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Abstract
Location-based social networks (LBSNs) such as
Foursquare offer a platform for users to share and
be aware of each other’s physical movements. As
a result of such a sharing of check-in information
with each other, users can be influenced to visit at
the locations visited by their friends. Quantifying
such influences in these LBSNs is useful in vari-
ous settings such as location promotion, personal-
ized recommendations, mobility pattern prediction
etc. In this paper, we focus on the problem of lo-
cation promotion and develop a model to quantify
the influence specific to a location between a pair of
users. Specifically, we develop a joint model called
LoCaTe, consisting of (i) user mobility model esti-
mated using kernel density estimates; (ii) a model
of the semantics of the location using topic mod-
els; and (iii) a model of time-gap between check-
ins using exponential distribution. We validate our
model on a long-term crawl of Foursquare data col-
lected between Jan 2015 – Feb 2016, as well as on
publicly available LBSN datasets. Our experiments
demonstrate that LoCaTe significantly outperforms
state-of-the-art models for the same task.

1 Introduction
With GPS1 becoming pervasive within smartphones,
location-based social networks (LBSNs) such as Foursquare
and Facebook places have gained popularity. These networks
allow users to share their check-in information with their
friends enabling LBSN users to be aware of their friend’s
check-ins. This, combined with other factors, can influ-
ence the check-in preferences of users [Cho et al., 2011;
Ye et al., 2011]. Quantifying the user-to-user influence
—often modelled probabilistically [Goyal et al., 2010;
Zhang et al., 2012]— is an essential building block in
understanding the effects of information diffusion in LBSNs.

Influence maximization [Bouros et al., 2014; Li et al.,
2014; Wu and Yeh, 2013] in social networks addresses the
problem of finding a set of users who have a strong influ-
ence in the social network; these users are potentially good

1https://en.wikipedia.org/wiki/Global Positioning System

seed users to run promotion campaigns that target to maxi-
mize the reach of the campaign. Research interest in LBSNs
has sparked interest in using geo-locations for influence max-
imization, leading to the location promotion problem [Zhu et
al., 2015]. The location promotion problem is of significant
importance for launching effective campaigns to help busi-
nesses gather more customers. This task instantiates the influ-
ence maximization task on a specified target location/venue
(e.g., a particular restaurant), with the intent of finding a set
of seed users who are well-positioned for the promotion of
their business [Zhu et al., 2015]. Once a set of seed users is
identified, it can be used to issue targeted special offers.

From the perspective of location promotion, the worth of a
user - or the user’s “seedness” - is quantified as the number of
users she can influence to visit a location, after her visit. The
necessary step for the location promotion problem is thus a
method to assess the likelihood that other users would visit
the location following the candidate seed user’s visit. Influ-
ence quantification can factor in a variety of information that
a LBSN offers: (i) geographic features: user’s mobility over
different locations, (ii) semantic features: type/category of
location (e.g., restaurant, cafe), (iii) social correlation: the re-
lationship between users in the social network, and (iv) tem-
poral correlation: the degree to which a user’s movement is
correlated with another user’s. Previous work on influence
quantification for location promotion has mostly focused on
modelling geographic features and social correlation [Zhu et
al., 2015]. Studies on semantic features such as category have
been limited primarily since datasets containing such infor-
mation have been scarce [Gao et al., 2012; Cho et al., 2011];
such deficiencies have been recently addressed by methods
such as approximate spatial joins [Likhyani et al., 2015].
Thus, because of unavailability of category information in-
trinsically, the use of location semantics have not been ex-
plored in previous work. In this work, we join datasets from
multiple sources to make location category usage possible.

The temporal correlation of users behavior has been mod-
eled previously in online social networks, but not in LBSN as
we do in this paper. The socially induced followship based
on temporal correlation has been of interest in LBSN studies
in other contexts [Pham and Shahabi, 2016].

In this paper, we address this research gap and make two-
fold contribution: first, exploitation of the hitherto unex-
plored information, that of location categories, for influence
quantification; second, we develop a novel model LoCaTe



that incorporates:
1. Location affinity: The mobility patterns of users that

hold cues to whether they frequent the proximity of the
target location.

2. Category affinity: The affinity of a user to the category
or type of the location.

3. Temporal correlation: The temporal correlation of
movements between the user and the candidate seedset,
thus modelling time-conditioned social followship.

As is the case of any influence quantification method, our
model easily fits into any location promotion setting[Li et
al., 2014; Zhu et al., 2015]. We empirically evaluate our
approach over both publicly available real-world LBSN data
as well as our own long-term crawl of Foursquare check-ins
spanning more than one year. Overall, the proposed LoCaTe
model can outperform state-of-the-art methods by more than
50% in AUC (Area Under the Curve of ROC[Bradley, 1997]).

2 Related Work
While influence maximization has been a well-studied prob-
lem (e.g., [Kempe et al., 2003; 2005; Chen et al., 2010;
Goyal et al., 2010]), the geo-seeded instantiation motivated
by LBSNs has gathered only recent attention [Li et al., 2014;
Zhu et al., 2015; Bouros et al., 2014; Zhang et al., 2012;
Pham and Shahabi, 2016]. Apart from the location pro-
motion problem where we start with a specific target loca-
tion, there have been studies on region promotion, where the
target is a larger geo-region [Bouros et al., 2014]. Users’
geo-location affinities have been modeled by either associ-
ating one specific geo-location with each user (usually the
most frequently one visited by the user) [Li et al., 2014;
Zhang et al., 2012] or a set of geolocations or only the so-
cial network structure [Bouros et al., 2014; Zhu et al., 2015].
In a similar way, the user-user pairwise influence propa-
gation probabilities are estimated either using just the (so-
cial) network structure [Bouros et al., 2014; Li et al., 2014;
Zhang et al., 2012] or taking into consideration the seed lo-
cation/region [Zhu et al., 2015]. To the best of our knowl-
edge only the recent work in [Pham and Shahabi, 2016],
have looked at defining user-user pairwise influence in spatio-
temporal context, but for identifying followship. For our em-
pirical evaluation, we compare against the most recent work
by Zhu et al. [Zhu et al., 2015], that associates a set of loca-
tions for each user and considers the influence between two
users to be dependent on the location.
User Mobility Models: We make use of user mobility mod-
els in our method drawing inspiration from earlier work on
characterizing user behavior in LBSNs. Since LBSN data
provides a trail of user’s locations, it provides a rich data plat-
form for studying user mobility patterns; such patterns are
of interest for tasks such as location prediction and person-
alized recommendation. In literature, mobility models that
mine spatial patterns based on generative models [Gao et al.,
2012], Gaussian distributions [Cho et al., 2011] and kernel
density estimations [Lichman and Smyth, 2014] have been
particularly successful. Accordingly, we use the kernel den-
sity mobility model [Lichman and Smyth, 2014] to model and
exploit user-location affinities in our method for LBSN lo-
cation promotion. The baseline technique from [Zhu et al.,

Symbol Description
G A location based social network
U Set of users in G
E Set of connections from ui to uj s.t. ui,uj ∈ U and ui 6=

uj
` A location specified by a triple (x,y,C`), where x,y cor-

respond to geo-coordinates and C` to category set of `
〈u, `, t,C`〉 A check-in record of user u at time t at location ` that has

a category set C`
Mu set of check-in records 〈u, `, t,C`〉
L A set of locations
C A set of categories

Table 1: Notations used in this paper

2015], on the other hand, makes use of a distance-based mo-
bility model, DMM, in their influence quantification method.

3 Problem Statement
Now we provide a formal definition of influence quantifica-
tion problem in an LBSN for location promotion. Table 1
lists a set of notations that will be used. We model a loca-
tion/venue2 as having a fixed geographic coordinate as well as
a set of categories associated with it. This allows for model-
ing of locations such as movie multiplexes that would screen
movies as well as contain eateries.

Definition 1 (Location Promotion) Given an LBSN G, a
target location `, whose category set is C`, the location pro-
motion problem is to select a small set of seed users S, S ⊆ U,
who can lure other users to the target location ` well. The hy-
perparameter τ indicates the desired cardinality of S.

Influence quantification, the task of quantifying the likeli-
hood of a user visiting the location given a visit to the same
location by another (i.e., seed) user, forms an important build-
ing block for location promotion problem as shown in [Zhu
et al., 2015]. Given a user-user influence model, the loca-
tion promotion problem reduces to finding a set of seed users
which can collectively influence a large set of users to visit
the location in focus.

Definition 2 (Influence quantification.) Influence quantifi-
cation: Given an LBSN G, a target location `, a seed-
user u (usually a user who has previously visited `), the in-
fluence quantification problem is to quantify the likelihood
P(`,u, v |G), the likelihood that any user v among u’s con-
nections is likely to visit `.

As mentioned earlier, influence quantification models typi-
cally consider the affinity of the user v to location ` indepen-
dent of the influence from other users, and the influence of
the seed user u on v in this decision.
Evaluation: Our evaluation framework follows earlier work
in this area (e.g., [Zhu et al., 2015]): from a dataset of LBSN
check-ins, we decide on a cut-off timestamp such that there
is a sizeable amount of check-ins before and after the cut-
off. All data prior to the cut-off timestamp is used as train-
ing data to learn the model. The remaining data forms the
test set against which the effectiveness of the learned model
is measured. Consider a particular instance of the influence
quantification problem for location ` and a seed-user u; the

2We use location and venue interchangeably. Though venue
might be more appropriate, location is also used in literature.
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Figure 1: LoCaTe Framework for Influence Quantification

influence quantification output would be an ordered list of u’s
connections, ordered in the decreasing (non-increasing) order
of estimated likelihood to visit `. This list can be cut-off us-
ing a threshold ρ to identify a set of users who are deemed
to be highly likely to visit ` - this set forms the predicted set,
PS(`,u, ρ |G). The ground truth activated set, A(`,u), is the
subset of u’s connections who have actually visited ` after the
cut-off timestamp (i.e., from the test set). The match between
PS(`,u, ρ |G) and A(`,u) measured at various values of the
threshold ρ quantifies the goodness of the influence quantifi-
cation method employed. Any measure of match between
sets can be aggregated over all users (i.e., by iterating u over
the set of LBSN users) to get a single goodness value for the
combination [`, ρ]. We will use the ROC curve (generated by
varying ρ) to compare our method against baselines in our
empirical evaluation.

4 LoCaTe Influence Quantification
We now outline our influence quantification method, LoCaTe,
that estimates P`,u(v|M), a scoring that captures the likeli-
hood that the user v from u’s connections would visit the loca-
tion ` using the check-in records in the training part, denoted
as M. Figure 1 shows the framework of LoCaTe. LoCaTe
combines information from three kinds of features:

P`,u(v|M) =

(
α PL(v, `|M)︸ ︷︷ ︸

location affinity

+ (1 − α) PC(v,C`|M)︸ ︷︷ ︸
category affinity

)
× T(u→ v|M)︸ ︷︷ ︸

temporal correlation

,

where, PL(v, `|M) models the affinity of v to location `, and
PC(v,C`|M) models the affinity of v to the categories that
are associated with the location ` (denoted as C`). These
two terms are interpolated using an interpolation parameter
α. Further, T(u → v|M) captures the temporal correlation
between users u and v, independent of the location. The first
two terms quantify users affinity for the location using mo-
bility and categories respectively and are combined using a
weighted sum. The third term quantifying location-agnostic
user-user socially induced temporal affinity is merged using
a product. Thus, the final scoring ensures that users who
are strong on both location and temporal aspects score much
higher than others.
P`,u(v|M) ranges between [0,1], since we normalize the

scores obtained for a list of influenced users v = (v1, ...vm)
keeping the seed user u and target location ` fixed. Thus

ΣvP`,u(v|M) = 1.
The usage of Location affinity, Category affinity and
Temporal correlation lends the name to our method.

4.1 Location Affinity
The mobility of each user is typically restricted to a few key
locations, which would typically include the location of stay
and work [Cho et al., 2011]. Thus, a user has an inher-
ent preference for some geo-locations. We use kernel den-
sity estimates to model mobility patterns and location affin-
ity of users. Kernel density estimates are robust to sharp
transitions in spatial densities that human mobility witnesses,
especially in contexts involving travels that take users far
away from their usual location of residence [Cho et al., 2011;
Lichman and Smyth, 2014].

The affinity of v to ` based on her own check-in history is
modeled as the kernel density estimate (KDE) that quantifies
the average weighted similarity between ` and each location
lj has checked-in using hyper-parameter k,

PL(v, `|Mv) = fKD(l|Mv,k) =
1

|Mv|
Σ
|Mv|

j=1 Kj,k(`, `j)

Kj,k(·, ·) estimates the similarity between locations as in-
versely related to the Euclidean distance between them:

Kj,k(`, `j) =
1

2πhj,k
exp

(
−

1
hj,k
‖`− `j‖

)
Here, hj,k is a location-dependent scalar factor that is set to
be the Euclidean distance of `j to it’s kth nearest neighbor,
thus ensuring that the similarity computation is sensitive to
differential densities of locations in urban and rural areas.

Mixture of Kernel Density models:
To offset for sparsity issues in determining the location affin-
ity using just the user’s check-in records, we use corpus
smoothing by interpolating the location affinity of a user with
those across all users, yielding our final formulation:

PkL(v, ` |M) = βvfKD(` |Mv,k) + (1 − βv)fKD(` |M,k),

where, βv is a user-specific mixing weight, determining the
relative influence between the user and global models. We
will denote this as PL(., .) when the value of k is clear.

Training:
We have two parameters that need to be estimated. First,
the hyper-parameter k is estimated as the value that maxi-
mizes the likelihood of check-ins in a chosen validation set,
V (which is a held-out part of the check-ins before the cut-off
timestamp, but not included in the training). Thus, we set k
to the value that maximizes the following:

k = arg max
k′

Σ〈v,`,·,·〉∈V log

(
Pk

′

L (v, ` |M)

)
The distribution of log-likelihood across various values of

k are shown in Table 2; accordingly, we chose k = 5 for usage
in our method. Second, we choose the user-specific interpo-
lation weights βv as the value that maximizes the likelihood
of their check-ins in the training data itself. We do not use the
validation set here since there are users who do not have any
check-ins in the validation set.



k 2 3 4 5 6 7 8 9 10

Fsq’16 -2.032 -1.804 -1.704 -1.640 -1.670 -1.687 -1.722 -1.744 -1.817
Fsq’11 -2.711 -2.640 -2.063 -1.726 -0.939 -0.738 -0.677 -0.794 -0.851
Fsq’10 -1.283 -1.251 -1.233 -1.211 -1.225 -1.231 -1.246 -1.260 -1.278

Brightkite -1.915 -1.869 -1.836 -1.789 -1.779 -1.821 -1.850 -1.879 -1.897
Gowalla -1.978 -1.896 -1.847 -1.804 -1.825 -1.854 -1.877 -1.890 -1.931

Table 2: Log-likelihood at different values of k

(a) User A (b) User B
Figure 2: Category wise check-in Distribution

4.2 Category Affinity
Locations/Venues often record correlated check-in behavior
across LBSN users. For example, a restaurant might be better
off targeting a user who frequently checks in to food places
due to the correlation across various categories of food joints.
As an example, consider two users in Figure 2 represented
by the word cloud of the categories of their checked-in lo-
cations (larger font indicates higher frequency); User A evi-
dently exhibits affinity towards visiting restaurants while user
B prefers gym and fitness centers. We use topic modeling to
identify such higher-level contexts, and exploit it to model the
user-category affinity term, PC(v,C`|M).

Latent Dirichlet allocation [Blei et al., 2003] models se-
mantic matching between text documents by learning top-
ics, each of which is a probability distribution over the set
of words. LDA ensures that words that are semantically re-
lated would have high probabilities associated with the same
topic(s). In our adaptation of LDA for modeling topical con-
texts across check-in categories, each user v is treated as a
document constructed as a bag of categories vC (i.e., each
category as a word) of checked-in locations. These docu-
ments across the users in the population form a document
corpus. We apply LDA on this document corpus, to learn
topics which are probability distributions over categories. We
then use the learnt topics to estimate the user’s affinity to the
set of categories associated with the location of interest:

PC(v,C`|M) = ΣZ∈Topics(M)P(C`|Z)× P(v|Z),

where Topics(M) is the set of topics learned as described,
and Z represents a topic from the topic-set learned. P(v|Z)
and P(C`|Z) quantify how well the category distribution for Z
matches against those of the check-ins of v and the categories
of ` respectively. High values of PC(v,C`|M) are achieved
when the user’s category distribution and that of the location
under consideration are correlated with the same set of topics.

4.3 Temporal User Correlation
We now turn our attention to the temporal correlation term,
T(u → v|G), that quantifies the extent of influence that u
has over v. This primarily accounts for the socially induced
followship in our Influence Quantification model. The task
at hand is to quantify the chance that v will follow u in
checking-in to a location, such that (u, v) ∈ E. Towards

location
time axis

u4 u5

t1 t2 t3 t4 t5
across user-base

across connections

follower
follower

u3u2u1

Figure 3: Depicting the time lag between check-ins at a location for
connected and non-connected users
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Figure 4: Time lag probability distribution plot

modeling this, we first analyze the behavior of general inter-
arrival times of users in the LBSN at a given location, with-
out considering whether they are connected to each other in
the LBSN network or not; we call this the time lag distri-
bution across userbase. The analogous time lag distribution
across connections considers the distribution of the time du-
ration elapsed between two users who are connected to each
other, visiting the location in question. A visual depiction of
the time lags that go into either of these distributions appears
in Figure 3. We collect these time lag distributions across
all locations in the LBSN and analyze their frequency distri-
bution using a histogram. As expected, the general across
userbase time lag distribution follows a power law distribu-
tion, as illustrated in Figure 4(a). However, the across con-
nections time lag distribution in 4(b) does not quite follow a
power law distribution despite exhibiting a monotonic decay
with increasing values of time lag. It may also be noted that
the across connections data is much sparser than across user-
base; this is so since there are a significantly fewer number
of occurrences of connected users visiting the same location.
Drawing cues from the trends across the two time lag distri-
butions, we choose to model the time lag distribution between
users using an exponential distribution, given it’s popularity
in similar contexts [Pham and Shahabi, 2016].

Modeling using exponential distribution
According to the exponential distribution modelling, the
weight associated with any value of time lag, denoted δt,
would be quantified as the following:

p(δt) = λte
−λtδt

We set λt to be the mean time lag between check-ins by con-
nected users:

λ−1
t = avg {|t2 − t1| | ∃〈u, ·, t1, ·〉 ∈M ∧ ∃〈v, ·, t2, ·〉 ∈M ∧ (u, v) ∈ E}

where the 〈u, ·, t, ·〉 implies that we consider all check-ins by
u at time t irrespective of the location of the check-in or the
set of categories associated with the location. This feeds into
our user correlation estimate T(u → v|G) which is modelled



as the cumulative weight of v checking in at a location visited
by u after a time lag of any t > tminu,v :

T(u→ v|G) =

∫∞
tmin
u,v

λte
−λtδtd(δt)

= −e−∞ + e−λtt0 = e−λtt
min
u,v

tminu,v = min {(t2 − t1) | ∃〈u, ·, t1, ·〉 ∈M∧ ∃〈v, ·, t2, ·〉 ∈M}

As indicated above, we set tminu,v to be the earliest time that
v has checked in after u at the same location, according to
training data; this ensuring that T(u→ v|G) reflects the extent
of correlation between u and v, since T(u→ v|G) would have
a high value for those user pairs where the latter follows the
former (temporally) closely.
5 Experiments
5.1 Experimental Setting
We tested over 5 datasets as shown in table 3, of which
FSq’16 is the one that we collected using Twitter and
FourSquare APIs, and rest are publicly available datasets
[Cho et al., 2011; Gao et al., 2012]. The publicly avail-
able datasets do not provide category information, and more-
over, the locations are also annonymized, they only expose
the latitude, longitude information of the location. A recent
work uses approximate spatial joins across checked-in loca-
tions and map data (available at Foursquare itself) to infer
category information for each check-in and the data is made
available by the authors [Likhyani et al., 2015]. Such joins
provide a large set of categories for each location as there
could be multiple types of locations (e.g., cafe, hospital) at
the same geo-location. Although another large collection of
Foursquare check-in data with category information is re-
leased, it does not have the social graph of users essential for
the location promotion problem addressed in this paper [Yang
et al., 2016]. To the best of our knowledge, there does not ex-
ist any publicly available dataset that contain category infor-
mation of checked-in locations along with the social graph.

Data Collection: We use Twitter for getting check-ins of
users, because user’s check-in information in Foursquare can
only be accessed from her own social circle, and it is not
available publicly. However, Foursquare users can choose to
post their check-ins via Twitter when they check in at a place.
Hence, we capture check-ins by crawling Foursquare-tagged
tweets from the Twitter Public Stream API 3 and REST API4.
The Foursquare-tagged check-in tweet crawled contains a
uniqueURL that points to a Foursquare web page contain-
ing the geographical information of this check-in location.
We parse this web page to get check-in location along with
the timestamp. Further to obtain category of this location,
we pass this location to FourSquare API5 and get access of
the location information. Lastly, to accquire the social infor-
mation of users (i.e. friendship links), we again use Twitter,
because Foursquare does not provide public access to user’s
friends list. Thus, we acquired friendship ties that Foursquare
users have among them on Twitter, where they are publicly
available. To extract the check-in details of friends we again

3https://dev.twitter.com/streaming/public
4https://dev.twitter.com/rest/public
5https://developer.foursquare.com/docs/

crawl their tweets in the same manner as above. While the re-
sulting social graph is not identical to the original Foursquare
graph, it encompasses the subset of users who are on Twitter
and have linked their Twitter and FourSquare accounts. In our
experiment, we consider the users who have at least 10 check-
ins. Some key statistics of the dataset are shown in table 3.
FSq’16 is the dataset that we curated, rest are public datasets
for which we collected only the category information.

Test Set: For each dataset, we assign a cut-off timestamp,
the data prior to it is used for training and rest of the check-ins
for testing. The cut-off timestamp is chosen such that 80%
of total checkins are used for training. The target locations
are identified as locations where a user’s check-in precedes
its follower’s check-ins and both the check-ins are made on
or after the cut-off timestamp. The user who checks-in first
is the seed user and it’s followers who checks-in after him,
are the activated users (by the seed user). Section 2 de-
scribes ground truth construction set of activated users and
also the evaluation. Table 3 shows the number of test cases
(A(`,u)), and cut-off timestamp for each dataset. Note that
there is a high variability in the number of categories per lo-
cation across the datasets, thus enabling the empirical evalu-
ation to cover scenarios across a wide spectrum of semantic
information availability.

Parameter Estimation: We also construct a validation set
in the same manner as test set is built from the training set for
learning the parameters βv and α : mixing the kernel density
estimations for spatial density and the topic model for cate-
gory information, respectively. We use EM algorithm to learn
this. Table 4 shows values of βv and α : learned for different
datasets. The parameter Z (number of topics) is set to 50.

Implementation: We coded all the models including
the baselines (DMM Basic and DMM Social), in Java.
For KDE we made use of the source code available
at UCI Datalab website (http://www.datalab.uci.
edu/resources) and for LDA based topic model we made
use of the source code available at http://mallet.cs.
umass.edu/topics-devel.php. We ran the code on
a 6-core 2.5GHz Intel Xeon CPU with 64GB of RAM. The
source code and the datasets used are available publicly 6.
5.2 Comparative Evaluation
We compare our proposed model LoCaTe with two state of
the art users’ mobility based influence quantification mod-
els, viz., the DMM Basic and the DMM Social models pro-
posed in [Zhu et al., 2015] and two baseline methods: GMM
(Gaussian Mixture Model) and a baseline method that plugs
in mobility, categorical and temporal features in a simplistic
manner (described as follows).

DMM Basic: It models the probability of a user moving
from visited locations to the target location. Pareto distri-
bution [Newman, 2005] is used for modeling the distances
between the checked-in locations of a user.
pu(`) = ΣlP(u is at l) P(u moves distance d(l, `) from l)

= Σl
p
(u)
l

(d(l, `) + 1)αM

DMM Social: It models user’s and user’s friends mobility
patterns using Pareto distribution as above and the resulting

6https://goo.gl/ayzehx



Dataset #users #check-ins #unique locations #unique categories #friendship-links avg. degree #users (training records > 10) Duration A(`,u) cut-off timestamp

FSq’16 119, 756 9, 317, 276 183, 225 734 1, 308, 337 21.85 78, 312 Jan’15 - Feb’16 55, 884 1/12/2015
FSq’11 11, 326 1, 385, 223 187, 218 638 47, 164 8.33 11, 324 Jan’11 - Dec’11 15, 951 1/10/2011
FSq’10 18, 107 2, 073, 740 43, 064 624 115, 574 12.76 17, 369 Mar’10 - Jan’11 4, 056 1/12/2010

Brightkite 58, 228 4, 491, 143 772, 966 683 214, 078 7.35 23, 356 Apr’08 - Oct’10 2, 642 1/5/2010
Gowalla 196, 591 6, 442, 890 1, 280, 970 680 950, 327 9.66 72, 925 Feb’09 - Oct’10 88, 865 1/6/2010

Table 3: Statistical properties of the dataset
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Figure 5: ROC for different influence quantification models

dataset FSq’16 FSq’11 FSq’10 BrightKite Gowalla

α 0.90 0.95 0.92 0.93 0.94
βv 0.78 0.86 0.85 0.91 0.90

Table 4: α and βv values

model is the mixture of individual’s distance density and so-
cial distance density as follows:

Pu(`) = Σlp
(u)
l

[
p(M)

(d(l, `) + 1)αM
+

p(S)

(d(l, `) + 1)αS

]
where, p(M) and p(S) are mixing components and αM and
αS are the Pareto distribution parameters learned using indi-
vidual and social data, respectively.

GMM: It models user’s mobility patterns using the Gaus-
sian Mixture Model. Each user’s check-in records are repre-
sented using several states, each state modeled using Gaus-
sian distribution. In our experiments we choose two states:
home and work [Cho et al., 2011; Zhu et al., 2015].

N(x|µ,Σ) =
1

(2π)D/2
1

|Σ|1/2 exp

{
−

1
2
(x− µ)TΣ−1(x− µ)

}
p(x) = ΣKk=1πkN(x|µk,Σk)

where, π1...πk, are the mixture weights of the states, µ1...µk,
the mean of each state and Σ1...Σk, the variance of each state.

Baseline: In equation (1) in section 4 we plugin Most Fre-
quent Checkins as the location model, Simple Category Dis-
tribution as the category model and average time lag based
exponential distribution as the temporal model.

P`,u(v|M) =

(
α
I`

|Mu|
+ (1 − α)

IC`

Σ
|Mu|

i=1 |Ci|

)
× exp(−∆tu,v),

where, I` is the number of instances when u has checked-in
at `, IC`

is the number of instances when u has checked-in at
category set C`, and ∆tu,v is the average of time lag between
u and v check-ins in the training data.

ROC and AUC: Figure 5 shows ROC curves and ta-
ble 5 shows AUC (area under the curve) of different influ-
ence quantification models on different datasets. It can be

XXXXXXXXXdataset
technique baseline GMM DMM Basic DMM Social LoCaTe

Fsq’16 0.582 0.599 0.521 0.568 0.839
Fsq’11 0.721 0.716 0.727 0.716 0.789
Fsq’10 0.575 0.718 0.699 0.588 0.741

Brightkite 0.517 0.526 0.601 0.627 0.707
Gowalla 0.511 0.654 0.551 0.571 0.781

Table 5: AUC(area under the curve) of different influence quantifi-
cation models over different datasets

observed that LoCaTe model outperforms DMM Basic and
DMM Social models quite significantly on FSq’16 dataset,
where we have a single category with each location. On the
other datasets where we have a set of categories with each lo-
cation, although we observe that LoCaTe model outperforms
DMM Basic and DMM Social models, but we are able to
leverage the category information better in the case of a sin-
gle category with each location. The efficacy of the LoCaTe
model is not only contributed by additional knowledge we
gain from categories, but also the temporal based user-user
correlation modelling, and the adaptive KDE based mobility
model (Lo). The Lo model provides a better fit to the mobil-
ity data as for each testing location the distance around it is
determined using the k nearest neighbours (from the training
data). On the other hand, the distance based mobility model
(DMM) is sensitive to short distances and thus assigns a low
probability to locations at larger distances.

6 Conclusion

In this paper, we addressed the problem of influence quan-
tification in the location promotion setting, and proposed a
model that incorporates not only the traditional user mobil-
ity models but also socially induced temporal correlation of
users as well as the affinity of users to a location based on
semantics of the location. The resulting LoCaTe model has
demonstrated more than 54% improvements over state-of-
the-art methods over a number of real-world LBSN data with
a large number of users and spanning more than a year.
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