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Abstract 

Hydroxyapatite (HA) is popularly used as a bio-compatible coating material for metallic implants, in view of its 

improved bone fixation property, leading to an increased life of the implant. However, the deposition of HA on 

medical grade UNS S31254 stainless steel (SS254) for orthopaedic implant applications by the radio-frequency 

magnetron sputtering technique is unreported in the literature so far. The surface morphology of  deposited HA 

coatings was characterized using Scanning Electron Microscopy and Atomic Force Microscopy, while their phase 

composition was determined using X-ray Diffraction. The thickness and adhesive strength of the HA coatings were 

determined using an Ellipsometer and a Tensometer, respectively. Finally, the antibacterial efficacy and bioactivity 

of the deposited coatings were confirmed using Fluorescence Activated Cell Sorting and Immersion test in 

Simulated Body Fluid environment. The obtained results showed that the HA coatings grown on SS254 using 

magnetron sputtering possess desirable surface properties as well as adhesion and biocompatibility properties, 

ideally suited for potential applications in orthopaedic implants.   
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Introduction 

In spite of the lower corrosion resistance when compared to titanium, internal fixation devices are still being made 

of austenitic stainless steels (largely SS 316L). This is owing to their excellent mechanical properties and 

comparative low cost [1-2]. Lately, newer generation of steels with superior corrosion resistance and mechanical 

properties are being studied [3-7]. For orthopaedic implants ISO 5832-9 SS is being used, in comparison to F138-92 

SS as it does not undergo pitting corrosion [8-12]. Likewise, UNS S31254 SS (254 SS) also exhibits high resistance 

against hydrochloric acid [9] and phosphoric acid [10], and in chloride media it does not exhibit pitting at room 

temperature [9]. Absence of toxic effect as confirmed by cytotoxicity results and high nitrogen content of 254 SS 

have made it a candidate material for scientific investigation, towards developing futuristic implant materials [11-

12].  

Hydroxyapatite (HA) holds a significant position as an inorganic biomaterial. However, bulk HA ceramics possess 

poor mechanical properties, restricting its use for load bearing implant applications. To overcome this limitation, 

HA coating is being deposited on metals and their alloys, to derive the dual advantage of bioactivity of HA and 

mechanical performance of metals [13]. HA is widely coated on orthopaedic implants because its mechanical 

properties closely resemble to those of human bones and it is also biocompatible with human bone tissues [14]. HA 

coating of orthopaedic implants can be an effective method of improving the physiological response of the implant 

surface leading to an overall improved performance of the implants [15].  

HA coatings can be deposited on a metallic substrate using various techniques, such as direct laser melting, sol-gel, 

electro deposition, dip coating, ion beam, pulsed laser deposition and various other vapor deposition processes, 

including plasma spray which is a commercially viable technique for clinical applications [15-22]. Plasma spraying 

produces bioactive ceramic coatings with high adhesion strength, but this technique also has many demerits such as 

chemical in-homogeneity and variable crystalline nature of coating [16-18]. The Magnetron Sputtering (MS) 

technique has emerged as an alternative to the aforesaid methods owing to its flexibility of depositing a variety of 

materials. This technique facilitates the deposition of dense, well-adhered films with controlled elemental 

composition [23] by appropriate selection of deposition parameters (target feed power, gas flow rate, working 

pressure, substrate temperature, deposition time, substrate bias voltage etc.) [20]. In order to obtain HA coatings 

with better bioactivity properties, a good control of their morphology, surface roughness and crystallinity is essential 



[20]. The major drawback of MS, however, is that it produces HA coatings with low crystallinity, requiring post-

deposition annealing heat treatment [24]. With this background motivation, this study is focused on the 

improvement of protective and osteogenic performance of a new generation of medical grade stainless steel 

(S31254), with an aim of yielding a superior bio-implant material. This is achieved by coating HA on S31254 steel, 

employing the MS technique. Limited studies of this nature are available in the literature [25] making it a novel 

research. 

Material and methods 

The MS technique, its basic principle and construction of equipment have been described elsewhere [26-29]. In this 

research, the coatings were fabricated using a RF magnetron sputtering unit (Hind High Vacuum Co. (P) Ltd, 

Model: RF/DC sputtering unit). HA targets (of 50 mm diameter and 2 mm thickness) were prepared from HA 

powder (supplied by Clarion Pharmaceutical Co., New Delhi, India of the following properties (Ca/P molar ratio = 

1.61-1.71, Calcium = 32-36%, Phosphorus = 18-22%, Moisture = <5%, Mesh size = 100% passing 100 mesh, Visual 

appearance =  White powder)  as per the standard procedure adopted in [14]. The UNS S31254 sheet of dimensions 

10 × 10 × 2 mm3 was used as a substrate. Before introducing the substrates (in group of four) inside the deposition 

chamber, they were polished and cleaned with acetone to remove surface contaminants. Based on preliminary trials 

and literature review the deposition parameters were set as follows: base pressure = 5.8 × 10-6 mbar, chamber 

pressure = 3.5 × 10-2 mbar, substrate temperature = room temperature, deposition time = 90 min, target fed power = 

250 W, argon flow rate = 15 sccm (standard cubic centimeter per minute), distance between target and substrate = 5 

cm [26-27, 29-30]. The as-deposited films had thickness of nearly 213±37 nm. In order to restore the initial 

crystalline status, the amorphous coatings obtained by deposition were finally annealed for 2 h at 600 °C in ambient 

air.  

Thereafter, the surface morphology of the HA coatings was examined using Scanning Electron Microscopy (SEM; 

Zeiss Model: EVO15) and Atomic Force Microscopy (AFM; Agilent Technologies Model: 5500). The phase 

composition of HA coatings was determined using X-ray diffraction (XRD; Rigaku Model: Smart lab 3 kW) and the 

coating thicknesses was measured using an Ellipsometer. The adhesive strength of HA coatings was determined 

using a Tinius Olsen Tensometer while their antibacterial efficacy was determined using the Fluorescence Activated 

Cell Sorting (FACS) technique, which is one of the best, modern technologies for cell sorting [31]. Lastly, the 



bioactivity of HA coatings was established by conducting an immersion test in Simulated Body Fluid (SBF) 

environment.  

3. Results and discussion 

3.1 Surface morphology 

Fig. 1 shows the SEM micrographs of the surface morphology of the uncoated UNS S31254 substrate and as-

deposited HA thin film grown by the RF magnetron sputtering process. In comparison to the bare surface, a dense, 

crack and other defects free coating was evident on the entire substrate surface. Parallel grooved lines resulting due 

to substrate grinding are clearly visible on the surface. A similar surface morphology was reported by Thian et al 

[32].  

 

Fig. 1 SEM micrographs of (a) uncoated and (b) HA coated UNS S31254substrate. 

Fig. 2 shows the Xray diffractograms of bare UNS S31254, HA target, HA coating and annealed HA coating. The 

XRD peaks of bare UNS S31254 appear at 2θ values of 43.4° and 50.2°. While those of HA target and both HA 

coatings and annealed HA coatings appear at 31.88°. During deposition no stoichiometric changes in HA were 

evident owing to the relatively high mean-free-path length at low operating pressure of 10-2 mbar [28]. The obtained 

diffraction peaks match well with those available in the literature [33] and found to be in agreement, confirming the 

presence of crystalline HA phase in the coating (along with minor traces of amorphous phase). The peak of substrate 

material (Fe) appeared at 2θ = 43.4° which indicates minor non-uniformity in the coating.  

(a) (b) 



After post deposition annealing, the crystallinity and coating uniformity increases, as confirmed by the intensity of 

the peaks and published literature [14]. The intensity of the 31.88° HA peak increases by approximately 20% while 

the 43.4° Fe peak decreases by about 58%, results in increased crystallinity of HA coatings. The crystallinity of 

ceramic coatings is directly linked to the coatings solubility (i.e. life) within the physiological environment. Hence, 

mineral coatings need to be maximally crystalline in order to perform optimally in vivo [29].  

 

Fig. 2 Xray diffractograms of bare UNS 31254, HA target, HA coated and annealed HA coated substrate.   

The 1 × 1 µm2 AFM micrographs presented in Fig. 3 are used for investigating the surface morphology of uncoated 

UNS S31254 substrate and HA coating. The average surface roughness of the uncoated UNS S31254 substrate was 

found to be nearly 1.35 nm. The 3D morphology of the coated substrate shown in Fig. 3 (b) reveals the formation of 

valleys on the surface of the deposited films. These valleys increase the average surface roughness of the coating to 

nearly 4.98 nm which is higher than the 2.6 nm roughness reported by Lopez et al [34]. It is already well established 

that human osteoblasts attach more readily to surfaces with a roughness less than 500 nm than to surfaces with a 



roughness greater than 2000 nm [35]. Hence, the human osteoblasts are also likely to attach readily to our HA 

coating surface.  

 

 

Fig. 3 3D AFM micrographs of UNS S31254 (a) uncoated and (b) HA coated substrate. 

 

(a) 

(b) 



3.2 Adhesive strength  

The adhesive strength of HA coatings was tested by conducting tensile pull out tests (as per ASTM C633 standard) 

on a Tinius Olsen tensometer. Fig. 4 represents a schematic of the tensile pull out test for determination of adhesion 

strength. The test includes the attachment of a stainless steel stud (of dimensions 10 mm × 10 mm × 50.8 mm) to the 

HA coated surface using Epoxy Adhesive (EpoFix Resin and EpoFix Hardener), cured at room temperature for 48 h. 

After installing the coated sample/stud assembly on the tensometer, the stud was pulled in tensile mode until failure. 

The average adhesive strength of HA coatings (over three samples) was found to be 22.32±3.7 MPa [28] which is 

higher than the standard value of 15 MPa according to ISO 13779-2 [36]. The results obtained above can be 

attributed to the operating pressure of 10-2 mbar required to maintain high ion energies).  

 

Fig. 4 Schematic of adhesive testing. 

The SEM micrograph of Fig. 5 shows that epoxy failure was the dominant failure mode during the pull-off test, with 

70-80% of the failed area falling under this mode, indicating that the bond strength of coatings is superior to that of 



the epoxy. The higher bonding strength of the HA coatings produced in this work can also be attributed to the 

uniformly distributed,  higher values of surface roughness.  

 

Fig. 5 SEM micrograph of HA coated sample after tensile pull out test. 

3.3 Antibacterial efficacy  

The in vitro antibacterial efficacy of the bare and HA coated samples was investigated against Escherichia coli (E. 

coli) by using the Fluorescence activated cell sorting (FACS) technique, in order to confirm the reattainment of 

antibacterial property in HA coatings deposited employing the radio-frequency magnetron sputtering, which is 

essential to overcome the skin-seal problem of such implants [36]. The inoculum of the E. coli microorganisms was 

prepared from fresh broth cultures incubated at 37 °C with constant stirring and used in sample preparation for 

FACS. The FACS samples were prepared by adopting the methodology as already given by the authors in [25]. 

Fig. 6 (a) shows the FACS results in terms of Forward Scattering (FSC) and Side Scattering (SSC) for the bare 

sample (FSC = 60,955.19, SSC = 28,683.32), while Fig. 6 (b) shows for the HA coated sample (FSC = 41,644.73, 

SSC = 11,870.98). They show a decrease in size (by FSC) and granularity (by SSC), of the E. coli micro-organisms, 



for the HA coated sample, with respect to the bare sample. Hence, the FACS results confirm the death of E. coli in 

HA coated sample, This in turn confirms the inhibition of possible infection in the body part surrounding the nearby 

surface of metallic implant, reducing the bacteria adhesion and promoting bone tissue formation [38].  

   

Fig. 6 FACS graphs (a) bare sample and (b) HA coated sample. 

3.4 Bioactivity 

Bioactivity of HA coated substrate was investigated by conducting immersion test in SBF. The as-fabricated HA 

coated substrate was first washed with acetone and then with deionized water, and dried in an oven to remove traces 

of moisture. An in vitro bone-like layer growth test was performed by immersing the samples (approximate size 10 

× 10 × 2 mm3) in 30 ml of SBF in a poly-ethylene bottle and maintained at 36.5 °C for 28 days with continuous 

stirring at 800 rpm, without refreshing the SBF solution [39].  

The detailed preparation, chemical composition and pH of SBF adopted in this study were followed as per [40]. Fig. 

7 shows the surface morphology of the HA coated substrate after immersion in SBF, at two different magnifications 

(1000 and 2500). From Fig. 7b the growth of apatite layers is clearly visible; resulting in an average increase of 

nearly 0.06% in the weight of HA coated substrate, after the immersion test [41]. Previous studies have shown that 

(a) (b) 



formation of biological apatite on the surface of artificial bioactive materials is critical to establishing bonding 

between living tissue and biomaterials [42]. The formation mechanism of apatite on the surface of HA compacts 

after soaking in SBF may be attributed to the ion exchange between HA compacts and the SBF solution [43]. The 

bonding mechanism of bioactive materials to living tissues involves a sequence of eleven successive reaction steps 

[44-45]. The growth of apatite during 28 days of immersion in SBF is comparatively much more rapid with respect 

to the overall life (5-10 years) of an implant, confirming that the HA coated surface produced in our research is more 

bioactive, when compared to the bare SS254 implant and thus promotes more osseointegration [41].  

 

(a) 



 

Fig. 7 SEM micrographs of HA coated sample after immersion test at (a) 1000X and (b) 2500X. 

4. Conclusions 

In this research columnar HA coatings were successfully deposited on UNS S31254 substrate using the radio-

frequency magnetron sputtering. Post deposition annealing was found to be beneficial to achieve the desired 

crystallinity and uniformity in the coatings. SEM results ensure that coatings were dense and free from defects. 

AFM results confirm the increase in surface roughness of coatings which is desirable for increased cell growth and 

proliferation. The adhesive strength of coatings obtained was higher than the standard and their superior 

antibacterial properties and bioactivity was also confirmed. This research goes on to establish an alternate process 

route to improve the physiological behavior of UNS S31254, a new generation (higher nitrogen content) and cheaper 

(vis-a-vis titanium) grade of stainless steel, by coating hydroxyapatite using the MS technique. The promising 

results obtained are in line with the requirements for an improved orthopaedic implant material.  
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