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Abstract 

This work describes newly synthesized composite polymeric membranes and their 

utilization in propane/propylene separation in a gas mixture. The nonporous composite 

polymers were successfully synthesized by using thermoplastic polyurethane (TPU) and 

several silver salts/silver salts with ionic liquids (ILs). Our studies showed that silver 

bis(trifluoromethanesulfonyl)imide (Ag[Tf2N]) containing membranes outperformed other 

silver salt containing membranes in terms of selectivity. In addition, to this finding, ILs, as 

additives for the membranes, enhanced the selectivity by facilitating improved 

coordination of the olefin with the silver ions in the dense composite polymers. 

 

Keywords:  

Membrane separation - Composite polymer - Ionic liquids - Propane/propylene separation. 

 

  



 2 

1. Introduction 

In the oil refining industry light hydrocarbons are one of the main production streams from 

the oil cracking process and separation of the olefin and paraffin fractions within these 

streams is an essential step for customized product lines. Conventional separation 

technology for light olefin/paraffin mixtures is based on cryogenic distillation as the boiling 

points of most of the components are below 280 K (Semenova, 2004). This generally 

requires large amounts of energy (0.12 Quads annual energy consumption in the U.S.) as 

well as high capital investment for the construction of the required distillation columns and 

separation trains (Eldridge, 1993). As emission standards for the oil and gas industry 

become increasingly stringent in the recent years, alternative energy-saving routes for 

light olefin/paraffin separation processes has become necessary and gained attention in 

both industry and academia. One such alternative separation technology for light 

olefin/paraffin mixtures is membrane separation, which has been studied since the early 

90s’ (Eldridge, 1993; Funke et al., 1993; Hsiue and Yang, 1993; Ho, 1994; Tsou et al., 

1994). The notable advantages of membrane separation over conventional cryogenic 

distillation are energy efficiency (Eldridge, 1993) and low construction cost which make 

the newly developed technology a comparable and potential candidate. 

There are three basic types of membrane used in olefin/paraffin membrane separation: 

supported liquid membranes, polymeric membranes and composite membranes (Faiz and 

Li, 2012a; Ravanchi et al., 2010a). In terms of supported liquid membranes for 

olefin/paraffin separation, the membrane is usually used to support the liquid solution 

above, by this means the liquid is the key separation material. It has been reported that 

porous membranes (e.g., aluminum oxide microporous membranes, microporous 

polyvinylidene difluoride (PVDF) membranes and polyester microporous membranes) with 

0.1 μm pore size are suitable to support different types of liquid solutions (Azhin et al., 

2008; Duan et al., 2003; Huang et al., 2008; Kang et al., 2008; Ravanchi et al., 2010a, 

2010b; Scovazzo et al., 2009). Both traditional solvents and ionic liquids (ILs) were studied 

and novel ILs, such as Ag(1-hexene)x[Tf2N] and Ag(DMBA)2[Tf2N], reported by Huang et 

al. (2008) achieved remarkable selectivities, as high as 700 for liquid olefin/paraffin (C5-

C7) separations. Fallanza et al. (2012) incorporated the IL 1-butyl-3-methylimidazolium 

tetrafluoroborate ([C4mim][BF4]) with silver tetrafluoroborate (Ag[BF4]) to form a liquid 

membrane supported by a porous polyvinylidene fluoride membrane for separation of a 

propane/propylene mixture. The selectivity reported is up to 20.  
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Polymeric membranes have also been widely studied, due to their properties leads to 

differences in gas solubilities in glass/rubbery polymers makes olefin/paraffin separation 

achievable. However, by analyzing the data that is available in open literature, the 

separation performance is rather low and with regard to selectivity is generally noted as 

below 10 for light olefin/paraffin separations (Faiz and Li, 2012b; Hayashi et al., 1996; 

Ilinitch et al., 1992; Okamoto et al., 1999; Semenova, 2004; Tanaka et al., 1996). It should 

be noted that compared with other types of membranes the separation selectivity 

performance of polymeric membranes is normally limited to below 30.   

Composite polymeric membranes for olefin/paraffin separation were synthesized by 

combining polymers with task specific chemicals to improve the selectivity. It is well known 

that several transition metal ions are able to form complexes with olefins due to electrons 

from the π-orbitals of the olefin molecules interacting with electrons from the d-orbitals of 

metal molecules (Bai et al., 1998). In general, the complexation is reversible at room 

temperature or higher allowing transition metals to be used as facilitated transport carriers 

in the composite membrane. Integration of transition metals such as silver (Ag(I)), copper 

(Cu(I)), iridium (Ir(III)), palladium (Pd(II)) and ruthenium (Ru(III)) with different polymers to 

form composite membranes has been reported (Bai et al., 1998, 2000; Kim et al., 2000; 

Park et al., 2011). Due to its lower price as well as its chemical stability, silver has been 

the most widely researched metal for application in olefin/paraffin separations using 

composite membranes. In addition, compared with copper, silver has shown improved 

separation performance (Han et al., 2011; Ravanchi et al., 2009).  

Faiz et al. (2012a) introduced the effects of metal containing membranes in which the 

lattice energy of metal salts can influence the separation performance. It is suggested that 

the strength of the bonding of the silver ion with its anion is positively correlated to the 

lattice energy of the salt, thus the complexation between silver and olefin can be further 

improved by using a weakly coordinated silver ion. Clearly, different silver salts in the 

membrane will result in different separation factors. For example, Lee et al. (2009) 

compared Ag[BF4] with silver trifluoromethanesulfonate (Ag[CF3SO3]) by incorporating 

them with poly(styrene-b-isoprene-b-styrene) and found that the selectivity of Ag[BF4] 

(selectivity up to 70) was higher than that of the Ag[CF3SO3] (selectivity up to 20) in the 

separation of propane/propylene. 

However, there are a number of disadvantages that are associated with the chemical 

absorption for selective olefin/paraffin separation using the currently available membrane 
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technology, such as stability of the transition metal and solvent losses, which significantly 

narrows possible operating temperatures (Eldridge, 1993). ILs having negligible vapor 

pressure mitigate the problems associated with solvent loss observed with conventional 

solvents thereby opening the door to application of an alternative separation technique 

using IL membranes. Some recent studies show the initial work on the utilization of ILs in 

membrane separations to stimulate facilitated transport inside the membranes. More 

recently, Fallanza et al. introduced a novel membrane containing Ag[BF4], 1-butyl-3-

methylimidazolium tetrafluoroborate ([C4mim][BF4]), and poly(vinylidene fluoride-co-

hexafluoropropylene) (PVDF-HFP) which resulted in a high separation performance with 

a reported selectivity of ~300 for propane/propylene separation. To date the approach of 

using ILs as an additive in polymeric membranes has been studied to the greatest degree 

(Fallanza et al., 2013).  

 

In this work, we propose a novel IL/silver composite polymeric membrane for separating 

a propane/propylene gas mixture. As each selected IL has negligible vapor pressure at 

temperatures under 373 K (Aschenbrenner et al., 2009), it can be assumed that the mass 

of the IL remains constant during the membrane preparation; a contrario of classical 

conventional solvents. Four silver salts; silver nitrate (AgNO3), silver hexafluorophosphate 

(Ag[PF6]), silver bis(trifluoromethanesulfonyl)imide (Ag[Tf2N]) and silver tetrafluoroborate 

(Ag[BF4]), as well as ILs with the [C4mim]+ cation and anion of a silver salt were tested. 

Thermoplastic polyurethane (TPU) was selected as the liquid membrane support due to 

its wide use in industry as a result of its high chemical resistance, high mechanical 

elasticity and reasonable cost. Moreover, the ILs are able to remain in the membrane to 

assist the silver ion with the reversible complexation route for separation. 
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2. Materials and Methods used 

2.1 Materials 

AgNO3, Ag[BF4], Ag[PF6] and tetrahydrofuran (THF) were all purchased from Sigma-

Aldrich with a purity close to 99 %, 98 %, 98 % and 99.9 %, respectively and were used 

without any further purification. Ag[Tf2N] and the ILs 1-butyl-3-methylimidazolium 

tetrafluororborate ([C4mim][BF4]), 1-butyl-3-methylimidazolium nitrate ([C4mim][NO3]), 1-

butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]) and 1-butyl-3-

methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][Tf2N]) were synthesized in 

the QUILL Research Centre (Queen’s University Belfast) and were dried under vacuum at 

338 K for 12 hours before use. The water content was measured by Karl Fischer analysis 

and was carried out in duplicate for each sample using a GRScientific Cou-Lo Compact 

titrator and the average values are as given in the results; Ag[Tf2N] solid was dissolved 

into 1-hexene before titration. Elemental analyses (Perkin Elmer 2400 CHN Elemental 

Analyser and ICP-OES Perkin–Elmer Optima 4300) were carried out to validate the 

chemicals’ purity. The detailed results are shown in Table 1. TPU was purchased from 

BASF under the brand of Elastollan® TPU. 

The propane, propylene and argon cylinders were all purchased from BOC, all with the 

reported purity of above 99.5 %. 

 

 

2.2 Membrane Preparation 

0.8 g of TPU was weighed (Ohaus balance with a precision of 1 mg) and dissolved in THF 

solvent at a constant temperature of 340 K. The mixture was continuously stirred using a 

magnetic stirrer until all the solid TPU had completely dissolved. Following a standard 

procedure, the dissolved liquid was then cast in a Petri dish of diameter of 80 mm and left 

in dark for about 48 hours at room temperature in order to obtain the membrane. The 

membrane was formed visibly with a thickness of 100-300 μm measured by optical 

microscopy, as described below. Other membranes were prepared by replacing pure TPU 

with mixtures of TPU and either AgNO3, Ag[BF4], Ag[PF6] or Ag[Tf2N] with a weight 

percentage of 10 wt.%, 20 wt.% or 30 wt.% correspondingly. ILs were also added into the 

solutions of silver salt and TPU with the ILs [C4mim][NO3] [C4mim][BF4], [C4mim][PF6] and 

[C4mim][Tf2N] added to the membranes containing the corresponding anion of the silver 
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salt mentioned above. Different weight percentages of the ILs were studied by employing 

10 wt.% and 20 wt.% of each IL while the weight of silver salt was always 10 wt.%. 

Moreover, 10 wt.% and 20 wt.% [C4mim][Tf2N] with 10 wt.% AgNO3 were also incorporated 

in order to study whether there are enhancements for the propane/propylene separation 

with the alternation of the presence of differing anions. 

 

2.3 Membrane Characterization 

The structure and thickness of the prepared membranes were observed using a Nikon 

SMZ800 optical microscope at 293 K and at atmospheric pressure. The thickness of the 

membrane was measured by using the ruler included in the optical microscope software 

package provided by Nikon. A thermogravimetric analyzer (TGA, TA Instruments Q5000) 

was used to measure the thermal decomposition characteristics of the prepared 

membranes. The measurements were performed by using non-isothermal mode whereby 

membrane samples (0.1 - 0.2 mg) were placed in a platinum pan and heated at a constant 

scan rate (10 K/min) under a N2 atmosphere from room temperature up to 873 K.  

Decomposition temperature onsets, Td, were taken when the samples lost 5 % of their 

initial masses. Reported thermal properties are given with accuracy close to ± 1 K. 

Attenuated total reflection infrared spectra (ATR-IR, Perkin Elmer Spectrum 100) of the 

membranes were obtained at 293 K and at atmospheric pressure. About 100-200 mg of 

membrane was placed on the spectrometer's Smart Orbit accessory and pressed against 

a ZnSe crystal with a force of ~87 N.  A background spectrum of the atmosphere was 

taken prior to every sample run. Herein, each reported spectrum is an average of 20 

scans, with a spectral resolution of 4 cm− 1, between 4000 cm-1 and 550 cm-1. Spectra 

were obtained for a selection of membranes which were freshly prepared, used in a gas 

separation test or heated in an oven at 473 K for 30 mins. 

 

2.4 Gas separation process 

A membrane cell from Sterlitech was used to hold the prepared circular membrane with a 

diameter of 47 mm (area = 17.3 cm2). The temperature of the membrane was controlled 

by an oven with a thermocouple within an accuracy close to 0.5 K. The propane/propylene 

gases were first mixed in a ballast vessel before the measurements were taken. Herein, 

the partial pressure of the gas mixture was used to control the feed composition; for 
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instance, first 2 bar of propane was placed into the ballast vessel; then the propylene gas 

cylinder was opened until a total pressure of 4 bar was achieved. The vessel was then left 

for one day before membrane tests were carried out to achieve homogeneous mixing 

within the ballast. By this means, the molar mixing ratio of the feed compositions we tested 

before each measurement was close to 1.00 ± 0.01. The propane/propylene gas 

compositions were all measured by gas chromatography (GC) using a Perkin Elmer Clarus 

400 with a thermal conductivity detector (TCD) and a Durapak n-octane packed column. 

The feed pressure was controlled at 2 bar by a regulator at the outlet of the ballast vessel. 

In order to verify the gas pressure in the membrane cell, a manometer was set in the feed 

line with an accuracy of 0.05 bar.  A bubble flow meter was used to measure gas flow rate. 

The membrane cell within the oven contained a permeate side and retentate side and the 

temperature was set at 293 K, 313 K or 333 K (± 0.5 K accuracy) for membrane separation 

tests. Argon was used as the sweep gas in the permeate line to ensure a fixed composition 

of feed gas mixtures in the membrane cell. The flow rate of the sweep gas was controlled 

by a mass flow controller at 4 mL/min. The gas composition was tested twice to calculate 

the average value and relative deviation of the composition was about 6.5 %. Figure 1 

illustrates the schematic process diagram of the gas permeation apparatus. 

 

3. Results and Discussion 

3.1 Characterization of ILs membranes 

Optical microscopy was used to measure the thickness as well as homogeneity of the 

prepared membranes at 293 K and at atmospheric pressure. Figure 2 shows several 

chosen images of different composite membranes including that of the pure TPU 

membrane (Figure 2a). The images show that TPU forms a homogeneous membrane and 

on addition of 10 wt.% AgNO3 (Figure 2b) a similarly homogeneously structured 

membrane is formed that indicates the miscibility of the used components (e.g. ILs) were 

successfully embedded inside the prepared membrane matrix. However, as the ILs 

percentage increases in the membrane, phase separation issue is observed that leads to 

the formation of IL micro-pocket formations. For instance, with the addition of 20 wt.% 

AgNO3 (Figure 2c) the heterogeneity of the membrane appears increased and is overall 

not as flat as that with only 10 wt.% AgNO3. The increased heterogeneity of this membrane 

is predicted to be due to formation of areas of undissolved salt in the polymer matrix during 

the manufacturing step. In contrast, membranes that are formed with 10 wt.% Ag[PF6], 
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Ag[BF4] or Ag[Tf2N] (Figures 2d-2f, respectively) all show good homogeneity and their 

structure is maintained when the loading of salt is increased to 20 wt.% (Figures 2g-2i, 

respectively) showing the higher solubility of these salts in the polymer matrix as compared 

with AgNO3. Similarly, addition of 10 wt.% of IL ([C4mim][X] where [X] = [NO3]-, [PF6]-, [BF4]- 

or [Tf2N]-) to the corresponding 10 wt.% Ag[X] membrane also gives samples with a good 

level of homogeneity compared to Figure 2b for example (Figures 2j-2m, respectively). 

However, when the amount of the [NO3]-- or [PF6]--based IL added is increased to 20 wt.% 

(Figures 2n-2o, respectively) the membrane shows regions of heterogeneity and in the 

case of [C4mim][PF6] a different structure is also observed.  For example, in the case of 

the TPU + 10 wt.% Ag[PF6] + 20% [C4mim][PF6] membrane, it can be observed that an 

IL/Ag-salt phase separation occurs within the membrane as evident in Figure 2o. Again 

this is attributed to areas of undissolved IL and silver salt onto the polymeric matrix. 

The thickness of the composite membranes all exceed 160 μm except those prepared 

with Ag[PF6] and Ag[PF6] + [C4mim][PF6] which were about 100 ± 10 μm, similar to the 

thickness of the pure TPU membrane. In addition, the Ag[PF6] membranes were less 

flexible and more rigid compared to the other membranes.  

Due to the experimental conditions used, there are some dark brown spots appeared and 

overall dark brown color shown in the microscopic photographs of some of the 

membranes, which can be explained by unwanted exposure of some of the membranes 

to the light while obtaining the images. This however suggests the presence of silver 

nanoparticles in the membranes, which are rapidly reduced on exposure to light (Kim et 

al., 2005), which is not occurring during the gas separation studies, for example.   

 

3.2 TGA analysis 

TGA was undertaken to estimate the temperature stability of the membranes and obtain 

the range of possible operating temperatures. TGA measurements of selected TPU 

membranes as a function of silver salts and/or ILs structure and loading are exemplified 

in Figure 3 for membranes containing 10 wt.% silver salt. All TGA measurements carried-

out during this work are provided in Figures S1-S8 of the electronic supporting information 

(ESI) along with their decomposition temperature onsets tabulated in Table S1 of the ESI. 

The TGA results clearly indicate that the pure TPU membrane is the most stable with a 

decomposition temperature of ~548 K (Figure 3) and the thermal stability of TPU 
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membranes seems to decrease on addition of either silver salt or silver salt-IL (see Figure 

3 and Figures S1-S8 of the ESI). As reported in Table S1 of the ESI and shown in Figure 

3, membranes containing 10 wt.% silver salt have the following order of stability and 

decomposition temperature onsets, Td, Ag[BF4] (~533 K) > Ag[PF6] (~477 K) ≥ Ag[Tf2N] 

(~471 K) > AgNO3 (~382 K). In other words, a clear effect of the presence of these salts 

on the stability of the TPU material is observed whatever the salt added. 

There was about 20 wt.% - 23 wt.% mass loss at 470 K for all [Tf2N]--based membranes 

which indicates that the polymer decomposed more easily in the presence of [Tf2N]--based 

silver salt (Figure S1 of the ESI) and after addition of [Tf2N]--based IL (Figure S2 of the 

ESI). As shown in Figure S1 of the ESI whatever the salt loading (up to 30 wt.%), at 873 

K the total mass loss of all [Tf2N]--based membranes was close to 80-90 %. The role of 

ions on the thermal instability of the membrane is thought to be due to the strong 

interaction between ions and the TPU material, driven by the weak coulombic interactions 

between Ag+ and [Tf2N]- which reduces the likelihood of ion-ion association in the 

membrane (Agel et al., 2011). In contrast, as shown in Figures S3-S5 of the ESI, the total 

mass loss observed at 873 K for the AgNO3-, Ag[PF6]- or Ag[BF4]-based TPU membranes 

seems to decrease on increase of the silver salt loading. Differences observed in the total 

mass loss at 873 K of silver salts-TPU membranes and in the stability of the TPU in these 

media may be explained by the differences in ion-ion and ion-TPU interactions in the 

membrane as NO3
-, [PF6]- and [BF4]- have a more localized negative charge than that of 

the [Tf2N]- anion (Zaidi et al., 2014). Moreover, Figure S3 of the ESI shows that the 

membrane stability increases at higher concentrations of AgNO3, which could be due to 

the increased heterogeneity of the membrane resulting in the membrane behaving more 

like a physical mixture of pure TPU and salt. 

Interestingly, the addition of the corresponding [C4mim]+-based IL to the silver salt-TPU 

mixtures shows little influence on the thermal stability of the [Tf2N]-, [BF4]- and [PF6]- based 

membranes as shown in Figures S2, S6 and S7 of the ESI, respectively. In contrast, 

addition of either [C4mim][NO3] or [C4mim][Tf2N] enhance the stability of the AgNO3-based 

membrane (see Table S1 and Figure S8 of the ESI).  

The knowledge of the thermal stability of these membranes has been used to determine 

the operating temperature for the following FT-IR analysis and separation performance 

tests (Gan et al., 2011). 
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3.3 FT-IR Analysis 

FT-IR was conducted for each membrane to determine the molecular structure and 

interactions on addition of silver salts, silver salt/ILs and olefins. Figure 4 shows selected 

spectra of the prepared TPU and silver salt-TPU membranes. Figure 4a shows the spectra 

of various membranes, those prepared with pure TPU as well as those containing different 

silver salts. At about 3320 cm-1, Figure 4b, the N-H stretching band for the pure TPU 

membrane is observed which was previously reported by Lu et al. (2003). In addition, 

bands at 2942 cm-1 and 2861 cm-1, from the aliphatic C-H stretching frequencies are also 

observed. Markedly, all samples showed the N-H and C-H stretching bands at the same 

wavelength except for Ag[PF6] where the N-H and C-H bond stretching frequencies were 

sharpened and shifted to 2918 cm-1 and 2850 cm-1, respectively. The decrease in 

wavenumber of the N-H and C-H stretching frequencies indicates a weakening of these 

bonds, possibly due to a H-bonding type interaction of the N-H with the [PF6]- anion. It is 

proposed that during the formation of this membrane, the highly charge-localized and 

dense [PF6]- anion tends to create a tight configuration of the TPU polymer compared with 

other silver salts of weakly coordinating and/or less dense anions. This is supported by 

the Ag[PF6] membrane being thinner than the other silver containing membranes showing 

a denser structure. 

Figure 4c shows the interaction between the silver in the membrane and propylene. FT-IR 

spectra were taken of the membrane before and after gas separation measurements. The 

comparison for each membrane is shown by enlarging the spectra 5 times. The 

complexation between silver and propylene is shown by the presence of a peak at 1591 

cm-1 for the AgNO3 membrane and 1580 cm-1 and for the AgNO3 + [C4mim][NO3] and 

AgNO3 + [C4mim][TF2N] membranes which are not present in the spectra taken before the 

gas separation tests. This band is attributed to the carbon-carbon double bond in the olefin 

which is normally in the range from 1680 to 1640 cm-1 (Huang et al., 2008). When 

complexed to the silver salt, the olefin bond is weakened and is shifted to a lower 

wavenumber. The increased shift observed upon addition of [C4mim][NO3] or 

[C4mim][Tf2N] indicates an even stronger interaction between the silver and olefin in the 

presence of IL. This is possibly due to the IL improving the solubility of AgNO3, which has 

the effect of weakening the interaction between the silver cation and nitrate anion, thereby 

leaving the silver able to interact with the olefin more efficiently. 



 11 

The significant mass loss observed at 470 K for [Tf2N]- based membranes is in contrast to 

all other systems studied. In order  to investigate the nature of this decomposition and 

confirm there were changes occurring in the polymer a sample of the 10 wt.% Ag[Tf2N] 

membrane which had been previously analyzed by FT-IR spectroscopy, was placed in an 

oven at 473 K for 30 minutes. After this treatment, the sample was cooled to room 

temperature, before being analyzed again by FT-IR. Comparison of the FT-IR spectra of 

the 10 wt.% Ag[Tf2N] membrane before and after this treatment is shown in Figure 5. From 

the complete spectra shown in Figure 5a, there is a significant difference in the carbonyl 

region from 1750 cm-1 to 1700 cm-1 and the ether fingerprint region from 1300 cm-1 to 1100 

cm-1. Figures 5b and 5c show expansions of these regions of the spectra to highlight these 

differences. Figure 5b shows the presence of a number of broad overlapping peaks with 

one centered at about 1700 cm-1 and a second at about 1742 cm-1 in the fresh membrane 

attributable to the C=O stretching vibrations (Silverstein et al., 2005).  These dominant 

peaks are no longer present in the spectra of the membrane after being heated with only 

one broad peak near 1720 cm-1 remaining. The overall carbonyl peak is formed from C=O 

species present in a number of different environments and although it is not possible to 

attribute the changes observed to one particular C=O species, it is clear that the structure 

of the polymer has changed altering the environment near at least one of these C=O 

species. In addition, the peaks near 1225 cm-1 and 1055 cm-1 from ether linkages in the 

polymer have also altered considerably. The bands from the symmetric stretching of C-O-

C linkages at 1225 cm-1, shows a change in relative intensity of the peaks and the 

asymmetric stretch of the same linkage at 1055 cm-1 decreases in intensity with the 

shoulder at 1070 cm-1 present in the spectra of the fresh membrane disappearing on 

heating, Figure 5c. This also suggests that the membrane has gone through a structural 

change or deformation after being heated to 473 K in the presence of Ag[Tf2N]. Given the 

~20wt.% weight loss observed by TGA analysis at this temperature it is likely that the mass 

loss is due to decomposition of the ester groups of the TPU membrane. 

 

3.4 Gas Separation Studies  

In order to estimate the membrane separation performance, the selectivity and 

permeability of each membrane were calculated (Gan et al., 2011). The selectivity 𝑆 is 

defined as the ratio of mole fractions of the gas components in permeate stream divided 

by the ratio of the mole fractions of the gas components in the feed: 
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S =
y1

y2
∕
x1

x2
                                                                 (1) 

where y and x denote the mole fractions of each component in the permeate and feed 

streams, respectively. In equation 2, subscripts 1 and 2 represent the propylene and 

propane, respectively. 

The permeability coefficient which denotes gas transported through the membrane can be 

defined as: 

𝑃𝑖 = 𝐽𝑖
Δ𝑝𝑖

𝛿
⁄ Pi = J

i

Δpi

δ
⁄                                                                  (2) 

where 𝐽𝑖 is the flux for gas 𝑖, Δ𝑝𝑖 is the partial pressure difference between the feed and 

permeate streams across the membrane, and 𝛿 denotes the thickness of the membrane. 

Here Barrer is used as the unit of the permeability coefficient. 1 Barrer = 10-10 cm3·cm·cm-

2·s-1·cmHg-1 at standard temperature and pressure. All gases involved in the calculations 

are treated as ideal gases. 

 

Effects of concentration, temperature and anion 

The selectivity of propylene over propane and the mixed gas permeability for different 

silver salt composite membranes are shown in Figure 6 with the data provided in Table S2 

of the supporting information. The results for the 20 wt.% and 30 wt.% AgNO3 membranes 

are not shown as no further improvement in the separation was achieved at these higher 

loadings of salt. Moreover, after these membranes had been repeatedly synthesized and 

tested 5 times, microscopy images indicated that these membranes were porous in 

structure instead of being dense membranes, negating any meaningful comparison of the 

transport properties. The selectivity and gas permeability measured for the pure TPU 

polymeric membrane are 2.0 and 1900.2 Barrers, respectively at 293 K. By adding a silver 

salt to the TPU polymeric membrane, with the exception of Ag[PF6] membranes, its 

permeability and selectivity increased with the addition of silver salts. Permeability through 

the Ag[PF6] membrane (590 at 293 K for 10 wt.%) was lower than other membranes as 

expected from the decreased thickness and resulting increased density of this membrane. 

However, it is noted that the selectivity for propylene (5.5 at 293 K for 10 wt.%) was 

comparable with that obtained for similar loadings of the other silver salts.  
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The solution-diffusion model defines the permeability of a gas passing through the 

membrane as the product of its solubility in and diffusivity through the membrane. 

Therefore an increase in propylene solubility occurs from complexation with the silver ions 

present, which  in turn increases the solubility of the non-polar propane. However, the 

increase in solubility is sufficient to overcome the decrease in propylene diffusivity from its 

complexation with the silver ions and results in an overall increase in permeability of the 

mixed gas stream (Agel et al., 2011). This complexation of propylene with the silver ions 

and resulting increased permeability relative to propane also results in increased 

selectivity compared to membranes containing no silver salts. 

 

As expected from the pure TPU membrane, for all silver salts tested, the permeability 

increased with increasing temperature from 293 to 333 K, which again can be explained 

by the solution-diffusion model. As the temperature is increased the diffusivity of both 

gases being transported through the membranes is also increased resulting in improved 

permeability despite the lower solubility of the gases at the higher temperatures. However, 

in all cases of increasing temperature the selectivity to propylene decreased due to a 

weaker interaction with the silver ions which, combined with the increased diffusion of both 

gases through the membrane, resulted in lower selectivity compared with those observed 

at lower temperatures. 

The permeability of the membrane is dependent on the silver salt present and for each 

silver loading follows the order: Ag[PF6] (590.4-995.2 Barrers) << Ag[BF4] (2958.1-5703.2 

Barrers) < AgNO3 (3535.2-6656.2 Barrers) < Ag[Tf2N] (4478.8-8512.3 Barrers). The 

Ag[PF6] membrane has a lower thickness but about the same mass compared with other 

membranes and this leads to higher Ag[PF6] membrane density. Alongside membrane 

density, the permeability of the other membranes is dependent on a number of factors 

such as, diffusivity and solubility of the gases and is not correlated with a single factor.  

However, the selectivity of the membranes is dependent on the anion coordinating with 

the Ag+ ions and are in the order AgNO3 (2.7-5.0) < Ag[PF6] (3.1-17.2) < Ag[BF4] (3.6-28.2) 

< Ag[Tf2N] (4.8-38.0). This has been explained in terms of their lattice energies which 

control the strength of interaction with the olefin as reported by Faiz et al. (2012a) The 

high lattice energy of 822 kJ mol-1 for AgNO3 means there is a strong interaction between 

the silver cation and nitrate anion resulting in a weak interaction between the silver and 

olefin and low selectivity (5.0 at 293 K for 10 wt.%). In contrast, Ag[BF4], with a lattice 
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energy of 658 kJ mol-1 has a much weaker interaction between the silver and [BF4]- anion, 

allowing a stronger interaction between the silver and olefin resulting in increased 

propylene selectivity (7.5 at 293 K for 10 wt.%). The salts of the larger [Tf2N]- anion with 

its delocalized charge have a relatively low lattice energy (Sun et al., 2003), which allows 

an even stronger interaction between the silver and olefin resulting generally in high 

selectivity.  

In contrast to the decreased selectivity observed with the higher permeability at elevated 

temperatures, the higher permeability observed with higher silver concentrations is 

accompanied by high selectivity for all silver salt membranes tested. The high 

concentration of silver ions provides good facilitated transport for propylene which as 

described by the solution diffusion model increases the solubility of propane and in turn 

the overall permeability. However, unlike the case where the permeability was increased 

at elevated temperatures due to increased diffusion but weakened silver-olefin interaction; 

here the strong interaction between the silver and propylene is maintained leading to a 

higher selectivity along with higher permeability. Therefore, the combination of high silver 

concentration to optimize potential sites for interaction with the olefin, weakly coordinating 

anion to make the sites available and low temperature to allow high gas solubility and 

strong Ag-olefin interaction results in the highest selectivity of 38.0 observed herein for the 

30 wt.% Ag[Tf2N] membrane at room temperature. 

 

Effects of addition of IL on the performance of the membrane 

The selectivity and mixed gas permeability of IL containing membranes is shown in Figure 

7 with the data provided in Table S2 of the supporting information. [C4mim]+-based ILs 

were added to membrane blends with their corresponding silver salts. At all temperatures 

tested, the selectivity was enhanced in the presence of ILs for all silver salt membranes 

and the permeability increased on addition of 10 wt.% [C4mim][Tf2N] to the Ag[Tf2N] 

membrane from 4478.8 to 4929.1 Barrers and increased again to 5272.7 Barrers on 

addition of 20 wt.% IL. A large increase in permeability was also observed when 

[C4mim][PF6] was added to the Ag[PF6] membrane (from 590.4 to 1801.9 Barrers) and on 

addition of 20 wt.% a further increase to 1991.2 Barrers was observed. In contrast, addition 

of either [C4mim][BF4] or [C4mim][NO3] to the Ag+ containing membranes of the 

corresponding anions resulted in a slight decrease in permeability. As the relative rate of 

permeability is due to a number of factors such as solubility of gases in the composite 
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membrane, solubility in the membrane, dispersion of the silver ions, diffusion through the 

membrane and improved plasticization of the membrane it cannot be correlated with one 

parameter (Sanchez et al., 2009). For example, Kang et al. (2011) reported that the 

addition of the 1-butyl-3-methylimidazolium nitrate IL to polymeric membranes such as 

poly(2-ethyl-2-oxazoline) (POZ) + AgNO3 and poly(ethylene oxide) (PEO) + AgNO3 

improved their membrane permeability which, according to the conclusions given, was 

due to the plasticization effect this IL.   

The selectivity in contrast is largely dependent on the ability of the silver ions present to 

interact with the olefin and the trends in this separation parameter are more easily 

explained. For all ILs tested the selectivity increased with addition of [C4mim]+-based ILs 

with the highest selectivity observed here for the Ag[BF4] + 20 wt.% [C4mim][BF4] which 

increased from 7.5 in the absence of IL to 18.02. Addition of the IL improves the mobility 

of the Ag+ ions assisting the coordination of the olefin with the Ag+. The order of selectivity 

is Ag[PF6] + [C4mim][PF6] (4.8-13.3) < AgNO3 + [C4mim][NO3] (5.0-13.8) < AgNO3 + 

[C4mim][Tf2N] (5.2-15.8) < Ag[Tf2N] + [C4mim][Tf2N] (6.2-17.2) ~ Ag[BF4] + [C4mim][BF4] 

(6.0-18.3). The comparison between addition of [C4mim][NO3] or [C4mim][Tf2N] shows that 

[Tf2N]- based ILs have a better ability to dissociate the silver cation to its counterion in 

solution than other tested ILs. This ability enhances the selectivity of the membrane 

through a Ag-olefin complexation mechanism. 

 

A comparison plot was used to estimate the membranes’ performances. A Robeson plot 

including polymeric membrane separation data (Azhin et al., 2008; Burns and Koros, 

2003; Faiz and Li, 2012b; Hayashi et al., 1996; Ilinitch et al., 1992; Okamoto et al., 1999; 

Semenova, 2004; Tanaka et al., 1996) and composite membrane separation data (Azhin 

et al., 2008; Duan et al., 2003; Faiz and Li, 2012a; Fallanza et al., 2013; Hong et al., 2001; 

Kang et al., 2004, 2006, 2011; Kim et al., 2003, 2006; Lee et al., 2009; Park et al., 2001; 

Pinnau and Toy, 2001; Yoon et al., 2000) collected from literature is presented in Figure 8. 

A Robeson plot (using Barrer units) presents log selectivity against log permeability and 

inclines to have a tradeoff effect between the two key separation performance indicators 

(Nath, 2008). The TPU polymeric membrane separation described in this work falls on the 

empirical upper bound curve of the polymeric membrane due to its high permeability. 

Although the composite membrane separation results fall inside the empirical upper bound 

curve of composite membrane, it appears that the membranes prepared in this work were 
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highly permeable compared with literature data points. In addition, Agel et. al. (2011) 

calculated that the membrane selectivity of pure Ag[Tf2N] salt, based on the solution-

diffusion model at 295 K with 1:1 propane/propylene feed composition, is close to 19. In 

other words, by adding 20 wt.% or 30 wt.% Ag[Tf2N] to TPU an improvement of the 

membrane selectivity is observed in comparison with that expected for the pure Ag[Tf2N] 

salt.  
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Conclusions 

Novel TPU silver IL composite membranes were successfully synthesized and 

characterized by optical microscopy, TGA and FT-IR. The Ag[PF6] membrane was thinner 

than the others prepared, showed a denser structure resulting a in low permeability of 

gases. Nonetheless, in the presence of [C4mim][PF6] the gas permeability of the Ag[PF6]-

based membranes was improved. Whatever the IL structure, incorporation into each TPU 

silver salt composite membrane improved membrane selectivity, while having differing 

effects on the corresponding gas permeability. This is possibly due to the tradeoff between 

the IL plasticizing effects, interaction between ions in the material and the solubility barrier 

effect on hydrocarbon gases. In the case of the membranes constructed from TPU, silver 

salt and IL, with a 1:1 alkane:alkene feed composition at temperatures up to 333 K, the 

highest selectivity was observed for the 10 wt.% Ag[BF4] + 20 wt.% [C4mim][BF4] TPU 

membrane, which is close to 18.3; while the highest permeability, which is close to 8397.8 

Barrers, was obtained by using the 10 wt.% Ag[Tf2N] + 20 wt.% [C4mim][Tf2N]-based 

membrane. However, the membrane constructed from TPU and 30 wt.% Ag[Tf2N] can 

reach a selectivity up to 38 and a permeability close to 8512.3 Barrers, which is much 

better than those blends with ILs for the same total amount of salt added in the membrane. 

Consequently, the TPU and 30 wt.% Ag[Tf2N] membrane can be marked as a potential 

separation technology for the propane/propylene separation considering the usage of 

TPU, membrane preparation costs, as well as, separation performance. 
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Table 1. Water content and elemental analysis. 
 

  
Water 

Content 
(wt.%) 

  C H N S Ag 

  

 

[C4mim][BF4] 0.11 

Calc. value 
(%) 

42.51 6.69 12.39 0 /  

Exp. Value 
(%) 

42.74 6.55 12.09 0 /  

[C4mim][NO3] 0.96 

Calc. value 
(%) 

47.75 7.51 20.88 0 /  

Exp. Value 
(%) 

47.22 7.73 20.52 0 /  

[C4mim][PF6] 0.05 

Calc. value 
(%) 

33.80 5.28 9.86 0 /  

Exp. Value 
(%) 

33.82 5.47 9.94 0 /  

[C4mim][Tf2N] 0.05 

Calc. value 
(%) 

28.64 3.61 10.02 15.29 /  

Exp. Value 
(%) 

28.78 3.05 9.97 14.60 /  

Ag[Tf2N] 0.16 

Calc. value 
(%) 

6.19 0 3.61 16.53 27.80  

Exp. Value 
(%) 

6.36 0.41 3.75 16.10 26.65   
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Figure 1.  Schematic process of gas permeation apparatus for propane/propylene 

separation. 
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Figure 2. Optical microscope photographs of TPU membranes with silver salt and ionic liquid additives; a: pure TPU membrane; b: 10 

wt.% AgNO3; c: 20 wt.% AgNO3; d: 10 wt.% Ag[PF6]; e: 10 wt.% Ag[BF4]; f: 10 wt.% Ag[Tf2N]; g: 20 wt.% Ag[PF6]; h: 20 wt.% Ag[BF4]; 

i: 20 wt.% Ag[Tf2N]; j: 10 wt.% AgNO3 + 10% [C4mim][NO3]; k: 10 wt.% Ag[PF6] + 10% [C4mim][PF6]; l: 10 wt.% Ag[BF4] + 10% 

[C4mim][BF4]; m: 10 wt.% Ag[Tf2N] + 10% [C4mim][Tf2N]; n: 10 wt.% AgNO3 + 20% [C4mim][NO3]; o: 10 wt.% Ag[PF6] + 20% 

[C4mim][PF6] at 293 K and at atmospheric pressure. 
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Figure 3. TGA measurements of pure TPU and 10wt% silver salt TPU-based membranes. 
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Figure 4. FTIR of prepared membranes; a: silver salt membranes; b: expansion of the N-H 
and C-H bond stretching region; c: FTIR before/after membrane separation test, 1 and 2 
denote 10 wt.% AgNO3 membrane before and after membrane tests, 3 and 4 denote 10 
wt.% AgNO3 + 10 wt.% [C4mim][NO3] membrane before and after membrane tests, 5 and 6 
denote AgNO3 + 10 wt.% [C4mim][Tf2N] membrane before and after membrane tests. 
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Figure 5. FTIR of 10 wt.% Ag[Tf2N] TPU membrane tested under room temperature before 

and after heating the sample at 473 K for 30 minutes. 
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Figure 6. Selectivity and total gas permeability at various temperatures and silver salt 

concentrations of the silver salt-TPU membranes. 
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Figure 7. Selectivity and total gas permeability at various temperatures and ionic liquid 

concentrations. 
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Figure 8. Robeson plot of selectivity and permeability data taken from literature and the 

work reported herein for propane/propylene membrane separation; black symbols: 

polymeric membrane (Azhin et al., 2008; Burns and Koros, 2003; Faiz and Li, 2012b; 

Hayashi et al., 1996; Ilinitch et al, 1992; Okamoto et al., 1999; Semenova, 2004; Tanaka et 

al., 1996); red symbols: composite membrane (Azhin et al., 2008; Duan et al., 2003; Faiz 

and Li, 2012a; Fallanza et al., 2013; Hong et al., 2001; Kang et al., 2004, 2006, 2011; Kim 

et al., 2003, 2006; Lee et al., 2009; Park et al., 2001; Pinnau and Toy, 2001; Yoon et al., 

2000); circles: literature data; triangles: this work. 
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Figure S1. TGA measurements of TPU-based membranes containing; black: pure 

TPU; pink: 10 wt.% Ag[Tf2N]; red: 20 wt.% Ag[Tf2N]; green: 30 wt.% Ag[Tf2N]. 

 

 

 

 

Figure S2. TGA measurements of TPU-based membranes containing; black: pure 

TPU; pink: 10 wt.% Ag[Tf2N]; red: 10 wt.% Ag[Tf2N] + 10 wt.% [C4mim][Tf2N]; green: 

10 wt.% Ag[Tf2N] + 20 wt.% [C4mim][Tf2N]. 
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Figure S3. TGA measurements of TPU-based membranes containing; black: pure 

TPU; red: 10 wt.% AgNO3; green: 20 wt.% AgNO3; blue: 30 wt.% AgNO3. 

 

 

 

 

Figure S4. TGA measurements of TPU-based membranes containing; black: pure 

TPU; green: 10 wt.% Ag[PF6]; red: 20 wt.% Ag[PF6]; blue: 30 wt.% Ag[PF6]. 
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Figure S5. TGA measurements of TPU-based membranes containing; black: pure 

TPU; blue: 10 wt.% Ag[BF4]; red: 20 wt.% Ag[BF4]; green: 30 wt.% Ag[BF4]. 

 

 

 

 

Figure S6. TGA measurements of TPU-based membranes containing; black: pure 

TPU; blue: 10 wt.% Ag[BF4]; red: 10 wt.% Ag[BF4] + 10 wt.% [C4mim][BF4]; green: 10 

wt.% Ag[BF4] + 20 wt.% [C4mim][BF4]. 
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Figure S7. TGA measurements of TPU-based membranes containing; black: pure 

TPU; green: 10 wt.% Ag[PF6]; red: 10 wt.% Ag[PF6] + 10 wt.% [C4mim][PF6]; blue: 10 

wt.% Ag[PF6] + 20 wt.% [C4mim][PF6]. 

 

 

 

 

Figure S8. TGA measurements of TPU-based membranes containing; black: pure 

TPU; red: 10 wt.% AgNO3; green: 10 wt.% AgNO3 + 10 wt.% [C4mim][NO3]; blue: 10 

wt.% AgNO3 + 20 wt.% [C4mim][NO3]; pink: 10 wt.% Ag[NO3] + 10 wt.% [C4mim][Tf2N]; 

dark green: 10 wt.% AgNO3 + 20 wt.% [C4mim][Tf2N]. 

 

 

 



 6 

Table S1. TGA analysis: decomposition temperature of selected membranes. 
 
 

Composition T(K) 

TPU 547.8 

10 wt.% AgNO3 382.0 

20 wt.% AgNO3 453.9 

30 wt.% AgNO3 468.7 

10 wt.% Ag[BF4] 532.7 

20 wt.% Ag[BF4] 445.7 

30 wt.% Ag[BF4] 354.6 

10 wt.% Ag[PF6] 477.4 

20 wt.% Ag[PF6] 449.8 

30 wt.% Ag[PF6] 405.6 

10 wt.% Ag[Tf2N] 470.9 

20 wt.% Ag[Tf2N] 461.5 

30 wt.% Ag[Tf2N] 454.1 

10 wt.% AgNO3 + 10 wt.% [C4mim][NO3] 517.2 

10 wt.% AgNO3 + 20 wt.% [C4mim][NO3] 423.7 

10 wt.% AgNO3 + 10 wt.% [C4mim][Tf2N] 499.9 

10 wt.% AgNO3 + 20 wt.% [C4mim][Tf2N] 484.9 

10 wt.% Ag[BF4] + 10 wt.% [C4mim][BF4] 546.0 

10 wt.% Ag[BF4] + 20 wt.% [C4mim][BF4] 452.4 

10 wt.% Ag[PF6] + 10 wt.% [C4mim][PF6] 463.2 

10 wt.% Ag[PF6] + 20 wt.% [C4mim][PF6] 484.9 

10 wt.% Ag[Tf2N] + 10 wt.% [C4mim][Tf2N] 476.6 

10 wt.% Ag[Tf2N] + 20 wt.% [C4mim][Tf2N] 465.6 

 
u(T) = 1.0 K. 
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Table S2. Membrane separation data 
 

Composition 
Temperature 

(K) 
Selectivity 

Total permeability 
(Barrer) 

TPU 

293 2.0 1900.2 

313 1.9 2548.3 

333 1.8 3818.6 

10 wt.% AgNO3 

293 5.0 3535.2 

313 3.1 4694.4 

333 2.7 6656.6 

10 wt.% Ag[BF4] 

293 7.5 2958.1 

313 4.4 3694.2 

333 3.6 4880.2 

20 wt.% Ag[BF4] 

293 16.3 3404.3 

313 10.7 4369.1 

333 7.4 5243.0 

30 wt.% Ag[BF4] 

293 28.2 3853.2 

313 18.7 4689.7 

333 12.2 5703.2 

10 wt.% Ag[PF6] 

293 5.5 590.4 

313 3.5 700.1 

333 3.1 939.5 

20 wt.% Ag[PF6] 

293 15.9 604.1 

313 10.1 650.1 

333 7.8 877.3 

30 wt.% Ag[PF6] 

293 17.2 593.7 

313 11.9 696.5 

333 8.6 995.2 

10 wt.% Ag[Tf2N] 

293 6.7 4478.8 

313 5.7 5992.6 

333 4.8 6554.6 

20 wt.% Ag[Tf2N] 

293 17.1 4775.1 

313 14.4 6248.0 

333 11.2 7405.0 

30 wt.% Ag[Tf2N] 

293 38.0 4967.5 

313 29.2 6945.7 

333 22.0 8512.3 

10 wt.% AgNO3 + 10 wt.% 
[C4mim][NO3] 

293 10.0 2944.6 

313 6.6 3503.9 

333 5.0 4307.7 

10 wt.% AgNO3 + 20 wt.% 
[C4mim][NO3] 

293 13.8 2889.2 

313 8.5 3554.0 

333 6.3 4327.3 
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10 wt.% AgNO3 + 10 wt.% 
[C4mim][Tf2N] 

293 10.5 3265.4 

313 7.8 3822.2 

333 5.3 5340.4 

10 wt.% AgNO3 + 20 wt.% 
[C4mim][Tf2N] 

293 15.8 3368.1 

313 12.5 4055.0 

333 8.7 5621.2 

10 wt.% Ag[BF4] + 10 wt.% 
[C4mim][BF4] 

293 13.0 2976.4 

313 7.8 3963.9 

333 6.0 4561.5 

10 wt.% Ag[BF4] + 20 wt.% 
[C4mim][BF4] 

293 18.3 2998.2 

313 12.5 3790.0 

333 10.3 4620.9 

10 wt.% Ag[PF6] + 10 wt.% 
[C4mim][PF6] 

293 8.7 1801.9 

313 6.6 2338.6 

333 4.8 2865.9 

10 wt.% Ag[PF6] + 20 wt.% 
[C4mim][PF6] 

293 13.3 1991.2 

313 7.8 2421.7 

333 5.2 3075.5 

10 wt.% Ag[Tf2N] + 10 
wt.% [C4mim][Tf2N] 

293 11.3 4929.1 

313 7.9 6634.3 

333 6.2 7970.3 

10 wt.% Ag[Tf2N] + 20 
wt.% [C4mim][Tf2N] 

293 17.2 5272.7 

313 12.8 7327.1 

333 9.1 8397.8 

 
u(T) = 0.5 K; u(P) = 0.05 bar; u(S) = 0.1. 
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