
Counting Edges and Triangles in Online Social Networks via Random
Walk

Wu, Y., Long, C., Fu, A. W-C., & Chen, Z. (2017). Counting Edges and Triangles in Online Social Networks via
Random Walk. In 2017 APWeb-WAIM Joint Conference on Web and Big Data (Lecture Notes in Computer
Science ). Springer.

Published in:
2017 APWeb-WAIM Joint Conference on Web and Big Data

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2017 Springer International Publishing. This work is made available online in accordance with the publisher’s policies. Please refer to any
applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:06. Nov. 2017

http://pure.qub.ac.uk/portal/en/publications/counting-edges-and-triangles-in-online-social-networks-via-random-walk(eb116622-e956-422e-b8ef-f13e2179b812).html


Counting Edges and Triangles in Online Social
Networks via Random Walk

Yang Wu1, Cheng Long2, Ada Wai-Chee Fu1, and Zitong Chen1

1 The Chinese University of Hong Kong
{yangwu,adafu, ztchen}@cse.cuhk.edu.hk

2 Queen’s University Belfast
cheng.long@qub.ac.uk

Abstract. Online social network (OSN) analysis has attracted much
attention in recent years. Edge and triangle counts are both fundamental
properties in OSNs. However, for many OSNs, one can only access parts
of the network using the application programming interfaces (APIs). In
such cases, conventional algorithms become infeasible. In this paper, we
introduce efficient algorithms for estimating the number of edges and
triangles in OSNs based on random walk sampling on OSNs. We also
derive a theoretical bound on the sample size and number of APIs calls
needed in our algorithms for a probabilistic accuracy guarantee. We ran
experiments on several publicly available real-world networks and the
results demonstrate the effectiveness of our algorithms.

Keywords: Graph sampling · Random walk · Triangle Counting

1 Introduction

Triangle counting is a fundamental problem in network analysis and triangle
structure is widely used in many applications such as spam detection [10], hid-
den thematic layers uncovery, [11] and community detection [25]. There is a
rich related work on enumerating all triangles [12,13,14,15]. However, exhaus-
tive counting is not scalable, since it has to explore every triangle. Even with
state-of-art algorithm, enumeration of all triangles has prohibitive cost for real-
world large networks.

One alternative way is to use sampling algorithm to speed up the counting
process with acceptable error [8,16], but both of these methods need to know the
complete data of the network. For example, in [8], the authors proposed to count
triangles by wedge sampling. In their method, we have to know the topology of
the network in advance, but most OSN’s service providers are unwilling to share
the complete data for public use.

As noted in [2], for a typical online social network (OSN), the underlying
social network may be available only through a public interface, in the form of
an application programming interface (API) which may provide a list of a user’s
neighbors. As in [2] we assume that we can only have external access to the
social network via its public interface, and only a fraction of the users/nodes
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can be sampled. Graph sampling through random walk is widely used in this
scenario to estimate graph properties such as degree distribution[4,5,9], cluster-
ing coefficient[2], graph size[1,2] and graphlet statistics[6,17]. However, to our
knowledge, no one has considered how to get the counting of triangle or even
larger graphlets in OSNs without knowing the complete data.

In this paper, we propose a random walk-based method for triangle counting
in OSN (online social network), where we have no assumption on the graph, the
complete data of the OSNs is not available, and the number of vertices and edges
in the graph is not known. Specifically, our method runs a random walk based
on a subgraph relationship graph (SR graph) of the original graph by using API
calls during which some nodes of the SR graph are sampled and some states of
an expanded Markov chain that could be built on the random walk process are
also sampled. Then, based on the sampled nodes, we estimate the number of
edges/links in the SR graph (which could be instantiated as the number of edges
in the original graph in some case), based on which and also the sampled states,
we estimate the number of triangles in the original graph.

Our contributions are summarized as follows:
– We propose a novel random walk based algorithm to estimate the number of

edges and triangles in networks with restricted accesses. To the best of our
knowledge, we are the first to estimate the number of edges and triangles in
such a scenario.

– We derive a theoretical bound on the sample size for achieving an (ϵ, δ)-
approximation.

– Experiments are conducted on publicly available real-world networks which
verified the effectiveness of our algorithms.

The rest of the paper is organized as follows. Section 2 introduces the related
work. Section 3 introduces our problem, background and sampling algorithm.
Section 4 introduces our estimators, and Section 5 gives some implementation
details and cost analysis. Section 6 reports our experiment results, and Section 7
concludes the paper.

2 Related Work

In graphs with full access, edge counting is a trivial task, but triangle counting
has been a hot topic in graph analysis for a long time and a number of algorithms
have been proposed to solve this problem. Most of the algorithms can be classified
into two categories: exact counting and estimation by sampling.

Exact counting. Enumeration of all triangle counting has a rich history
[12,13,14,15]. However, as the graphs become much larger, exhaustive counting
is not scalable, since it has to explore every triangle. Recently, many MapReduce
based algorithms have been proposed to solving exact triangle counting problem
[18,19,20]. In addition, using external memory is also considered as a solution to
this problem [21,22,23].

Estimation by sampling. Sampling methods are more related to our work.
Doulion [16] samples a subgraph from the original graph by keeping each edge
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with probability p and then estimating triangle counting based on the sampled
graph. Another important algorithm is wedge sampling [24]. It samples several
wedges from the network as the sample set, and then estimating the number of
triangles based on how many triangles exists in the sampled wedge set. However,
these sampling methods are based on the facts that the topology of the network
is known and we can access the whole network, which are not the assumptions
in our scenario.

Most previous works on networks with restricted access are based on random
walk methods, such as estimating degree distribution [4,5,9], clustering coefficient
[2] and graph size [1,2]. Recently, Chen et al. [17] proposed the state-of-art
algorithms for graphlet statistics. To the best of our knowledge, edge or triangle
counting has not been studied before in this setting.

3 Problem, Background, and Sampling Algorithm

An OSN can be captured by a simple graph G = (V,E) which is accessible via
APIs: given a query vertex u, the API returns all the neighbors of u. We are
interested in the problem of estimating two properties of the social network,
namely (1) the number of edges in G, |E|, and (2) the number of triangles in G,
denoted by N . To the best of our knowledge, this is the first attempt for these
problems in an online context.

Our solution is based on a random walk on a subgraph relationship graph [7,6],
from which we build an expanded Markov chain [17], and then construct the
count estimator based on some sampled states of the expanded Markov chain
and the sampled nodes of the random walk.

Our experiments show that our algorithm works best on the subgraph rela-
tionship graph when it reduces to the original graph, but since presenting the
algorithm based on the original graph requires the same complexity as the gener-
al SR graph, we present our algorithm based on a general subgraph relationship
graphs in this paper

In the following, we first give some background knowledge about a subgraph
relationship graph and an expanded Markov chain process, and then introduce
our sampling algorithm.

3.1 Subgraph Relationship Graphs

Given a graph G = (V,E), and an integer d ≥ 1, the d-node subgraph rela-
tionship graph of G (SR graph in short) [7,6], denoted by G(d) = (H(d), R(d)),
is defined as follows. First, each node in H(d) corresponds to a connected and
induced d-node subgraph in G. For example, each node in H(1) corresponds to a
vertex in graph G and each node in H(2) corresponds to an edge in graph G. Sec-
ond, two nodes in H(d) are connected by an edge in G(d) if and only if they share
d−1 common vertices of G (exceptionally for d = 1, two nodes are connected by
an edge if there exists an edge between their corresponding vertices in G), and
all these edges constitute R(d). Note that G(1) = G. Given a node y in G(d), N(y)
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denotes the set of nodes adjacent to y (i.e., the neighbors of y) and dy denotes
the degree of y, i.e., dy = |N(y)|. Given two nodes y and y′, θ(y, y′) denotes the
number of common neighbors of y and y′, i.e., θ(y, y′) = |N(y) ∩N(y′)|.

Example 1. For illustration, consider Figure 1, where a graph G and its corre-
sponding 2-node SR graph G(2) and 3-node SR graph G(3) are shown. Here, each
dashed circle corresponds to a node in a SR graph. In G(2), consider the node y
containing vertices 1 and 5 and another node y′ containing vertices 2 and 5, dy
is 3, dy′ is 3, and θ(y, y′) is 1.

Fig. 1. G(1), G(2) and G(3)

In this paper, we use the subgraph relationship graph G(d) with three settings
of d, namely 1, 2, and 3 (G(d) with larger d’s is unnecessarily complicated for
estimating the counts of edges and triangles since each of them has at most 3
vertices).

3.2 Expanded Markov Chain

A simple random walk process on a graph is to start at a random node, and then
randomly pick a neighbor of the current node, go to that node and then repeat
the step. It can be regarded as a Markov chain where each node is a state. An
expanded Markov chain on G(d) [17] based on a random walk remembers the last
l nodes as the current state, i.e., each possible l consecutive steps/nodes in the
random walk process, denoted by x(l) = (y1, y2, ..., yl), is considered as a state
of the expanded Markov chain. We use M (l) to denote the state space of the
expanded Markov chain. In this paper, depending on the parameter d of G(d),
we use different l’s. Specifically, for G(1), we use l = 3, for G(2), we use l = 2,
and for G(3), we use l = 1. The reason is that each triangle in G is covered in
G(1) by 3 nodes, or in G(2) by 2 nodes, or in G(3) by 1 node.

Existing studies show that the expanded Markov chain has a unique station-
ary distribution, denoted by πM .

Theorem 1. [17] The stationary distribution πM exists and is unique. For any
x(l) = (y1, y2, ..., yl) ∈ M (l), we have

πM (x(l)) =


dy1

2|R(d)| l=1
1

2|R(d)| l=2
1

2|R(d)|
1

dy2
... 1

dyl−1
l > 2

(1)
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where dyi(1 ≤ i ≤ l) is the number of neighbors of yi.

3.3 Sampling Algorithm

The idea of our sampling algorithm is very simple, which is to run a random walk
on the SR graph G(d) for a sufficient number of steps (such that the stationary
distribution is attained) and then collect m nodes, denoted by y1, ..., ym.

Next, in Section 4, we introduce two estimators for |E| and N based on the
sampled nodes, and in Section 5, we give some implementation details of this
algorithm and also the time and space cost analysis.

4 Estimators of |E| and N

We introduce an estimator of the number of links/edges in G(d), i.e., |R(d)|,
in Section 4.1 (note that this estimator corresponds to one for the number of
edges in G, i.e., |E|, when d = 1), and then based on this estimator, we design
another estimator for the number of triangles N , in Section 4.2. We provide some
accuracy results of these estimators in Section 4.3.

4.1 Estimator of |R(d)|

Let Y and Y ′ be two independent nodes sampled from the stationary distribu-
tion. First, we define a random variable Φ as the degree of Y (or Y ′), and a
variable Ψ . That is,

Φ = dY ; Ψ = θ(Y,Y ′)
dY ·dY ′

(2)

Then, we have

E[Φ] = E[dY ] =
∑

y∈H(d) dy · dy

2|R(d)| =
∑

y∈H(d)

d2
y

2|R(d)| (3)

E[Ψ ] = E
[
θ(Y,Y ′)
dY ·dY ′

]
=

∑
y∈H(d)

∑
y′∈H(d)

dy

2|R(d)| ·
dy′

2|R(d)| ·
θ(y,y′)
dy·dy′

(4)

=
∑

y∈H(d)

d2
y

4|R(d)|2 (5)

The deduction within Equation (4) is based on the assumption that Y and Y ′

are independent and the deduction from Equation (4) to Equation (5) is based
on the fact that each node y contributes d2y times as a common neighbor for two
nodes.

Equation (3) and Equation (5) imply the following.

|R(d)| = E[Φ]
2·E[Ψ ] (6)

Thus, in order to get an estimator of |R(d)|, we need estimators of E[Φ] and E[Ψ ].
Since Φ and Ψ are based on one and two random nodes from H(d), respectively
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(see Equation (2)), we design the estimators of E[Φ] and E[Ψ ], denoted by Ê[Φ]

and Ê[Ψ ], as the average based on the m sampled nodes yi (1 ≤ i ≤ m) and the
average based on a set Q of n pairs of sampled nodes (yr, yt) (1 ≤ r < t ≤ m),
respectively, where Q consists of those pairs of two sampled nodes yr and yt
from the m sampled nodes such that yr and yt correspond to two nodes that
are sampled at two steps far away from each other by a certain number f of
steps in the random walk process, so we have Q={(yr, yt)| t− r ≥ f ∧ 1 ≤ r <
t ≤ m} and |Q| = n (in this way, the two sampled nodes could be regarded as
approximately independent sampled nodes according to the existing study [2],
and in our experiments, following [2], we set f as 2.5%m).

Ê[Φ] = 1
m ·

∑m
i=1 dyi ; Ê[Ψ ] = 1

n ·
∑

(yr,yt)∈Q
θ(yr,yt)
dyr ·dyt

(7)

Then, we design the estimator of |R(d)|, denoted by |̂R(d)|, based on Equa-
tion (6) as follows.

|̂R(d)| = Ê[Φ]/(2 · Ê[Ψ ]) (8)

Note that |̂R(1)| corresponds to an estimator of the number of edges in G.

4.2 Estimator of N

Let x(l) be a state in the expanded Markov Chain that involve three vertices
in G. We define an indicator function h(x(l)) such that h(x(l)) = 1 if the three
vertices form a triangle and h(x(l)) = 0 otherwise.

We note that a certain number of states in M (l) based on G(d) correspond
to the same triangle in G. For example, for the case of G(1) and M (3), for a

triangle consisting of vertices v1, v2 and v3, 6 states, namely x
(3)
1 = (v1, v2, v3),

x
(3)
2 = (v1, v3, v2), x

(3)
3 = (v2, v1, v3), x

(3)
4 = (v2, v3, v1), x

(3)
5 = (v3, v1, v2), and

x
(3)
6 = (v3, v2, v1), correspond to it. Similarly, it could be verified that 6 states for

the case of G(2) and M (2) and 1 state for the case of G(3) and M (1) correspond
to a triangle in G. Let α denote the number of states that correspond to the
same triangle. We then know that the number of triangles is equal to the total
number of states in which the vertices involved form a triangle divided by α.

N = 1
α

∑
x(l)∈M(l) h(x(l)) (9)

Let X(l) be random state with the stationary distribution πM . Based on
Equation (9), we have the following.

N = 1
α

∑
x(l)∈M(l) h(x(l)) = 1

α

∑
x(l)∈M(l)

h(x(l))
πM (x(l))

πM (x(l)) (10)

= 1
αE

[
h(X(l))

πM (X(l))

]
= |R(d)|

α E
[

h(X(l))
πM (X(l))·|R(d)|

]
(11)

Here, the deduction from Equation (10) to Equation (11) is based on the fact
that X(l) (and also h(X(l))) follows the πM distribution. We define a random
variable T as follows.

T = h(X(l))
πM (X(l))·|R(d)| (12)
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Thus, we have

N = |R(d)|
α E

[
h(X(l))

πM (X(l))·|R(d)|

]
= |R(d)|

α E[T ] (13)

We note that based on a sampled state for X(l), T could be easily computed
since |R(d)| would be canceled out in πM (X(l)) · |R(d)| according to Equation (1).

Based on Equation 13, we know that in order to estimate N , we need an esti-
mator of E[T ]. Since T is based on one random state from M (l) with distribution

πM (See Equation (12)), we design the estimator of E[T ], denoted by Ê[T ], as the

average based on k states x
(l)
i (1 ≤ i ≤ k) of the expanded Markov chain built

on the random walk process, where k = m− l+1 and x
(l)
i = (yi, yi+1, ..., yi+l−1).

Ê[T ] = 1
k ·

∑k
i=1

h(x
(l)
i )

πM (x
(l)
i )·|R(d)|

(14)

Then, we design the estimator of N , denoted by N̂ , based on Equation (13) and
(8)as follows.

N̂ = Ê[Φ]Ê[T ]

2αÊ[Ψ ]
(15)

4.3 Accuracy Analysis

We did some analysis of the accuracies of |̂R(d)| and N̂ based on the settings of
k, m and n, and the results are shown in the following theorem.

Theorem 2. For any ϵ ≤ 1/2 and δ ≤ 1 we have

Pr[N(1− ϵ) ≤ N̂ ≤ N(1 + ϵ)] ≥ 1− δ (16)

if k ≥
48

∑
x(l)∈M(l)

h(x(l))

πM (x(l))
−α2N2

δϵ2α2N2 ,

m ≥
48[

∑
y∈H(d)

d3y

2|R(d)|
−(

∑
y∈H(d)

d2y

2|R(d)|
)2]

δϵ2(
∑

y∈H(d)

d2y

2|R(d)|
)2

, and

n ≥ max

{
384|R(d)|2

ϵ2δ
∑

y∈H(d) d2
y
,

[
384

√
2|R(d)|·|H(d)|

ϵ2δ
∑

y∈H(d) d2
y

]2}
(17)

Proof. Please see Appendix A. ⊓⊔

The analysis of |̂R(d)| can be found in our technical report [26].

5 Implementation Details and Cost Analysis

With the algorithms introduce in the previous section, we now explain some
details in our implementation, along with the time and space analysis.
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First, we explain how to implement a random walk process based on G(d)

during whichm random nodes are collected. The core of the random walk process
is the transition procedure which is to pick one neighbor of the current node
y = (v1, ..., vd) randomly. In the following, we explain how to compute the set of
neighbors of y, based on which the transition procedure could be done easily. We
consider three cases. Case 1, d = 1. In this case, the problem is easy and could be
solved by invoking an API call based on y which corresponds to a vertex. Case
2, d = 2. In this case, y = (v1, v2). The set of neighbors of y in G(2) corresponds
to {(u,v) | u = v1 ∧ v ∈ N(v1)\v2}

∪
{(u,v) | u = v2 ∧ v ∈ N(v2)\v1}, and

thus it could be computed based on N(v1) and N(v2) which could be obtained
by invoking two API calls, one with v1 as input and the other with v2 as input.
Case 3, d = 3. In this case, y = (v1, v2, v3). We define M(vi,vj) = N(vi)

∪
N(vj)\V (y), if (vi,vj) ∈ E and M(vi,vj) = N(vi)

∩
N(vj)\V (y), otherwise,

where V (y) denotes the set of vertices {v1, v2, ..., vd}. Then the set of neighbors
of y in G(3) corresponds to {(u, v, w) | u = v1 ∧ v = v2 ∧ w ∈ M(v1,v2)}

∪
{(u, v, w) | u = v2 ∧ v = v3 ∧ w ∈ M(v2,v3)}

∪
{(u, v, w) | u = v1 ∧ v = v3 ∧ w

∈ M(v1,v3)}, and thus it could be computed based on N(v1), N(v2) and N(v3)
which could obtained by invoking three API calls.

Note that with the above implementation, each transition requires d API
calls. Fortunately, since two nodes that are visited consecutively during the pro-
cess are neighbors to each other (i.e., they share d−1 vertices), the results of the
previous API calls could be saved for the current node and thus exactly one new
API call is needed. Therefore, each transition requires one API call on average.

We regard one API call as a unit of time and we exclude the time cost
before the mixing time in the random walk process. Then the complexities of
our algorithms are as follows, the proofs can be found in [26]

Theorem 3. Let dmax be the maximum degree of G(d). The time complexity of
the random walk process is O(k) for G(1) and O(k · dmax) for G(2) and G(3).

The time complexities of computing R̂(d) and N̂ are O(k · dmax). The space
complexities for both processes are O(k · dmax).

6 Experiments

In this section, we report on our experimental findings. First we describe our ex-
perimental setup. We used 8 real datasets as shown in Table 1, which are used in
the literature for estimating graphlet statistics and network size of OSNs [2,17].
Following these studies, we simulate the scenario where we only have accesses
to the datasets via APIs. In each network, we remove the directions of edges,
self-loops and multi-edges. We used the largest connected component for each
network (since the method could be similarly run on other connected compo-
nents). The statistics of the largest connected components of networks are shown
in Table 1 where N is the number of triangles and W is number of wedges.

We adopt the following two metrics in our experiments.
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Table 1. Statistics of Datasets

Network |V | |E| N W

Facebook [28] 6.34 × 104 8.17 × 105 3.5 × 106 7.1 × 107

Epinion [27] 7.6 × 104 4.06 × 105 1.6 × 106 7.4 × 107

Slashdot [27] 7.7 × 104 4.69 × 105 5.5 × 105 6.8 × 107

Gowalla [28] 1.97 × 105 9.5 × 105 2.3 × 106 2.9 × 108

Pokec [28] 1.6 × 106 2.23 × 107 3.26 × 107 2.08 × 109

Flickr [28] 2.2 × 106 2.28 × 107 8.38 × 108 2.33 × 1010

Orkut [28] 3.08 × 106 1.17 × 108 6.28 × 108 4.56 × 1010

Live Journal [28] 4.8 × 106 4.28 × 107 2.86 × 108 7.27 × 109

– Normalized root mean square error (NRMSE): NRMSE is defined as

NRMSE(N̂) =

√
E[(N̂−N)2]

N =

√
V ar[N̂ ]+(N−E[N̂ ])2

N , (18)

Note that NRMSE captures both the variance and the bias of the estimator.
– Confidence interval : A [p1, p2]-confidence interval in our case corresponds to

an interval [L,U ] such that Pr[N̂/N ≤ L] = p1 and Pr[N̂/N ≤ U ] = p2. In
our experiments, for each result pair, we run 200 simulations independently
and get an estimate of the [5%, 95%]-confidence interval, [L,U ], such that L
and U are the 5th and 95th percentile values, respectively.

We study the performance of three algorithms each corresponding to our
sampling algorithm based on one of the following settings: (1) d = 1, l = 3, (2)
d = 2, l = 2, and (3) d = 3, l = 1, the algorithms are denoted by SRWd, depend-
ing on the d value for the algorithm. Note that to the best of our knowledge,
the problem of estimating the number of edges and triangles in an OSN has not
been studied before, and thus we have no state-of-the-arts to compare with in
our experiments.

All algorithms are implemented in C++, and we run experiments on a Linux
machine with Intel 3.40GHz CPU.

6.1 Performance Studies for Estimating N

Fig. 2 shows the NRMSE results, where the x-axis is the number of random walk
steps as a percentage of the set of nodes in the network, and the y-axis is the
NRMSE. Each NRMSE value is calculated by averaging over 200 independent
simulations. We summarize our results as follows.

– On all networks, SRW1 always achieves the lowest NRMSE among SRW1,
SRW2 and SRW3, which means that SRW1 has the highest accuracy in
estimating the number of triangles.

– SRW1, the best method in our framework, gives relatively accurate estima-
tion. For example, when 2% of the nodes are sampled, the NRMSE of SRW1
is in the range [0.033, 0.23]. Besides, for most of the networks (6 out of 8
networks), the NRMSE of SRW1 is just around or less than 0.1.
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Fig. 2. NRMSE of triangle count estimation

– SRW3 is the worst method in terms of accuracy. It is slow and cannot finish
running within a reasonable time on large networks, and as a result, its
measurements on some datasets are not available.

Table 2 shows the [5%, 95%]-confidence interval of SRW1 and SRW2 when
only 2% of the nodes are sampled. The confidence interval of SRW1 is much
tighter than SRW2, which again demonstrates that SRW1 outperforms SRW2
significantly. This result is also consistent with the theoretical analysis in Sec-
tion 4.3.

Table 2. [5%, 95%]-confidence interval of triangle count estimation

Network SRW1 SRW2 Network SRW1 SRW2

Facebook [0.818, 1.180] [0.612, 1.521] Epinion [0.764, 1.244] [0.518, 1.438]
Slashdot [0.629, 1.400] [0.324, 1.788] Gowalla [0.823, 1.218] [0.200, 2.187]
Pokec [0.941, 1.066] [0.669, 1.600] Flickr [0.944, 1.053] [0.878, 1.119]
Orkut [0.923, 1.083] [0.754, 1.357] Live Journal [0.629, 1.353] [0.496, 1.741]

Table 3 shows the running time of SRW1 and SRW2 when only 2% of the
nodes are sampled. The running time of SRW1 is much smaller than SRW2,
which demonstrates that SRW1 is much more efficient than SRW2. In addition,
our algorithm SRW1 only takes quite short time to process these networks in
experiments, which means our algorithm is very piratical. Fig. 3 shows the run-
ning time of SRW1 and SRW2 with different sample size. We find that For both
algorithms, the running time is nearly linear with the sample size.

6.2 Performance Studies for Estimating |E|

Fig. 4 shows the NRMSE results for edge counts. Based on the experiments
results, our estimator of the number of edges is quite accurate. For example,
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Table 3. Running time when 2% of the total nodes are sampled

Network SRW1 SRW2 Network SRW1 SRW2

Facebook 0.0632s 18.90s Epinion 0.1134s 19.00s
Slashdot 0.1152s 17.77s Gowalla 0.44s 66.90s
Pokec 2.43s 177.70s Flickr 39.81s 226.22s
Orkut 13.15s 637.54s Live Journal 13.05s 867.28s

Fig. 3. Running time of triangle count estimation

when 2% of the nodes are sampled, the NRMSE of SRW1 is in the range [0.015,
0.14] and the NRMSE is below 0.1 in 7 out of 8 networks. More details could be
found in the full version of the paper.

Remark: Our algorithm is designed for graphs with restricted access. To our
knowledge, there is no published work on edge and triangle counting that we can
compare with directly. A most relevant work is PSRW [6], which estimates certain
graphlet statistics, but does not estimate the counts of edges or triangles. For
triangles, they consider only random walks on G(2). With our proposed method
involving the estimation of the graph size of |R(d)|, we can convert PSRW to
compute the counts, in which case it becomes SRW2. However, we have shown
that our new method SRW1 outperforms SRW2 significantly in Section 6.

7 Conclusion

In this paper, we present efficient random walk-based algorithms to estimate the
number of triangles and the number of edges in OSNs with restricted access.
We derive a theoretical bound on the number of samples needed for an accuracy
guarantee. Our experiments on real-world OSNs showed that our algorithms
provide accurate estimations.
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Fig. 4. NRMSE of edge count estimation
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Appendix

8 Proof of Theorem 2

Proof. Define three new random variables, T ′ = 1
k ·

∑k
i=1

h(X
(l)
i )

πM (X
(l)
i )·|R(d)|

,Ψ ′ =

1
m ·

∑m
i=1 dYi , and Φ′ = 1

n ·
∑

(i,j)∈Q
θ(Yi,Yj)
dYi

·dYj
. Here, we don’t have a specific

sample set from random walk and the sample set itself is also a random variable.

This is different from Ê[T ], Ê[Φ] and Ê[Ψ ] which are values based on a specific
sample set from random walk. It is obvious that E[T ′] = E[T ], E[Ψ ′] = E[Ψ ]
and E[Φ′] = E[Φ]. We require that each of the variable T ′, Φ′ and Ψ ′ is an
ϵ/4 approximation of their respective expected values with probability at least
1-δ/3. From Chebyshev’s inequality for variable Z, If Z is an ϵ/4 approximation
of their respective expected values with probability at least 1-δ/3, then we have,

Pr(|Z − E[Z]| ≥ ϵ/4 · E[Z]) ≤ V ar[Z]
(ϵ/4·E[Z])2 ≤ δ/3

V ar[Z] ≤ δϵ2(E[Z])2/48
(19)
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Sample size of k. The Variance of T ′ is:

V ar[T ′] = 1
k · V ar

[
h(X(l))

πM (X(l))·|R(d)|

]
= 1

k ·

{
E

[(
h(X(l))

πM (X(l))·|R(d)|

)2
]
− E2

[
h(X(l))

πM (X(l))·|R(d)|

]}
= 1

k ·
∑

x(l)∈M(l)
h(x(l))

πM (x(l))·|R(d)|2 − α2N2

|R(d)|2

(20)

With Equations (19) and (20), we can get the bound of sample size k:

k ≥
48

∑
x(l)∈M(l)

h(x(l))

πM (x(l))
−α2N2

δϵ2α2N2

(21)

Sample size of m.

V ar[Φ′] = 1
m · V ar[dY ] =

1
m · (E[d2Y ]− E2[dY ])

= 1
m · [

∑
y∈H(d)

d3
y

2|R(d)| − (
∑

y∈H(d)

d2
y

2|R(d)| )
2]

(22)

so we have, m ≥
48[

∑
y∈H(d)

d3y

2|R(d)|
−(

∑
y∈H(d)

d2y

2|R(d)|
)2]

δϵ2(
∑

y∈H(d)

d2y

2|R(d)|
)2

Sample size of n
V ar[Ψ ′] = E[Ψ ′2]− E2[Ψ ′] (23)

E2[Ψ ′] can be obtained from Equation 5. Then, we discuss how to get E[Ψ ′2].

E[Ψ ′2] = 1
n2E[(

∑
(i,j)∈Q θ(Yi, Yj) · 1

dYi
·dYj

)2]

= 1
n2

∑
(i,j)∈Q

∑
(i′,j′)∈Q E[θ(Yi, Yj) · 1

dYi
·dYj

θ(Y ′
i , Y

′
j ) · 1

dY ′
i
·dY ′

j

]
(24)

To calculate this summation easily, we divide it into three cases.
(a). The node pairs (Yi, Yj) and (Y ′

i , Y
′
j ) are the same i.e. i = i′ and j = j′,

E[θ(Yi, Yj) · 1
dYi

·dYj
θY ′

i , Y
′
j · 1

dY ′
i
·dY ′

j

] = E[(θ(Yi, Yj) · 1
dYi

·dYj
)2]

= 1
4|R(d)|2

∑
i∈H(d)

∑
j∈H(d)

(θ(i,j))2

di·dj

(25)

Since for general OSN, the degree of every user should be no smaller than 2,
we have di ·dj ≥ di+dj . In addition, it is obvious that di+dj ≥ θ(i, j). Based on

these results, we have, (θ(i,j))2

di·dj
≤ (θ(i,j))2

di+dj
≤ θ(i, j). So, E[(θ(Yi, Yj) · 1

dYi
·dYj

)2] ≤
1

4|R(d)|2
∑

i∈H(d)

∑
j∈H(d) θ(i, j) = 1

4|R(d)|2
∑

i∈H(d) d2i
Moveover, we have n such cases.
(b). The node pairs (Yi, Yj) and (Y ′

i , Y
′
j ) share no common node.

E[θ(Yi, Yj) · 1
dYi

·dYj
θ(Y ′

i , Y
′
j ) · 1

dY ′
i
·dY ′

j

]

= 1
16|R(d)|4

∑
i∈H(d)

∑
j∈H(d) θ(i, j) ·

∑
i′H(d)

∑
j′∈H(d) θ(i′, j′) = 1

16|R(d)|4 (
∑

i∈H(d) d2i )
2
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Hence, the number of such case is smaller than n(n− 1).
(c). The node pairs (Yi, Yj) and (Y ′

i , Y
′
j ) share one common node.

E[θ(Yi, Yj) · 1
dYi

·dYj
θ(Y ′

i , Y
′
j ) · 1

dY ′
i
·dY ′

j

] = 1
8|R(d)|3

∑
i∈H(d)

∑
j∈H(d)

∑
i′∈H(d)

θ(i,j)·θ(j,i′)
dj

Since dYj ≥ θ(Yj , Y
′
i ), we have,

E[θ(Yi, Yj) · 1
dYi

·dYj
θ(Y ′

i , Y
′
j ) · 1

dY ′
i
·dY ′

j

]

≤ |H(d)|
8|R(d)|3

∑
i∈H(d)

∑
j∈H(d) θ(i, j) =

|H(d)|
8|R(d)|3

∑
i∈H(d) d2i

(26)

The number of such case is smaller than 2n
√
2n. (there are n ways choosing

the first pair, and the other pair shares one node with this pair, so there is two
possible node to share with).

Then we can compute V ar[Ψ ′],

V ar[Ψ ′] = E[Ψ ′2]− E2[Ψ ′] (27)

≤ 1
n

1
4|R(d)|2

∑
i∈H(d) d2i +

1
16|R(d)|4 (

∑
i∈H(d) d2i )

2 (28)

+ 2
√
2n
n

|H(d)|
8|R(d)|3

∑
i∈H(d) d2i −

[∑
i∈H(d)

d2
i

4|R(d)|2

]2
(29)

≤ 1
n

1
4|R(d)|2

∑
i∈H(d) d2i +

2
√
2n
n

|H(d)|
8|R(d)|3

∑
i∈H(d) d2i (30)

Substituting this into Equation (19), and let both of the terms less than half
of the right hand size in Equation (19), we got the condition for n:

n ≥ max{ 384|R(d)|2
ϵ2δ

∑
i∈H(d) d2

i
,
[
384

√
2|R(d)|·|H(d)|

ϵ2δ
∑

i∈H(d) d2
i

]2
} (31)

This finishes the proof. ⊓⊔


