Second scenario: New classes306

In this experiment, we simulate a scenario where a model has been created307

for a simpler identification problem that is then extended to cope with a more308
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complex problem. In the initial model, only 2 different oils are expected to be309

distinguished (Oil 1, 2) and this is incrementally evolved to identify more and310

more classes up to the total of the 12 species.311

Similarly to the previous scenario, cross validation is also used as evaluation312

protocol, where 10 iterations are performed, each with a random 70/30 split,313

i.e. the 70% of the samples from each class is used for calibration and 30% are314

reserved for validation. Results are then averaged over the splits to generate the315

final value and the dispersion bar. In each iteration step, all calibration samples316

for a new class are added to the previous model.317

318

Fig. 3 shown the results of both incremental and batch method. As ex-319

pected, the more classes must be identified, the more complex the problem and,320

therefore, the accuracy decreases. Similarly to scenario 1, the potential of incre-321

mental learning is stated again by conserving the accuracy of the batch approach322

while reducing drastically the computational time and the access to the initial323

samples.324

5.3. Third scenario: New instruments325

In this scenario, we demonstrate the potential of the incremental learning to326

generalise previously existing models so that they can then be used by others327

laboratories using different instruments.328

It has been shown that models created under controlled conditions, e.g. from329

a single calibration set when only one instrument was used, perform poorly330

when operating in real world conditions and report much lower performances331

than what it is expected from them. This can be corroborated by generating a332

model trained with 70% of the samples from instruments 1 (see Table 2). This333

model is first tested with the remaining 30% of the samples belonging to the very334

same instruments, and then tested with the samples from all other instruments.335

Similarly to previous scenarios, cross validation is used as evaluation protocol,336

where 10 random iterations are performed. Results for the 6 and 12 classes337

problems are depicted in Table 3.338
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Figure 3: Batch GDCV and incremental IGDCV methods regarding new classes. Scattering

parameter α = 0.07.
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Table 3: Accuracy of GDCV model when using (2nd column) samples of the same instrument

in the test set, and (3rd column) samples of different instruments in the test set to the

instrument used in calibration.

Classes Same Inst. in Test New Inst. in Test

6 0.72± 0.04 0.28± 0.06

12 0.62± 0.03 0.14± 0.03

It can be noticed how an apparently good model, with reported accuracies339

60-70%, underperforms dramatically under more complicated environments or340

conditions. It is therefore clear the necessity of improving an existing model in341

order to operate more broadly.342

We simulate this situation in this third scenario, where we evaluate the po-343

tential of incremental learning to improve the generality of a previously created344

model initially created in a single laboratory. An initial model is trained with345

all samples from a single instrument. Then, the samples of a new instrument346

are added in a first step to evolve the model, followed by incremental steps of347

all samples belonging to new 2 instruments in each step. Two experiments are348

performed, one where the model has to identify 6 classes and the other one with349

12 classes. Cross validation is used, repeating the experiment 10 times, where350

different instruments are randomly left out for the validation. In the 6 classes351

experiment, all samples from 3 different instruments are reserved for evaluating352

the system and up to 14 instruments are used in calibration. In the 12 classes353

experiment, all samples from 5 different instruments are kept for evaluating the354

system and up to 12 instruments are used in calibration.355

356

Fig. 4 shown the results of both incremental and batch method. It can357

be noticed how using more instruments and collaborating between different358

labs allows to radically improved the performance of a given method. Both 6359

and 12 class experiments behave similarly with slightly lower performance in360

the 12 classes due to the higher difficulty of the problem. We can see how361
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Figure 4: Accuracy (ACC) rate of the batch GDCV and the incremental IGDCV regarding

new samples from new instruments. Scattering parameter α = 0.02.
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the incremental learning allows not only replicating the batch results but also362

it improves them regarding computational time, Fig. 5. It is also important363

to notice, how only a few samples from new instruments are needed (only 9364

samples are available, see Table2) in our approach to improve significantly the365

final accuracy.366

367

5.4. IGDCV as exploratory analysis tool368

Apart from the benefits of using the IGDCV that were described earlier,369

IGDCV can also be used as an exploratory analysis tool, similarly to PCA370

[22]. In this regard, projecting the samples in the learned IGDCV can provide371

valuable information regarding the complexity of the problem, the likelihood372

of the model to accurately predict the correct answer and the quality of the373

samples. Furthermore, its incremental nature provides an extra functionality374

not available in PCA, GDCV or other batch methods, since once a model is375

created, a specific new sample(s) can be assessed in terms of its adequacy to be376

included in the analysis and/or in the calibration set of the following iteration377

of the model.378

Figure 6 shows the evolution of the model for the 6 class problem in the379

first scenario, i.e. when samples are incrementally added. It can be observed380

how, while in the first space it is not very clear what are pure or admixture oil381

samples due to lack of data, this relationship is clearer the more online learning382

iterations occurs and more relevant samples are added.383

Figure 7 shows the evolution of the model for the 12 class problem in the384

second scenario, i.e. when samples belonging to new classes are incrementally385

added. It can be observed how the complexity of the problem grows: while in386

the first space the 3 classes could be easily identified and separated, the space387

is more cluttered when the number of classes increases. This visualization can388

be used to decide which classes could not be resolved, and therefore should be389

excluded, due to their similar properties which are translated in their overlap390

in the space.391
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for the first scenario where samples are added incrementally (6-class problem)
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Finally, Figure 8 shows the evolution of the model for the 6 class problem392

in the third scenario, i.e. when samples belonging to new instruments are in-393

crementally added. It can be seen how the initial model is clearly insufficient394

to solve the problem and how adding more and more instruments seems a good395

idea to improve discrimination between classes. It could also be used to decide396

in which moment adding more instruments may not be convenient anymore,397

since the subspace will not evolve further, as seen between the second and third398

projections. Please notice how this visualization correlates with the quantitative399

results in Figure 4, where accuracy improvement reduces after 3 iterations, i.e.400

6 instruments.401

As can be seen, by using a incremental method for exploratory analysis,402

relevant information is provided to food scientist such as the detection of errors403

in the sample preparation or data generation, or the likelihood of an improved404

model by using a new batch of samples. Furthermore, this experiments were405

performed in a fraction of the time required by the batch method GDCV. Thus,406

Figure 6.b) and c) were generated in 28% and 13% of the batch time respectively,407

Figure 7.b) and c) in 40% and 22% of the batch time and Figure 8.b) and c) in408

16% and 14% of the batch time.409

6. Conclusion410

In this paper we apply the concept of incremental learning in food science411

and proposed the use of a subspace based learning method, both in its incremen-412

tal and batch method as a new chemometric analysis tool. GDCV and IGDCV413

can be used as both classification and exploratory techniques, without some of414

the constraints that PCA or LDA exhibits, such as requiring large number of415

samples. The potential of incremental learning to improve and share models416

between analytical laboratories using different acquisition equipment is demon-417

strated through three different scenarios. By adding a very small number of418

samples to a preexisting model, our approach allows improving significantly the419

accuracy as well as to adapt the model to a new problem or scenario. The420
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IGCV incremental approach presented here has the advantage of maintaining421

or improving the accuracy while reducing the computational and spatial cost,422

and removing the hassle and privacy issues associated to share raw samples and423

wasting time and effort reproducing the models and tuning the analytical tools.424

As future work, we aim to extend our incremental subspace learning method to425

other cases of studies in chemometrics as well as integrating IGDCV as part of426

a new version of SIMCA. We also aim to study the use of decremental learning427

in chemometrics and add a decremental stage to our online learning framework.428
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W. Märzinger, J. Kasberger, Evolving chemometric models for predicting

dynamic process parameters in viscose production, Analytica chimica acta

725 (2012) 22–38.

[18] C. Cernuda, E. Lughofer, G. Mayr, T. Röder, P. Hintenaus, W. Märzinger,
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