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Abstract 

The photocatalysed mineralisation of 4-chlorophenol, 4-CP, by P25 TiO2 is a well-studied 

photocatalytic system.  A previous report (Emeline et al, J. Phys. Chem. B, 2000, 104, 11202) 

reported an action spectrum, i.e. photonic efficiency, η, vs. excitation wavelength, λ(ex), for 

the P25/4-CP system, that exhibited a series of peaks and troughs which, it was proposed, 

provided evidence of P25 spectral sensitivity.  However, in this re-examination it is shown 

that the peaks and troughs in the action spectrum occur in the regions of the troughs and 

peaks in the emission spectrum of the Xe/Hg lamp used by these researchers.  The 

dependencies of η, and quantum yield, φ, upon incident light intensity, ρ, in semiconductor-

sensitised photocatalytic systems are considered and a rationale provided that suggests the 

action spectrum reported by Emerline et al. is actually due to the variation in ρ in the 

emission spectrum of the Xe/Hg lamp.  In order to test the latter hypothesis, the action 

spectrum of the same P25/4-CP system is determined, but this time using a Xe lamp; the 

latter action spectrum has no peaks and troughs and corresponds closely to that of the 

diffuse reflectance spectrum of the P25 dispersion as expected if there is no spectral 

sensitivity.  This action spectrum, and similar results reported by others for this and other 

test pollutants, provides strong evidence that the claim of spectral sensitivity for the P25/4-

CP system is unjustified, based on the reported action spectrum of Emeline et al., since the 

latter is due to the spectral variation in irradiance of the Xe/Hg excitation source employed 

in the original study.   
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Introduction 

In a photo-sensitised reaction the ratio of the initial rate of the photoreaction (units: moles 

(of reactant) s-1), r, to that of the incident intensity, ρ, (units: moles of photons (i.e. 

einsteins) s-1) of excitation wavelength, λ(ex) (units: nm), is the photonic efficiency of the 

system, η (units: molecules/photon) [1, 2].  In studies of heterogeneous semiconductor 

photocatalytic systems there is an increasing need to record the action spectrum of the 

photocatalytic system, i.e. a plot of η vs. irradiance wavelength [3,4], since it can help 

identify the light-absorbing species, which should be the semiconductor in the case of 

semiconductor photocatalysis, but can be the test pollutant, especially when using dyes 

[5,6] or other chemical species that form a charge transfer complex with the semiconductor 

[7-9], in cases of dye-photosensitisation and photolysis.   

One of the most studied semiconductor-sensitised photocatalytic systems is the photo-

oxidative mineralisation of 4-chlorophenol (4CP) by dissolved O2, mediated by TiO2 [10-23], 

i.e. 

                                                                                   TiO2 
                                               4-CP  +  O2  →  oxidation products                  (1) 
                                                                                    UV 

A key feature of 4-CP as a test pollutant is that it does not absorb UVA radiation (320-400 

nm), in contrast to TiO2, with its bandgap of 3.0 (anatase), or 3.2 (rutile) eV, so that, with 

respect to reaction (1), little or no destruction of 4CP is observed in the absence of TiO2.  

The most employed form of TiO2 for studying reaction (1) is Degussa (now Evonik) P25, 

referred henceforth as P25, which is an 80:20 mixture of anatase and rutile, with a 

fundamental particle size of ca. 30 nm, but with a tendency to form aggregated particles up 

to 1 µm in diameter (average secondary particle size = 473 nm) [24, 25].  In this paper, when 

any references to eqn(1) is made, it should be assumed that the TiO2 used is P25, unless 

stated otherwise.   

The kinetics of the P25/4-CP photocatalytic system has been probed extensively and 

numerous different reaction mechanisms have been proposed to provide a rationale for the 

observed kinetics [24].  Whatever the actual mechanism, a key empirical kinetic feature of 

reaction (1) is the following dependence of initial rate, r, upon incident (UV) intensity, ρ, for 

a fixed initial concentration of 4-CP, [4-CP]o and excitation wavelength, λ(ex) [13,24]: 
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                                                                   r = kθ(αfρ)θ                                                                          (2) 

where, kθ is a proportionality constant (units: moles/s) which depends upon: [4-CP]o and the 

intrinsic activity of the photocatalyst, i.e. the probability that an absorbed ultra-bandgap 

photon leads to a reaction; α is a proportionality constant of convenience, with a value of 

unity, but with units: s einstein-1, so that it renders the collection of terms, αfρ, unitless and 

simplifies the units of kθ and any subsequent mathematical manipulations of eqn(2); f is the 

fraction of incident light absorbed and θ is a power term with a value of unity at low ρ, but 

which tends to 0.5, or zero, at high ρ, depending upon which kinetic model of photocatalysis 

one adopts [13,24].  For example, in the photocatalysed oxidation of acetic acid [3], by 

Merck TiO2, Ohtani and his co-workers suggest a radical chain mechanism mediated by 

peroxy radicals is responsible for θ = 0.5 over a wide irradiance range (typically ca. 0.1-2 mW 

cm-2).  In contrast, in the photocatalysed oxidation of 4-CP, by P25 TiO2 reported by Pichat 

and his co-workers [11], in which θ = 0.5, others suggest that this is due to the dominance of 

electron-hole recombination at the high irradiances used (2-50 mW cm-2) [24]. 

The kinetics of photocatalysis depend upon many different variables, including: the nature 

of the test organic pollutant (4-CP in this work) temperature, pH, wavelength of the UV light, 

reactor design and materials [24].  As a consequence, it is not possible to identify a general 

value for ρ, ρ(threshold), for use in eqn (2), much below which r is proportional to ρ, and 

much above which r is (usually) proportional to ρ1/2.  In addition, it is clear from many 

studies of reaction (1), and a feature of most proposed kinetic mechanisms, that 

ρ(threshold) increases with increasing value of [4-CP]o.  For example, the results of Mills and 

Wang, using BLB lamps (with λ(max) emission = 365 nm ) as the irradiation source in a study 

of reaction (1), indicate that the irradiance threshold (= ρ(threshold)/irradiation area, σ) is 

ca. 0.32 mW cm-2 at [4-CP]o = 0.3 mM which increases to ca. 0.71 mW cm-2 at [4-CP]o = 1 

mM [14].  For simplicity, we shall assume here that at ρ(threshold) the rate may be 

described equally well by eqn(2), where θ is either 1, or 0.5, since this then reveals a useful 

relationship between k0.5 and k1, namely k0.5/k1  =  (αfρ(threshold))0.5.  Note that 

ρ(threshold) is a mathematical construct, used here to help identify the regions: (i) ρ << 

ρ(threshold), over which rate is proportional to ρ and (ii) ρ >> ρ(threshold), where rate is 
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proportional to ρ1/2; clear examples of this transition have been reported by others [3,26,27] 

and are a key feature of various kinetic models [25].. 

It follows from eqn(2) that, at any excitation wavelength, the measured photonic efficiency, 

η, will be given by the expression: 

                                                                      η = kθ(αfρ)θ/ρ                                                                  (3) 

And the quantum yield, φ, by:  

                                                                     φ = kθ(αfρ)θ/fρ                                                                  (4) 

Similar expressions for the quantum yield of a photocatalytic system have been reported previously 
[28,29]   

It also follows that only if θ = 1, will η (now = k1αf) and φ (now = k1α) be independent of ρ.  

In addition, if the classical band model of semiconductors applies, in which the 

photogenerated charge carriers are thermalized before reacting, then k1 would be 

independent of excitation wavelength and the action spectrum should reflect only the 

faction of light absorbed by the semiconductor as a function of wavelength, and so help 

identify the absorbing species [30,31].  In such circumstances the quantum yield will depend 

only upon k1 and so will not be dependent upon the excitation wavelength at all.  An 

excellent example of such a case is the action spectrum reported by Ohtani et al. for the 

dehydrogenation of methanol (MeOH) using platinised anatase TiO2 (from Merck), which 

revealed that η was largely independent of UV irradiance over the range ca. 0.1 – 10 mW 

cm-2, using either: 390, 350 or 380 nm light [3].  Thus, in the latter system, even at a high 

irradiance (ca. 10 mW cm-2) the irradiance threshold is not exceeded and so θ = 1.  In 

contrast, the same researchers reported the action spectrum for the photo-oxidative 

mineralisation of acetic acid, using the same set-up and photocatalyst as before, which 

revealed an irradiance threshold < 0.1 mW cm-2, using either: 390, 350 or 380 nm light, and 

values of η at these three different values of λ(ex) that were proportional to ρ0.5 over the 

low to moderate irradiance range 0.1 to 2 mW cm-2 [3].  These findings help highlight the 

fact that the value of ρ(threshold) depends upon, amongst other things, the nature of the 

test organic pollutant (4-CP in this work) as well as its concentration, as noted earlier, and 

cannot be readily predicted, but instead needs to be determined experimentally for each 

system under study.   
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In practical terms, the above discussion shows that when running a true action spectrum of 

a heterogenous semiconductor photocatalytic system, such as reaction (1), it is essential 

that the value of ρ is < ρ(threshold), so that θ = 1, at each wavelength.  It also follows that 

when θ < 1, the calculated values for η and φ will be a function of ρ and tend to decrease 

with increasing ρ.  In a number of studies of reaction (1), [4-CP]o has been fixed and the rate 

determined as a function of ρ, so as to yield a value for θ, via eqn (2).  Table 1 provides 

details of some of these studies, including the maximum irradiance used, ρ(max)/σ, and the 

calculated average value of θ over the range 0 - ρ(max), i.e. θav.  It is worth noting that in 

such studies, in the case of a θav < 1, then the nearer its value is to 0.5, the more likely it is 

that the value of θ, in eqn(2), will be 0.5 at ρ(max).  A brief inspection of the values of θav 

and ρ(max) in table 1, suggests that, in most cases, at the values of [4-CP]o used, θ will be 

ca. 0.5 at a relatively modest UV irradiance, i.e. ca.2-3.5 mW cm-2 at 365 nm.   

Table 1: Characteristics of Rate vs ρ studies of reaction (2), with TiO2 = P25 

[TiO2] 

(mg/L) 

[4CP]o 

(mM) 

Light source ρ(max)/σ 

(mW/cm2) 

θav η 

(molecules/photon) 

Ref 

125 0.245 450 W medium pressure 
Hg lamp 

6.4** 0.8 0.012 (360 nm) 10 

200 0.155 125 W medium pressure 
Hg lamp 

2-50 0.5 0.009 (> 340 nm) 11 

500 1.0 8W BLB lamps 3.3 0.74 0.011 12 

300 0.213 1000W Xe/Hg lamp with 
interference filter 

59.8 0.7* - 13 

500 0.3 8W BLB lamps 3.47 0.5* - 14 

300 0.2  1000W Xe/Hg lamp with 
monochromator 

12.3** 1 0.0057 1 

*: calculated using data in paper 

**: although details of σ are not given in the paper –its value is assumed here to be 1 cm2.   

 

The spectral sensitivity hypothesis 
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A notable exception to the kinetics feature described above appears to be the work of 

Emeline et al. [1] on reaction (1), who report θ = 1 for ρ(max) = 12.3 mW at 365 nm, which is 

taken to be equivalent to an irradiance of ca.12.3 mW cm2 from this point forward.  Note: 

although details of the irradiation area, σ, are not given, the assumption here that σ = 1 cm2 

is not altogether unrealistic given the irradiation set up employed and is supported by data 

from a previous paper from the same authors examining the same photocatalytic system, in 

which the irradiance at 365 nm is given [13].  To put an irradiance of ca.12.3 mW cm-2 into 

context the solar UV level on a clear summer's day in Melbourne Australia is 5.86 mW cm-2, 

thus, an irradiance of ca.12.3 mW cm-2 is not insignificant [24]. 

 

Figure 1: Action spectrum (black line,  data points) for reaction (1), [P25 TiO2] (300 mg/L), 
[4-CP]o (0.2 mM) and pH (pH 3), as reported by Emeline et al. [1], generated using the 
irradiances (assuming σ = 1 cm2) illustrated by the blue, broken line and  data points for a 
1000W Xe/Hg lamp.  A normalised, high definition emission spectrum of a 1000W Xe/Hg 
lamp is illustrated for comparison purposes (red line). 

 

Emeline et al. [1] also found that r was largely independent of [4-CP]o at ca. 0.2 mM, when 

[TiO2] = 0.3 g dm-3 and pH = 3, which meant that the action spectrum for reaction (1) 

generated by these researchers under these reaction conditions, illustrated in figure 1 (black 
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line), was effectively a measure of the combination of the intrinsic activity of the 

photocatalyst as a function of excitation wavelength, k1, and the fraction of light absorbed, 

f.  However, this η vs λ(ex) action spectrum comprised a series of peaks and troughs (see 

figure 1, black line) which, the authors claimed, showed that the photocatalysed oxidation 

of 4-CP by oxygen, photosensitised by P25, i.e. reaction (1) under the conditions described 

above, is spectrally dependent.  This claim was supported by a subsequent plot of the data 

in the form of: φ vs λ(ex), since it showed the same features.  As Emeline et al point out, 

such spectral sensitivity is 'counter to the classical band model of semiconductors and 

conventional wisdom' [1], in which the photogenerated charge carriers are thermalized 

before reacting, so as to make spectral sensitivity unlikely.  In contrast, these workers 

propose a spectral sensitivity model, in which the electronic properties and behaviour of the 

semiconductor are strongly dependent on the co-relation of the electronic states in 

different valleys, so that excitation at different wavelengths may result in different activities 

and selectivities [32].  Thus, Emeline et al. interpreted the above results in terms of spectral 

sensitivity exhibited by P25 in reaction (1), not only on the basis of the action spectrum in 

figure 1, but also because they found, from rate vs ρ studies at 380, 365 and 340 nm, that θ 

= 1 in all three cases, thereby suggesting that θ = 1 at all the wavelengths employed in their 

work [1].  The latter is a necessary condition if spectral sensitivity is to be inferred from the 

spectral variation in the action spectrum illustrated in figure 1.   

Reference [1] is just one of many publications of Emeline and his co-workers on spectral 

sensitivity, in which different light sources, were used to study; (i) the mineralisation of 

organics (exclusively Xe/Hg lamp) [1,15,33] and (ii) the photostimulated adsorption of gases, 

such as H2 and O2 (Hg (high pressure) [34] or Xe lamp [35-36]).  Interestingly, when P25 was 

used to study the photostimulated adsorption of H2 [37], its action spectrum, recorded using 

a Xe lamp, appears relatively featureless compared to that illustrated in figure 1 for the 

P25/4-CP system. 

However, a potential cause for concern that spectral sensitivity might not be the only 

explanation for the spectral variation in the action spectrum illustrated in figure 1, and the 

subsequent plot of φ vs λ(ex), can be quickly identified by comparing the reported action 

spectrum (black line, figure 1) and the emission spectrum of the Xe/Hg lamp used in the 

study, to provide the light of different wavelengths (red line in figure 1).  This comparison 
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reveals that the Xe/Hg lamp has emission peaks that are almost perfectly positioned where 

the troughs occur in the reported action spectrum and, of course, raises the question: is this 

feature just co-incidence, or could it be that much, if not all, of the peaks and troughs of the 

action spectrum in figure 1 are not due to the spectral sensitivity of P25, but rather due to 

the spikey nature of the emission spectrum of the excitation source, i.e. could the peaks and 

troughs of the action spectrum in figure 1, which are also found in the plot of φ vs λ(ex), be 

an artefact?   

The lamp artefact hypothesis 

In recording the action spectrum of any material, ρ should be ideally the same at all 

excitation wavelengths and obviously this was not the case in the work of Emeline et al. [1] 

who used a Xe/Hg lamp, where the ratio of the highest (365 nm) to lowest (325 nm) 

irradiance could be as large as ca. 46, when a high resolution emission spectrum of the 

Xe/Hg lamps is considered, as illustrated in figure 1 (red line).  Emeline et al. used a 

monochomator with a spectral resolution of ± 5 nm (i.e. half (peak) band width (HBW) = 10 

nm,) coupled to the 1000W Xe/Hg lamp, in order to select each excitation wavelength band 

of λ(ex) [1].  As a consequence, such a system yields a broader emission spectrum profile for 

the Xe/Hg lamp, as illustrated in figure 1 (blue line) [38], although it's worth noting the 

highest to lowest irradiance ratio is still high, ρ(365)/ρ(325) =9.8, and the peaks and troughs 

of the emission spectrum still match the troughs and peaks of the reported action spectrum 

(black line, figure 1). 

If the peaks and troughs of the reported action spectrum are due to the troughs and peaks 

in the Xe/Hg emission spectrum, then this suggests that θ was not actually unity at all the 

wavelengths used by Emeline et al. [1], when they determined the action spectrum 

illustrated in figure 1.  Obviously, this suggestion cannot be reconciled with the claim of the 

researchers that θ = 1 at all wavelengths, which they supported in particular with a straight 

line plot of r vs ρ/ρo for 365 nm (figure 1 in reference [1]).  However, evidence that it is likely 

that θ < 1, at 365 nm, at least, for reaction (1) at the irradiance values used by Emeline et al. 

[1], i.e. ca. 12.3 mW cm-2, is provided by the results reported by other groups [10-14], 

arising from their studies of reaction (1), see table 1, which indicate, as noted earlier, that 
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for this reaction, θ is ca. 0.5 at relatively modest UV irradiances, i.e. ca.2-3.5 mW cm-2 at 365 

nm.   

If we assume that in the study of the action spectrum of reaction (1) by Emeline et al. [1], 

that θ < 1 at some or all wavelengths then it is useful to explore the effect this would have 

on the subsequent action spectrum.  It is worth noting here that the possible modification 

of action spectra by non-linear light-intensity dependence has been suggested previously by 

Ohtani and his co-workers [3,39]. 

For simplicity, let us consider the case for reaction (1) at an excitation wavelength of 365 

nm, where θ = 0.5, as reported by Pichat et al. [11] for irradiances as low as 2 mW cm-2!  At 

all irradiance values above the threshold irradiance, η and φ will be described by the 

following expressions: 

                                                              η(θ=0.5) = k0.5(αf)0.5/ρ0.5                                                       (5) 

and  

                                                              φ(θ=0.5) = k0.5α0.5/(fρ)0.5                                                       (6)  

where ρ > ρ(threshold).  It follows that the ratios: η(θ=0.5)/η(θ=1) and  φ(θ=0.5)/φ(θ=1), will 

both =  k0.5/{k1(αfρ)0.5}, and since k0.5/k1 = (αfρ(threshold))0.5 (vide supra), the following 

relationships can be derived:  

                    η(θ=0.5)/η(θ=1)  =  φ (θ=0.5)/φ(θ=1) = {ρ(threshold)/ρ}0.5                                       (7) 

And since ρ > ρ(threshold), then the greater the value of ρ compared to ρ(threshold) the 

lower the values of η and φ.   

In fact, for any value of θ < 1, it can be shown that: 

                       η(θ < 1)/η(θ=1)  =  φ (θ<1)/φ(θ=1) = {ρ(threshold)/ρ}1-θ                                        (8) 

and, once again, the greater the value of ρ compared to the threshold ρ(threshold) the 

lower the values of η and φ.   

From the above discussion it follows that when running the action spectrum of any 

photocatalytic reaction, if ρ > ρ(threshold) at any, or all of the excitation wavelengths 

employed, then the calculated value of η (or φ) at that wavelength will be depressed, so as 

to create a trough, the depth of which will depend upon how much greater ρ is than 
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ρ(threshold) at that excitation wavelength.  Interestingly, it also follows that if ρ > 

ρ(threshold) at all excitation wavelengths used to generate the action spectrum, then the 

action spectrum profile will resemble that of the 'negative' of the excitation source, i.e. it 

will comprise peaks and troughs where there are troughs and peaks in the emission 

spectrum of the excitation source, as found in the work of Emeline et al., using a Xe/Hg lamp 

[1].  The above discussion offers a credible alternative interpretation of the peaks and 

troughs of the reported action spectrum, η vs λ(ex), illustrated in figure 1 for reaction (1) – 

and those in the subsequent plot of φ vs λ(ex) (figure 3 in reference [1]) – namely, that they 

are due to the troughs and peaks in the Xe/Hg emission spectrum of the excitation source 

and not the spectral sensitivity of P25 in reaction (1).  However, what is really needed to 

distinguish between the two hypotheses is a simple test and the results of such a test are 

described here. 

Experimental 

Materials 

All chemicals were purchased from Aldrich Chemicals in their most pure form and sued as 

received.  The Evonik P25 TiO2 was a gift from Evonik. 

Methods 

A Xe KiloArc lamp (OBB Corp.), fitted with a monochromator, was used to provide the 

selected bands, with peaks at λ(ex) (units: nm), of light (HPBW = 10 nm) that were used to 

irradiate the photocatalyst system under test, i.e. reaction (1), at different wavelengths, 

spanning the range 290 - 400 nm.  In this work the irradiation area, σ, was 1 cm2. 

The rate of reaction (1) was studied as function of excitation wavelength using the Xe 

lamp/monochromator system described above.  The photoreactor comprised a 1 cm quartz 

cell, containing 3.0 cm3 of the reaction solution which were stirred continuously.  The 

reaction solution was sampled periodically and analysed using HPLC so as to yield data for 

the subsequent plot of [4-CP] vs irradiation time decay profiles for each excitation 

wavelength.  These plots were used to provide values for the initial rates of 4-CP removal 

(i.e. r, units: molecules 4-CP removed s-1) at the different λ(ex).  In all this work the reaction 

solution comprised an aqueous dispersion (300 mg dm-3) of P25 TiO2, in which there was 

also: 0.001 M HCl and 0.2 mM 4-CP.  In this work the 4CP concentration in the reaction 
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solution product samples was determined using an Agilent 1220 Infinity LC system fitted 

with a C-18 column. Samples were eluted in a 70:30 v/v ratio of acetonitrile and distilled 

water, with a flow rate of 1.00 mL min-1.  

All light emission spectra were recorded using a high-performance, calibrated UV-Vis OL 756 

spectroradiometer (Gooch & Housego), equipped with an integrating sphere.  The area 

under the emission spectrum, for each selected excitation wavelength band, λ(ex), 

generated by the Xe lamp/monochromator system and used to irradiate the reaction 

solution, was used to determine the total irradiance value, I(λ); units: mW cm-2, for each 

λ(ex) band, see figure 2.  The value of the photonic efficiency at each λ(ex), i.e. η, was then 

calculated using the following expression:   

                                                 η  =  r/{λ(ex)x1.84x1015xI(λ)xσ/365}                                                (9) 

where σ = 1 cm2.  The diffuse reflectance UV spectra (see figure 2) of the P25 dispersion (0.3 

g dm-3) in 0.001 M HCl with 0.2 mM 4-CP, were recorded using a Perkin-Elmer Lambda 35 

spectrometer (scan speed 30 nm min-1) equipped with a Labsphere RSA-PE-20 Reflectance 

accessory.   

In Diffuse Reflectance Spectroscopy, DRS, is routinely used to identify where solid materials, 

absorb, the reflectance, R∞, is measured as a function of excitation wavelength, λ and then 

'one can use either the absorbance (log(1/R∞) or the Kubelka-Munk, K-M function, i.e. F(R∞) 

= (1- R∞)2/2 R∞, as a proxy for the typical absorption spectrum' [40].  Not surprisingly, DRS is 

routinely used to probe the absorption spectra of semiconductor photocatalysts, [37,39-44] 

and when combined with an action spectrum can help identify the light-absorbing species 

[30,31].  In this work the DRS was in the form of absorbance vs λ. 

 

Results  

As noted previously, a test is clearly required that will identify which of the two different 

interpretations of the action spectrum reported by Emeline et al [1]., and illustrated in 

figure 1, (namely: 'spectral sensitivity' versus 'lamp emission artefact') is correct.  The most 

obvious and simplest test is the determination of the action spectrum of the same system as 

studied by Emeline et al.[1], i.e. reaction (1), using the exactly the same reaction conditions, 
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i.e. [TiO2] (300 mg/L), [4-CP]o (0.2 mM) and pH (pH 3), except, this time, using a light source 

that does not have an emission spectrum in the UV with the striking peaks and troughs of a 

1000W Xe/Hg lamp (see figure 1); an appropriate alternative light source for this purpose is 

a 1000 W Xe lamp (see figure 2 – blue line).  If spectral sensitivity for the P25/4-CP/reaction 

(1) system is significant, then the results of such an experiment should reveal an action 

spectrum that is similar in shape to that illustrated in figure 1, with peaks and troughs in the 

same wavelength locations.  However, if spectral sensitivity is not significant for reaction (1) 

using P25, then the action spectrum determined using a Xe lamp will have no peaks and 

troughs, and most likely will resemble that of the diffuse reflectance spectrum (or 

absorption spectrum) of the P25 dispersion, even if θ is < 1 at some or all wavelengths.   

 

 

Figure 2: Action spectrum (black line,  data points) for reaction (1), [P25 TiO2] (300 mg/L), 
[4-CP]o (0.2 mM) and pH (pH 3), generated using the irradiances illustrated by the blue, 
broken line and  data points for a 1000W Xe lamp.  The red line corresponds to the diffuse 
reflectance spectrum i.e. absorbance vs λ, of the reaction solution.   
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The action spectrum of reaction (1) was thus determined using a Xe lamp (with 

monochromator) as the excitation source and the results are illustrated in figure 2 (black 

line).  The action spectrum exhibits no evidence of spectral sensitivity, but does show a 

striking similarity to the diffuse reflectance spectrum absorbance spectrum of the P25 

dispersion, also illustrated in figure 2 (red line).  The diffuse reflectance absorbance 

spectrum of the P25 dispersion was found to be the same in the absence and presence of 

the 4-CP, indicating that the formation of a visible light absorbing charge transfer complex 

(CTC) was negligible under the experimental conditions employed (i.e. low [4-CP] (0.2 mM), 

low pH (pH 3) and a moderate level of chloride (1 mM)).  Similar results regarding negligible 

CTC formation between P25 and 4-CP, have been reported by Agrios et al., even though 

they used a much higher (12.5 x's) level of [4-CP], i.e. 2.5 mM [45].  The lack of any 

significant TiO2-4-CP CTC formation under the conditions described here in the study of 

reaction (1), is supported by the lack of photocatalytic activity at 400 nm reported here (see 

figure 2) and elsewhere [1] (see also figure 1).  Note that a control experiment which shows 

negligible photoreaction in the absence of TiO2 does not rule out the possibility of the 

photoabsorption and reaction by surface-adsorbed species [31]. 

Conclusions 

The action spectrum, i.e. η vs. λ(ex) of reaction (1), using: [P25 TiO2] (300 mg/L), [4-CP]o (0.2 

mM) and pH (pH 3), when determined using a 1000W Xe lamp/monochromator irradiation 

source does not show any evidence of spectral sensitivity.  Instead, the profile is similar to 

that of its diffuse reflectance spectrum and the action spectra reported by others for P25/4-

CP [10] and for anatase/acetic acid [3].  This work shows the importance of using a light 

source which will deliver similar irradiances over the relevant wavelength range when 

determining the action spectrum of a photocatalytic system.  These findings are consistent 

with recent suggestions made by Kisch and Bahnemann [46] that all studies should consider 

carefully the choice of light source, as well as the appropriate model compound, when 

assessing the activity of newly synthesized and established photocatalysts. 
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