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Take Home Message – Eppin is a low molecular weight protein which is expressed in the 

human lung during inflammation.  
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Abstract 

Eppin is a serine protease inhibitor expressed in male reproductive tissues. In this study we 

have demonstrated novel sites of eppin expression in myeloid and epithelial cell lines with 

further confirmation in primary myeloid cell types. Using immunohistochemistry and 

Western blotting, eppin was detected in the lungs of patients with Acute Respiratory 

Distress Syndrome and Cystic Fibrosis lung disease. Expression of eppin in monocytic cells 

was unaffected by stimulation with TLR agonists, cytokine stimulation and hormone 

receptor agonist stimulation. However, upregulated expression and secretion of eppin was 

observed following treatment of monocytes with epidermal growth factor (EGF). Incubation 

of recombinant eppin with monocytic cells resulted in significant inhibition of 

lipopolysaccharide (LPS)-induced chemokine production. Furthermore, eppin inhibited LPS-

induced NF-κB activation by a mechanism which involved accumulation of phosphorylated 

IκBα. In an in vivo model of lung inflammation induced by LPS, eppin administration resulted 

in decreased recruitment of neutrophils to the lung with a concomitant reduction in the 

levels of the neutrophil chemokine MIP-2. Overall, these results suggest a role for eppin 

outside of the reproductive tract and that eppin may have a role in the innate immune 

response in the lung. 
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Introduction 

Human epididymal protease inhibitor (eppin, SPINLW1, WFDC7) is a cysteine-rich protein 

comprised of both a Kunitz-type and a WAP (whey acidic protein) four-disulfide core (WFDC) 

protease inhibitor consensus motif [1, 2]. In the epididymis, eppin is secreted by epithelial 

cells and is a key component in the eppin protein complex which mediates the capacitation 

of spermatozoa [3]. In this role, eppin acts both as a serine protease inhibitor, inhibiting the 

action of prostate specific antigen [4], while protecting the spermatozoa from potential 

damage by bacteria [3, 5]. The majority of work on eppin to date has therefore focused on 

the development of eppin as target for a male contraceptive based on inhibition of the 

eppin protein complex via specific antibodies [6]. 

 

Although eppin is a serine protease inhibitor, the arrangement of cysteine residues differs 

from that of SLPI and elafin, the two most prominent members of the WFDC family [7]. 

Similar to SLPI  and elafin, recombinant eppin inhibited elastase activity, but unlike SLPI, 

eppin had no effect on trypsin or chymotrypsin activities [8–11]. Split domain studies 

demonstrated that the serine antiprotease activity resides solely in the Kunitz domain of 

eppin, while the WFDC domain retains no antiprotease activity [9]. Like SLPI [12], findings 

suggest that eppin also possesses antibacterial activity against Escherichia coli and that this 

effect is mediated via membrane permeabilisation [5]. In contrast to its antiprotease 

activity, the antibacterial activity of eppin against E. coli appears to be mediated by both the 

WFDC and Kunitz domains, with maximal killing achieved by the full-length protein [9].  
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On the basis of their multiple functions, WFDC proteins are considered to play key roles in 

innate immunity at mucosal surfaces. In contrast to eppin, elafin and SLPI are constitutively 

expressed by a variety of cell types, including respiratory and intestinal epithelia as well as 

key cell types involved in the innate immune response such as mast cells, neutrophils, and 

macrophages [13–19]. Furthermore, SLPI and elafin expression is altered in response to a 

number of factors including pro-inflammatory cytokines, bacterial products, proteases and 

androgens [16, 20–22]. The anti-inflammatory activity of SLPI and elafin in vitro and in vivo is 

well documented and reviewed elsewhere [7, 23, 24]. Previous work has shown that SLPI is 

capable of inhibiting lipopolysaccharide (LPS)-induced responses [20, 25–27]. In addition, 

elafin inhibited LPS activation of monocytic cells by inhibiting NF-κB activation via a process 

partly involving accumulation of polyubiquitinated IκBα [28]. Little is known about the 

function of eppin outside of the epididymis. In this study, we expand current knowledge on 

the localisation and regulation of eppin expression, and explore its potential role as a 

multifunctional host defence protein.   
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Results  

Eppin is expressed in myeloid and airway epithelial cells  

Given that SLPI and elafin transcripts are found in a variety of cell types, we first 

investigated whether eppin had a similar pattern of expression. As expected, eppin 

expression was detected in testes and lung tissue, albeit to a lesser extent in the lung tissue 

(Figure 1A). Eppin expression was also detected in myeloid cell lines, such as THP-1 and 

U937 monocytic cells, monocyte-derived macrophages, and neutrophils differentiated from 

PLB-985 cells (Figure 1A). Furthermore, eppin was expressed in both human peripheral 

blood mononuclear cells (PBMCs) (Figure 1B) and polymorphonuclear leucocytes (PMNs) 

(Figure 1A). Expression of eppin was also detected in epithelial cell lines of the respiratory 

tract including human type-II alveolar cells (A549), as well as tracheal and bronchial 

epithelial cell lines (Figure 1B). Eppin expression was highest in testes expression and, 

expression of eppin in the other tissues/cells (relative to eppin at 100%) was: THP-1 

monocyte (80%), THP-1 macrophage (75%), U937 monocyte (65%), U937 macrophage 

(55%), PLB-985 cells (57%), PMNs (80%), A549s (39%), lung (47%), PBMCs (24%), HTEs (17%), 

CFTEs (17%), HBEs (24%) and CFBEs (22%) as determined by densitometry.  Sequencing of 

PCR products confirmed the identity of human eppin.  

 

Detection of eppin in human lung tissue, bronchoalveolar lavage fluid (BALF) and sputum 

Human lungs were perfused with LPS as outlined in the Methods section. Tissue samples 

from non-LPS perfused lobes, LPS-perfused lobes and from cystic fibrosis (CF) patients were 

used for immunohistochemistry. Some eppin staining was present in non-LPS perfused lung 

tissue (Figure 2A) and was particularly evident in the LPS-perfused (Figure 2B) and CF 
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patient (Figure 2C) lung tissues. In agreement with the eppin expression data outlined in 

Figure 1, positive staining was prominent in epithelial and immune cells using two different 

eppin antibodies, confirming the presence of eppin in the in vivo lung. In addition, eppin was 

shown to be present in BALF from patients with Acute Respiratory Distress Syndrome 

(ARDS) and in sputum from patients with CF but was not present in BALF from healthy 

volunteers (Figure 3). Eppin was detected as the same high molecular weight complex in 

ARDS BALF and CF sputum which has been shown previously in semen where eppin is 

complexed to other proteins including clusterin and lactoferrin3. There appears to be low 

microgram amounts of eppin in CF sputum and ARDS BALF as determined by densitometry 

of the CF sputum and ARDS BALF blots. Other lower molecular bands were detectable in CF 

sputum which may represent proteolytic breakdown products of the eppin complex.  

 

Eppin expression and secretion are upregulated by EGF 

In order to investigate factors that may affect eppin expression, THP-1 cells were stimulated 

with a range of inflammatory agonists and effects on eppin expression were assessed by RT-

PCR. A number of TLR agonists such as LPS (TLR4), Pam3CysSK4 (TLR2) and polyinosinic-

polycytidylic acid (TLR3) had no effect on eppin expression (data not shown). Hormone 

receptor agonists such as estradiol and progesterone are known inducers of SLPI expression 

[21, 22]. However, estradiol or progesterone did not modulate eppin expression (data not 

shown). Growth factors such as epidermal growth factor (EGF) and transforming growth 

factor-β (TGF-β) have also been shown to regulate SLPI expression [29, 30]. To investigate a 

possible role for growth factors in the modulation of eppin expression, THP-1 monocytic 

cells were stimulated with EGF, TGF-β and fibroblast growth factor (FGF) at a range of 



7 

 

concentrations. TGF-β and FGF treatment of monocytes had no effect on eppin expression 

(data not shown). However, eppin expression was increased after treatment with EGF 

(Figure 4 A and B). In agreement with this result, analysis of cell supernatants by Western 

blotting revealed the presence of increased levels of eppin in EGF-treated cell supernatants 

(Figure 4C). The identity of eppin was confirmed by following digestion of protein in SDS-

PAG pieces from EGF-treated cell supernatant followed by 1D nLC-MS-MS (reverse phase 

chromatography) to identify the protein present in the SDS-PAG samples. The two main 

peptides obtained from this analysis were ANCLNTCK and DRQCQDNKK both of which demonstrate 

100% overlap with human eppin.  

 

Effect of recombinant eppin on bacterial growth 

To investigate a potential role for eppin as a host defence protein in the lung, we expressed 

and purified recombinant human eppin. The ability of eppin to permeabilise clinically 

relevant Gram negative and Gram positive bacteria as a method of bacterial killing was 

compared to LL-37, a well-known antimicrobial peptide. Eppin permeabilised P. aeruginosa 

(Figure 5A) and Staphylococcus aureus (Figure 5B) bacterial strains and was comparable, if 

not better than, the permeabilisation observed with LL-37 particularly in the case of P. 

aeruginosa. Eppin also inhibited the growth of P. aeruginosa and S. aureus when assessed 

by radial diffusion assay, once again, with significant effect on P. aeruginosa growth (Figure 

5C). 
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Effect of recombinant eppin on LPS-induced cytokine production 

Previous work has shown that the related WFDC proteins, SLPI and elafin, can modulate LPS 

signalling in monocytic cells [26–28]. Pre-incubation of THP-1 monocytic cells with eppin for 

1 h prior to LPS stimulation significantly inhibited both the expression (Figure 6A) and 

production of IL-8 (Figure 6B). In addition, eppin pre-incubation inhibited LPS-induced 

production of IL-8 from THP-1 monocyte-derived macrophages (Figure 6C) and MIP-2 from 

murine bone marrow-derived macrophages (BMDMs) (Figure 6D). We also observed no 

significant effect of eppin on THP-1 cell viability (Figure 6E). 

 

Effects of eppin on NF-κB activation 

To investigate further the effect of eppin on the LPS signalling pathway, we evaluated the 

impact of eppin on LPS-induced activation of NF-κB. Eppin significantly inhibited LPS-

induced p65:DNA binding activity in THP-1 nuclear extracts (Figure 7A), thereby suggesting 

that the ability of eppin to inhibit LPS-induced cytokine expression may be mediated via its 

effects on the NF-κB signalling pathway. SLPI has previously been shown to inhibit LPS-

induced NF-κB activity by competing with p65 for binding to consensus sites in the promoter 

regions of target genes such as IL-8 [27]. However, in contrast to SLPI, eppin was unable to 

bind NF-κB consensus oligonucleotides (Figure 7B). Eppin’s effect on LPS signalling upstream 

of NF-κB was evaluated by Western blotting. LPS-induced degradation of IκBα was observed 

in samples over time regardless of whether eppin was present or not (Figure 7C). However, 

increased phosphorylation of IκBα was observed in the eppin-treated cells compared to cells 

treated with LPS alone (Figure 7C).  
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Eppin inhibits LPS-induced lung neutrophil recruitment in vivo 

To determine if eppin might alter LPS effects in vivo, the effects of eppin in an in vivo model 

of LPS-induced acute lung inflammation were investigated. Mice receiving eppin exhibited a 

significant reduction in pulmonary total cell counts following intratracheal LPS 

administration (Figure 8A) with a significant decrease in neutrophil counts (Figure 8B). This 

decrease in neutrophil infiltration was associated with a reduction in levels of the neutrophil 

chemoattractant MIP-2 in BAL fluid from mice that received eppin and LPS compared to LPS 

alone (Figure 8C). These data confirm the in vitro findings for MIP-2 shown in Figure 5D and 

suggest that eppin may play an immunomodulatory role in the airways by reducing LPS-

induced MIP-2 production from host cells with a subsequent reduction in neutrophil 

recruitment. 
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Discussion 

The majority of work on eppin to date has focused on its role within the male reproductive 

tract. In this study, we have identified novel sites of eppin expression in both myeloid and 

epithelial cell types. Furthermore, eppin expression was confirmed in primary mononuclear 

cells and neutrophils. We have also demonstrated the presence of eppin in tissue and 

airways (BALF and sputum) from patients with ARDS and CF, as well as from human ex vivo 

lung tissue perfused with LPS. Given the similar sites of expression we have demonstrated 

between eppin and other WFDC genes, we examined whether the expression of eppin in 

monocytic cells was modulated by factors known to regulate the expression of SLPI and/or 

elafin. However, we found that eppin expression was not induced by various TLR agonists, 

hormone receptor agonists and cytokine stimuli used in this study.  

 

These findings are similar to those reported for HE4 (WFDC2), another WFDC family 

member. HE4 was originally thought to be limited to the reproductive tract however, the 

expression profile of HE4 has since expanded to include the trachea, lung and nasal 

epithelium as well as major and minor salivary glands [13, 31]. HE4 expression was not 

affected by pro-inflammatory agonists such as IL-1β and TNF-α [14]. Although SLPI 

expression is induced by hormone receptor agonists such as estradiol and progesterone, 

elafin expression is unaffected [21, 22]. In addition, growth factors have been shown to 

regulate SLPI expression in vitro and in vivo [29, 30, 32]. In this study, eppin expression in 

monocytic cells was unaffected by estradiol and progesterone treatment (data not shown), 

however, both eppin expression and secretion were up-regulated by EGF treatment. We 

have also provided evidence of eppin protein in the lungs of patients with Cystic Fibrosis and 
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ARDS by immunohistochemistry and Western blot indicating that eppin is increased during 

inflammation with little eppin present in healthy lung. It should be highlighted that further 

confirmation of eppin presence in diseased lung could be provided by the availability of 

more specific monoclonal antibodies to eppin as there is a paucity of eppin antibodies 

available to carry out definitive in vivo studies. However, our immunohistochemistry and 

Western blot data does correlate to the eppin expression detected in lung epithelial and 

inflammatory cells as shown in Figure 1. Eppin was not detected as a monomeric species in 

CF and ARDS airway secretions but was present as a high molecular weight complex or 

oligomeric species in these biological fluids which has been shown previously in semen 

where eppin is complexed to other proteins including clusterin and lactoferrin3.  

 

For the purposes of investigating a potential host defence role for eppin, we expressed and 

purified recombinant eppin [9]. Our subsequent analyses focused on exploring the 

antibacterial and immunomodulatory potential of eppin. Recombinant eppin has previously 

been shown to inhibit growth of E. coli [5, 9]. In this study, we expand these observations by 

demonstrating an antibacterial effect of eppin against P. aeruginosa and S.aureus, two 

clinically relevant pulmonary pathogens. Although there are limitations associated with the 

radial diffusion assay, the bacterial membrane permeabilisation assay provides more 

definitive anti-bacterial activity data and the combined results of both assays serve to 

confirm that eppin has a greater effect on P. aeruginosa than S.aureus. In order to 

investigate the immunomodulatory effects of eppin, our studies focussed on the effects of 

eppin on LPS signalling and downstream responses in human monocytic cells and 

macrophages.  Pre-treatment of THP-1 monocytic cells, THP-1 monocyte-derived 
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macrophages and murine bone marrow derived macrophages with eppin prior to LPS 

stimulation, significantly decreased production of chemokines such as IL-8 and MIP-2. The 

anti-inflammatory effect of eppin was also demonstrated in an in vivo model of LPS-induced 

acute lung inflammation. Treatment of mice with recombinant human eppin resulted in a 

significant reduction in pulmonary neutrophilia and a concomitant reduction in BAL levels of 

the neutrophil chemoattractant MIP-2. 

 

Investigation of a potential mechanism to explain these findings demonstrated that eppin 

reduced NF-κB activity in THP-1 monocytic cells in response to LPS stimulation. In contrast 

to SLPI [27], the anti-inflammatory effects of eppin were not dependent on binding of eppin 

to NF-κB DNA binding sites. However, similar to SLPI and elafin, we observed increased 

levels of phosphorylated IκBα in cells pre-treated with eppin. It is not clear why incubation 

of cells with eppin results in increased phosphorylated IκBα. Evaluation of proteasome 

activity has previously shown that the chymotrypsin, trypsin nor caspase-like activities of 

the proteasome are affected by SLPI or elafin [26, 28]. Therefore, it is possible that eppin 

affects the ubiquitin-proteasome pathway at other site(s) leading to increased IκBα 

phosphorylation, decreased NF-κB activity and decreased expression of NF-κB target genes. 

Moreover, we have demonstrated the presence of eppin in human tissue and airway 

secretions and have shown an immunomodulatory role for eppin in vivo. As previously 

discussed, SLPI and elafin play several important roles in the innate immune response. The 

expression of eppin in myeloid and epithelial cell types, coupled with its documented 

biological activity, suggest that eppin may play a protective role in the innate immune 

response similar to SLPI and elafin. The importance of this potential role remains to be fully 
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explored; however, eppin may represent another important multifaceted member of the 

WFDC family. 
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Methods 

Full details are available in the online supplement. 

Cell culture  

Unless otherwise indicated, cell culture reagents were obtained from Life Technologies Ltd. 

(Paisley, UK). Human acute monocytic leukemia cells (THP-1), myelomonocytic cells (U937) 

and type-II alveolar epithelial cells (A549) were purchased from the American Type Culture 

Collection (ATCC, Manassas, USA). Human diploid myeloid leukaemia cells (PLB-985) were 

obtained from the German Collection of Microorganisms and Cell Cultures (DSMZ, 

Braunschweig, Germany). The human bronchial epithelial cell line 16HBE14o- (HBE), the CF 

bronchial epithelial cell line CFBE41o- homozygous for the F508del mutation (CFBE), the 

human tracheal epithelial cell line 9HTEo- (HTE), and the CF tracheal epithelial cell line 

CFTE29o- homozygous for the F508del mutation (CFTE) were obtained as a gift from Prof. 

Dieter Gruenert (California Pacific Medical Centre Research Institute, San Francisco, CA) [33, 

34]  

 

Recombinant protein production 

Recombinant eppin was produced as described previously [9].  

 

RNA extraction and RT-PCR 

RNA from human lung, testes tissue, primary peripheral blood mononuclear (PBMC) and 

polymorphonuclear leucocytes (PMN) cells were purchased from BioChain (Hayward, 

California, USA).  
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Analysis of secreted eppin 

THP-1 monocytic cells were incubated in serum free media for 8 h in the absence or 

presence of EGF (5 ng/ml; Peprotech, London, UK). Supernatants were collected and protein 

precipitated using a method adapted from Wessel and Fugge [35].  

 

Human lung tissue 

Lungs harvested from potential donors that were found to be unsuitable for transplantation 

were obtained from IIAM (International Institute for Advancement of Medicine). Ethical 

approval for the use of these samples was obtained from the Queen’s University Belfast 

School of Medicine, Dentistry and Biomedical Science Research Ethics Committee. The lungs 

were perfused ex vivo based on previously described methods [36, 37]. Experimentation 

ceased 4 hr after LPS instillation, upon which tissue samples for histology were taken from 

LPS-perfused lobes [36]. Lung tissue sections from CF patients were obtained from the 

University of Newcastle. Ethical approval for the use of these tissue samples was obtained 

from Newcastle and North Tyneside Ethics Committee (reference number 11/NE/0291).   

 

Immunostaining of human tissue for eppin  

Immunostaining for eppin detection was performed similar to previous methods [36].  

 

Effect of recombinant eppin in a murine model of LPS-induced lung inflammation 

C57Bl/6 mice (10 – 12 weeks of age) were used in all experiments and were purchased from 

Charles Rivers Laboratories and also bred in-house.  
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Statistical analysis 

All data were analysed using GraphPad Prism 5.0 (GraphPad Software Inc., San Diego, CA). 

Means were compared by unpaired t-test, Mann Whitney test, one-way analysis of variance 

(ANOVA), Kruskal-Wallis test, or one-sample t-test compared with 100 for densitometry 

data as appropriate. P < 0.05 was accepted to indicate statistical significance. Data represent 

mean ± SEM of n = 3 unless otherwise stated.  
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Figure Legends 

Figure 1. Basal expression profile of eppin in cell lines and primary cells.  

Eppin and GAPDH expression were detected in (A) THP-1 and U937 monocytic (mono) and 

monocyte-derived macrophage (mac), PLB-985 differentiated neutrophils (PLB), primary 

human neutrophils (PMN), human type II alveolar (A549) cells, testes and lung tissue, (B) 

human peripheral blood mononuclear cells (PBMC), human tracheal (HTE) and cystic fibrosis 

tracheal (CFTE), human bronchial (HBE) and cystic fibrosis bronchial epithelial (CFBE) cell 

lines by RT-PCR (35 cycles) as outlined in the Methods. Levels of eppin expression relative to 

GAPDH expression are shown between panels.  

 

Figure 2. Detection of eppin in human lung tissue.  

Tissue samples from (A) ex vivo non-LPS (B) LPS-perfused lungs and (C) cystic fibrosis lungs 

were formalin-fixed and paraffin-embedded for immunohistochemistry. Tissue sections 

were stained with 2 anti-human eppin antibodies from (i) Santa Cruz (ii) Abbexa and 

representative images (n = 2) were taken at X 20 objective lens magnification, scale bar = 50 

µm. Further zoomed in images (to the right of the main panels) were also taken to highlight 

cellular staining of eppin. Areas of eppin staining are indicated by white arrows.  

 

 

Figure 3. Detection of eppin in airway secretions 

ARDS patient BALF samples, CF sputum and healthy control BALF samples were 

electrophoresed and blotted for eppin (Abbexa). Recombinant eppin (rEppin) was run in 

each blot and migrated as monomeric, dimeric and trimeric bands. Molecular weight 
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markers are indicated to the left of each blot and the position of eppin complex indicated 

with arrows. 

 

Figure 4. Eppin is up-regulated by EGF stimulation.  

(A) THP-1 monocytic cells were incubated with media alone or with EGF (5 ng/ml) for 8 h 

and eppin expression detected by RT-PCR (35 cycles) as outlined in the Methods. (B) 

Densitometry of eppin relative to GAPDH. * P < 0.05. (C) Supernatants from control and 

EGF-treated cells were concentrated by methanol chloroform precipitation and eppin was 

detected by Western blot. The identity of eppin was confirmed by 1D nLC-MS-MS (Reverse 

Phase Chromatography). The two main peptides obtained from this analysis were ANCLNTCK and 

DRQCQDNKK both of which demonstrate 100% overlap with human eppin. 

 

Figure 5. Eppin permeabilises Gram negative and Gram positive bacteria.  

(A) P. aeruginosa and (B) S. aureus were incubated for 2 h with 5 μM SYTOX® Green nucleic 

acid stain ± eppin or LL-37 as indicated. The proportion of permeabilised bacteria was 

quantified by measuring the relative fluorescence at 480 nm (excitation) and emission 

between 510 and 700 nm using a SPECTRAmax Gemini XS fluorescence microplate reader 

and results are expressed as a % of the pre-permeabilised positive control.  (C) In radial 

diffusion assays, agarose gels were prepared containing P. aeruginosa or S. aureus and 

incubated with increasing concentrations of recombinant eppin (12.5-100g/ml) or cecropin 

(100g/ml) as a positive control. 
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Figure 6. Eppin inhibits LPS-induced cytokine production in mononuclear cells. 

(A) THP-1 monocytic cells were pre-treated with recombinant human eppin (5 μg/ml) for 1 h 

prior to 6 hr LPS stimulation. Total RNA was extracted and RT-PCR performed for IL-8 and 

GAPDH as described in the Methods section. Expression levels of IL-8 relative to GAPDH are 

shown between the panels. (B) THP-1 monocytic cells were pre-treated with recombinant 

human eppin (5 μg/ml) for 1 h prior to LPS stimulation. Cell-free supernatants were 

collected after 24 h LPS stimulation and levels of IL-8, were quantified by ELISA. (C) THP-1 

monocyte-derived macrophages and (D) murine bone marrow derived macrophages were 

pre-treated with recombinant human eppin (5 μg/ml) for 1 h prior to 24 h LPS stimulation. 

Levels of (C) human IL-8 and (D) murine MIP-2 were quantified by ELISA. *** P < 0.001 vs 

LPS. (E) THP-1 monocytic cells were incubated in cell medium or with recombinant human 

eppin (0.1, 1 and 10μg/ml) 24 h. Cell viability was assessed using Vision Blue Quick Cell 

Viability Assay reagent. 

 

Figure 7. Eppin decreases LPS-induced NF-κB activation in THP-1 monocytic cells and 

increases levels of phosphorylated IκBα.  

(A) THP-1 monocytic cells were pre-treated with recombinant human eppin (5 μg/ml) for 1 h 

followed by stimulation with LPS for 60 min. Nuclear lysates were prepared and p65 activity 

determined using a TransAm activity ELISA. * P < 0.05, *** P < 0.001 vs LPS. (B) The binding 

of eppin to the consensus NF-κB binding site was determined by EMSA. (C) THP-1 monocytic 

cells were pre-treated with recombinant human eppin (5 μg/ml) for 1 h followed by 

stimulation with LPS for 0-120 min. Cytoplasmic lysates were immunoblotted for IκBα, 

phospho-IκBα (Ser32/36) and GAPDH. 
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Figure 8. Recombinant eppin decreases LPS-induced neutrophil recruitment in a mouse 

model of acute lung inflammation.  

Mice received intratracheal saline (sal) or LPS ± recombinant eppin and after 4 h mice were 

sacrificed and bronchoalveolar lavage (BAL) performed. BAL (A) Total cell counts and (B) 

neutrophil counts were quantified. (C) Levels of MIP-2 in BAL fluid were quantified by ELISA. 

n = 3 – 7/group, ** P < 0.01, *** P < 0.001 vs LPS.  
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 FIGURE 1

 B

Eppin 

GAPDH 

Eppin 

GAPDH 

   PBMC    HTE    CFTE   HBE    CFBE

Mono      Mac      Mono     Mac        PLB       PMN         A549    Testes   Lung    (-) RT  (-) cDNA 

       THP-1                   U937 

 0.84      0.80       0.69      0.58      0.61      0.84          0.42      1.06       0.49                                 Eppin:GAPDH

  0.25       0.18      0.18         0.26      0.23     Eppin:GAPDH
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