
Distance Oracle on Terrain Surface

Wei, V. J., Wong, R. C-W., Long, C., & Mount, D. M. (2017). Distance Oracle on Terrain Surface. In Proceedings
of the 2017 ACM International Conference on Management of Data (pp. 1211-1226). Chicago, USA: Association
for Computing Machinery (ACM). DOI: 10.1145/3035918.3064038

Published in:
Proceedings of the 2017 ACM International Conference on Management of Data

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2017 ACM.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:06. Nov. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/96660048?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/distance-oracle-on-terrain-surface(f1fdeb37-ba8a-4303-8f56-1bc99a05e64b).html

Distance Oracle on Terrain Surface

Victor Junqiu Wei,
Raymond Chi-Wing

Wong
Hong Kong University of
Science and Technology

Clear Water Bay, Hong Kong
{jweiad,raywong}@cse.ust.hk

Cheng Long
Queen’s University Belfast

Belfast, UK
cheng.long@qub.ac.uk

David M. Mount
University of Maryland

College Park, USA
rous@hq.acm.org

ABSTRACT
Due to the advance of the geo-spatial positioning and the com-
puter graphics technology, digital terrain data become more and
more popular nowadays. Query processing on terrain data has
attracted considerable attention from both the academic commu-
nity and the industry community. One fundamental and important
query is the shortest distance query and many other applications
such as proximity queries (including nearest neighbor queries and
range queries), 3D object feature vector construction and 3D object
data mining are built based on the result of the shortest distance
query. In this paper, we study the shortest distance query which
is to find the shortest distance between a point-of-interestand an-
other point-of-interest on the surface of the terrain due toa variety
of applications. As observed by existing studies, computing the
exact shortest distance is very expensive. Some existing studies
proposedǫ-approximate distance oracles whereǫ is a non-negative
real number and is an error parameter. However, the best-known al-
gorithm has a large oracle construction time, a large oraclesize and
a large distance query time. Motivated by this, we propose a novel
ǫ-approximate distance oracle called theSpace Efficient distance
oracle (SE)which has a small oracle construction time, a small or-
acle size and a small distance query time due to its compactness
storing concise information about pairwise distances between any
two points-of-interest. Our experimental results show that the or-
acle construction time, the oracle size and the distance query time
of SE are up to two orders of magnitude, up to 3 orders of mag-
nitude and up to 5 orders of magnitude faster than the best-known
algorithm.

1. INTRODUCTION
With the advance of geo-spatial positioning and computer graph-

ics technology, digital terrain data has become increasingly popular
nowadays, and it has been used in many applications such as Mi-
crosoft’s Bing Maps and Google Earth in the industry community.
The terrain data has also attracted considerable attentionfrom the
academic community [8, 10, 29, 35, 24, 36, 20, 19].

Terrain data is usually represented by a set offaceseach of which
corresponds to a triangle. Each face (or triangle) has threeline

XXX XXXX X-XXXXX-XX-X/XX/XX.

XXX: XX.XXXX/XXXX

Figure 1: An Example of Digital Terrain Surface and Geodesic
Shortest Path

segments callededgesconnected with each other at threevertices.
An example of a piece of terrain data is shown in Figure 1, where
we have 24 faces, 40 edges and 17 vertices.

The geodesic distancebetween two given locations (or points)
on the surface of the terrain is the length of theshortestpath/route
from one point to the other on the surface. For example, in Fig-
ure 1,s and t are two POIs on the terrain surface and the short-
est path from points to point t is shown and is denoted byGP ,
which corresponds to a sequence of line segments on the facesof
the terrain. Note that the geodesic distance is usually quite differ-
ent from the Euclidean distance, and according to [8], the ratio of
the geodesic shortest distance and the Euclidean distance is up to
300%. In Figure 1, the Euclidean distance betweens andt is the
length of the line segmentEP .

1.1 Application
In many applications, a set of points-of-interest (POIs) isgiven

on the surface of the terrain, and it is required to compute the
geodesic distances between pairs of POIs. Some examples arein-
troduced as follows.

(1) Geographic Information System (GIS).In GIS, it is important
to compute the geodesic distance between two POIs. For example,
hikers need the geodesic distance to measure the travel timebe-
tween a source and a destination which are landmarks (which are
POIs) in practice [28]. Besides, the vehicles (e.g., GoogleMap
camera car and military vehicles) estimate the geodesic distance to
measure the travel cost [23, 32]. In life sciences, scientists conduct
distance queries on residential locations (which are POIs)of the
animals in the wildness to study their migration patterns [11, 25].

(2) Computer Graphics and Vision. In computer graphics and
vision [22, 30], measuring similarities between two different 3D
objects is very important. In order to measure similaritiesbetween
objects, a number of reference points (which are POIs) [22, 30] are

selected on the surface of each object. These reference points play
an important role in similarity measurement since they are invari-
ant to transformations such as rotation and translation. For each
object, geodesic distances between all pairs of reference points are
computed and are stored as a feature vector for similarity measure-
ment. In this application, multiple geodesic distance computations
are involved.
(3) Scientific Data 3D Modeling.There is a need to model scien-
tific data in 3D models in areas like biology, chemistry, anthropol-
ogy and archeology [1, 17]. In neuroimaging, similar to computer
graphics and vision, a 3D model of an organ is associated witha
set of reference points [1, 17] (which are POIs) and these reference
points correspond to functional units on the organ and the scientists
use the geodesic distance between reference points to analyze tu-
mor development with magnetic resonance imaging (MRI) images.
In neuroscience, scientists conducted spatial queries on a3D brain
model to study the neuron density and the number of branches in
a region of the brain [31]. Similarly, multiple geodesic distance
computations are involved in this application.
(4) Online 3D Virtual Game. In some online 3D virtual games
like INGRESS, a city (e.g., San Francisco in game INGRESS) has
a terrain surface which consists of a number ofportals (which are
POIs). For each portal, it is important to calculate the geodesic
distance from this portal to each of the other portals so thatthe
influence of this portal is estimated. Here, multiple computations
for geodesic distances are involved.
(5) Spatial Data Mining. There are many data mining techniques
used in the spatial databases. For example, in the clustering tech-
nique, the inner-cluster distance and the inter-cluster distance are
needed. In the co-location pattern mining, shortest distance queries,
are also used frequently. In a city, buildings and parks can be POIs
and in the wildness, radio-telemetry receivers set up for collect-
ing animal movement data could be POIs. In the context of spatial
data mining, the number of geodesic distance computations is very
large.

1.2 Motivation
Consider a terrainT with N vertices. LetP be a set ofn POIs

on the surface of the terrain.
Due to a variety of applications in different domains as described

in Section 1.1, computing geodesic distances [26, 6, 34, 24,20,
19, 2, 3, 12] is very important and is very fundamental to other
proximity queries such as nearest neighbor queries [9, 10, 29, 35,
20, 19], range queries [20, 19] and reverse nearest neighborqueries
[36, 20].

Motivated by this, we aim to study three kinds of queries, namely
vertex-to-vertex (V2V) distance queries, POI-to-POI (P2P) dis-
tance queriesandarbitrary point-to-arbitrary point (A2A) distance
queries. Consider the first two types of queries. Each V2V distance
query returns the geodesic distance between a starting point s and a
destination pointt, where boths andt are vertices (fromV). Each
P2P distance query returns the geodesic distance between a starting
points and a destination pointt, where boths andt are POIs (from
P). Since P2P distance queries, considering both the conceptof
vertices and the concept of POIs, is more general than V2V dis-
tance queries, considering only the concept of vertices without the
concept of POIs, P2P distance queries could be regarded as a gener-
alization of V2V distance queries. Specifically, under the problem
setting for P2P distance queries, if for each vertex in the problem
setting for V2V distance queries, we create a POI which has the
same coordinate values as this vertex, then the P2P distancequeries
will become the V2V distance queries. Thus, for clarity, in this pa-
per, we focus on P2P distance queries. Consider the third type of

queries. Each A2A distance query returns the geodesic distance be-
tween a starting points and a destination pointt, where boths and
t are two arbitrary points on the surface of the terrain. SinceA2A
distance queries allow all possible points on the surface ofthe ter-
rain, A2A distance queries generalize both P2P and V2V distance
queries. For the ease of illustration, in the main body of this paper,
we first study P2P distance queries. Later, in Appendix C, we study
A2A distance queries.

Our natural goal of answering each P2P distance query is to re-
turn the corresponding distance in a short time. However, none of
the existing studies [26, 6, 34, 24, 20, 19, 2, 3, 12] could achieve
this goal satisfactorily.

Firstly, all existing algorithms [26, 6, 34] computing exact
geodesic distances on-the-fly are still slow even in the moderate-
sized terrain data. The time complexities of the algorithmsfor
computing exact geodesic distances proposed by [26, 6, 34],are
O(N2 logN), O(N2), O(N log2 N) andO(N2 logN), respec-
tively, which is still very large whenN is large. In the literature [29,
35, 20, 19], the algorithm proposed in [6] is recognized as a state-
of-the-art fastest algorithm. Many existing papers [29, 35, 20, 19]
adopt this for finding the geodesic distance. According to [19], the
algorithm proposed in [6] took more than 300 seconds on a terrain
with 200K vertices, which is very slow.

Secondly, although some existing algorithms [24, 20, 19] were
proposed to computeapproximategeodesic distances on-the-fly for
reducing the computation time, all of these algorithms are still not
efficient enough for proximity queries and applications involving
many distance queries. The algorithm in [24] computes the approx-
imate geodesic distance/path satisfying aslope condition, the algo-
rithm in [20] computes the lower and upper bounds of the geodesic
distances between two points, and it provides no guaranteeson the
qualities of the bounds found, and the algorithm in [19], which is an
improved version of that in [20], runs inO((N+N ′) log(N+N ′))
time whereN ′ is the number of additional vertices introduced for
the sake of the guarantee on the qualities of the lower and upper
bounds found.

1.3 Distance Oracle
Motivated by these, to efficiently process the geodesic distance

queries, especially for those cases where queries for many differ-
ent pairs of points are issued, some existing studies [2, 3, 12] aim
at designing geodesic distance (and/or the corresponding shortest
path) oracles. To the best of our knowledge, all existing studies fo-
cused on building oracles for returning approximate geodesic dis-
tances only but no existing studies focused on building oracles for
returning exact geodesic distances (which could be explained by
the high computation cost of computing the exact geodesic dis-
tances). All of these studies [2, 3, 12] are based onauxiliary
point-based oracles. Specifically, they first introduce a large num-
ber of auxiliary points (edges), namelySteiner points (edges), on
the surface of the terrain where each Steiner edge connects two
Steiner points. Then, they construct a graphGǫ whose vertices
(edges) are either original vertices (edges) or the Steinerpoints
(edges). The exact distance between any two vertices/points on
Gǫ is anǫ-approximate geodesic distance between these two ver-
tices/points. Theǫ-approximate geodesic distance oracles proposed
in [2, 3, 12] indexes the exact distances onGǫ. Among these stud-
ies, the oracle in [12] is the best, where the space complexity of
the oracle (called theoracle size) is O(N

sin(θ)·ǫ1.5 log2(N
ǫ
) log2 1

ǫ
)

where θ is the minimum inner angle of any face of the terrain
surface. It can answerǫ-approximate P2P distance queries in
O(1

sin(θ)·ǫ log
1
ǫ
+ log logN) time.

Unfortunately, these auxiliary point-based oracles have two

drawbacks. The first drawback is that each of these oracles has
a large oracle building time and a large oracle size. This is because
a large number of Steiner points (edges) are introduced during the
oracle construction and the number of Steiner points could be sev-
eral orders of magnitude larger than the number of vertices on the
surface of the terrain. Thus, each of these oracles has a poorem-
pirical performance in terms of both the oracle building time and
the oracle size. The second drawback is that each of these oracles
is constructed based on thestructureof the terrain without consid-
ering the information about POIs. In other words, it is constructed
based on the set of vertices regardless of the set of POIs. Forex-
ample, consider the case where there are only two POIs, a naive
oracle storing the geodesic distance for one pair (of POIs) occupies
aO(1) space only but the oracle in [12] could introduce millions of
Steiner points, resulting in a large oracle size and a large building
time.

Motivated by the drawbacks of the existing methods, we pro-
pose a distance oracle called theSpace-Efficient Distance Oracle
(SE) such that for any points and any pointt in P , the oracle re-
turns anǫ-approximationof the geodesic distance betweens andt
efficiently, whereǫ is a non-negative real user parameter, called the
error parameter. OurSEhas three good features: (1) low construc-
tion time, (2) small size and (3) low query time (compared with the
best-known oracle [12]). This is becauseSE is space-efficientin
the sense that its size is linear ton (i.e., no of POIs). Due to this
space-efficient property, it is much easier for us to design an effi-
cient algorithm for constructing theSEand an efficient algorithm
for answering distance queries.

1.4 Contribution & Organization
We summarize our major contributions as follows. Firstly, we

propose a novel distance oracle calledSE, which can be computed
efficiently, has small size and can answerǫ-approximate geodesic
distance queries efficiently. Secondly, ourSE answers not only
P2P distance queries but also V2V distance queries. Thirdly, in
V2V distance queries, our experimental results show that the build-
ing time, oracle size and query time ofSEare, respectively, 5-100
times, 10-100 times and more than 1000 times smaller than those
of the best-known distance oracle [12] on benchmark real datasets.
In P2P distance queries, the building time, oracle size and query
time of SEare 10-100 times, 10-1000 times and 100-10000 times
smaller than those of the best-known distance oracle [12] onbench-
mark real datasets, respectively.

The remainder of the paper is organized as follows. Section 2
provides the problem definition. Section 3 presents our distance or-
acle, namelySE. Section 4 reviews the related work and introduces
some baseline methods. Section 5 presents the experimentalresults
and Section 6 concludes the paper.

2. PROBLEM DEFINITION
Consider a terrainT . Let V be the set of all vertices on the

surface of the terrainT , andE be the set of all edges on the surface
of the terrainT . Let N be the size ofT (i.e., N = |V |). Each
vertexv ∈ V has three coordinate values, denoted byxv, yv and
zv.

LetP be a set of POIs on the surface of the terrainT andn be the
size ofP (i.e.,n = |P |). In the following discussion, we focus on
the case whenn ≤ N . This is because in real-life applications,n ≤
N . For example, in the BearHead dataset, one benchmark dataset
used in the literature,n = 4k andN = 1.4M . In the EaglePeak
dataset, the other benchmark dataset,n = 4k andN = 1.5M .
The discussion about how we handle the case whenn > N can be
found in Appendix D. Each POIp ∈ P also has three coordinate

values, denoted byxp, yp and zp. In this paper, we assume that
P contains no duplicate points since any two co-located POIs can
be regarded as one POI in practice, and we can merge any two co-
located POIs into one POI by a simple preprocessing step.

Given two points,s and t, on the surface ofT , the geodesic
shortest pathbetweens and t, denoted byΠg(s, t), is defined to
be the shortest path between the two points on the surface ofT .
Note that the geodesic shortest path corresponds to a sequence of
line segments on the surface of the terrain. Consider the example
in Figure 1 where the geodesic shortest path between two points s
andt is denoted byGP . Given two points,s andt, on the surface
of T , thegeodesic distancebetweens andt, denoted bydg(s, t),
is defined to be the length of the geodesic shortest path between
the two points, i.e.,Πg(s, t), where the length of a path is defined
to be the sum of the lengths of all line segments of the path. The
geodesic distancedg(·, ·) is a metric, and therefore it satisfies the
triangle inequality.

Note that a full materialization of geodesic distances for all pos-
sible pairs of points inP is not feasible since the complexity of
the oracle size and the complexity of the oracle building time are
O(n2) andO(nN log2 N), respectively, which are prohibitively
large.

3. DISTANCE ORACLE
We first present the overview of our distance oracle calledSEin

Section 3.1. Then, we present the first component ofSE, called the
compressed partition tree, in Section 3.2, the second component
of SE, called thenode pair set, in Section 3.3, the query processing
algorithm based onSEin Section 3.4, the construction algorithm of
SEin Section 3.5, and some theoretical results ofSEin Section 3.6.

3.1 Overview
Before giving an overview, we first give the concept of a

disk. Given a pointp ∈ P and a non-negative real number
r, a disk centered atp with radius equal tor on the terrain
surface, denoted byD(p, r), is defined to be a set of all pos-
sible points on the terrain surface whose geodesic shortestdis-
tance top is at mostr. That is, D(p, r) = {p′|dg(p′, p) ≤
r andp′ is an arbitrary point on the terrain surface}.

With this concept, we are ready to describe our distance oracle
SEwhich includes two major components, namely thecompressed
partition treeand thenode pair set.

The first component is the compressed partition tree in which
each node corresponds to a disk containing a set of POIs. In the
leaf level of the tree, there aren nodes each of which corresponds
to a disk containing only one POI. Each node in this level has the
smallest radius (since each node contains only one POI). In the
level just above the leaf level of the tree, there are fewer nodes each
of which corresponds to a disk containing one or more POIs. Each
node in this level has a larger radius (since each node contains one
or more POIs). Similarly, each node in a higher level has a larger
radius. At the root level of the tree, the (root) node has the largest
radius since it contains alln POIs. Note that for different levels,
the tree has different number of nodes (with different radius).

The second component is the node pair set which is a set of the
pairs of nodes from the compressed partition tree. In this node pair
set, each node pair in the form of〈O,O′〉 is associated with the
distancebetween the centers of the corresponding disks ofO and
O′ whereO andO′ are two nodes in the compressed partition tree.
Besides, the node pair set satisfies one interesting property called
theunique node pair match propertywhich is the key to the query
efficiency of ourSE. The unique node pair match property states
that for any two points, namelyp andq, in P , there existsexactly

onenode pair〈O,O′〉 in the node pair set such thatO containsp
andO′ containsq.

Consider a distance query with a source points ∈ P and a des-
tination pointt ∈ P . Let h be the height of the tree. In all of
our experimental results on benchmark real terrain datasets, h is
smaller than 30. We could answer this distance query inO(h) time
usingSE. The major idea is to find a node pair〈O,O′〉 in the node
pair setefficientlysuch thatO containss andO′ containst, and re-
turn the distance associated with this node pair. Interestingly, even
though the distance returned is associated to this node pair, it will
be shown later that the distance returned is anǫ-approximation of
the geodesic distance betweens andt.

The major challenge here is how to designSEwhich achieves the
space-efficientproperty (mentioned in Section 1). We will describe
the details of how we address this challenge.

3.2 Oracle Component 1: Compressed Parti-
tion Tree

In this section, we first present a hierarchical structure called a
partition tree to index all POIs inP , which is used for construct-
ing the first component (i.e., the compressed partition tree) of our
distance oracleSE.

A partition treeis defined to be a tree with the following compo-
nents.

• Each nodeO in the tree has two attributes, namely itscenter,
denoted bycO , and itsradius, denoted byrO, wherecO is a
point inP andrO is a non-negative real number.

• For each leaf nodeO, D(cO , rO) contains only one point in
P (which iscO) (and thus contains no objects inP other than
cO). Note that there aren leaf nodes.

• For each internal nodeO, the center of each child of node
O is in D(cO , rO) and the radius of each child of nodeO is
equal to0.5 · rO.

• Each nodeO in the tree is associated with itsrepresentative
set, denoted byRS(O), which is defined to be a set contain-
ing the centers of all the leaf nodes in the subtree rooted at
O.

Given two nodes, namelyO and O′, the (geodesic) distance
betweenO and O′, denoted bydg(O,O′), is defined to be
dg(cO , cO′).

Let h be the height of the partition tree. The partition tree has
h + 1 layers, namely Layer 0, Layer 1, ..., Layerh. Layer 0 is the
layer containing the root node only. For eachi ∈ [1, h], Layeri is
the layer containing all child nodes of each node in Layer(i− 1).
Finally, Layerh is the layer containing all leaf nodes. If a node is
in Layeri wherei ∈ [0, h], we also say that the depth of this node
is i. Note that all nodes in the same layer have the same radii. The
radiusof Layer i, denoted byri, is defined to be the radius of one
of the nodes in Layeri. For anyi, j ∈ [0, h], we say that Layeri is
higher than Layerj (or Layerj is lower than Layeri) if and only
if i < j.

Next, we give the three properties of this partition tree to be sat-
isfied. We will describe how to construct a partition tree satisfying
these three properties later.

• Separation Property: For eachi ∈ [0, h], the radius of each
node in Layeri is r0

2i
and the geodesic distance between any

two nodes in this layer is at leastr0
2i

.
• Covering Property: For each layer whereX denotes a

set of all nodes in this layer, the region represented by⋃
O∈X

D(cO , rO) covers all points inP .
• Distance Property: For each nodeO in the tree, ifO′ is one

of the descendant nodes ofO, thendg(cO, cO′) is at most
2 · rO, i.e.,cO′ is in the diskD(cO , 2 · rO).

Given a nodeO in the partition tree, theenlarged diskof node
O is defined to beD(cO , 2 · rO). From the Distance Property,
we deduce that for each nodeO in the partition tree, all points in
RS(O) (which are points inP) are in the enlarged disk of nodeO.

EXAMPLE 1 (PARTITION TREE). Consider the points on a
terrain surface as shown in Figure 2. There are 12 points
p1, p2, p3,, p12 in P .

Figure 3 shows three small disks, namelyD(p1, r3), D(p2, r3)
and D(p3, r3), one medium-small disk, namelyD(p2, r2), one
medium-large disk, namelyD(p2, r1), and one large disk, namely
D(p7, r0), wherer0, r1, r2 andr3 are four non-negative real num-
bers. Note thatr0 is the radius of the large disk,r1 is the radius of
the medium-large disk,r2 is the radius of the medium-small disk
andr3 is the radius of one of the small disks. We also show all
disks to be used in this example in Figure 4.

There are 21 disks in the figure, each of which centers at a point.
For example, the diskD(p7, r0) is a disk with its center equal to
p7 and its radius equal tor0 = dg(p7, p11).

Figure 5 shows a partition tree of height equal to 3 which is
built based on the 12 points shown in Figure 2. In this figure, each
black dot corresponds to a node in the tree. By definition, anytwo
nodes in the same layer have the same radii. In Layer 0, there is
only one nodeO21 (i.e., the root node) with its radiusr0 equal to
dg(p7, p11). In Layer 1, there are three nodes, namelyO18, O19

andO20, each with its radiusr1 equal to0.5r0. In Layer 2, there
are 5 nodes, namelyO13, O14, O15, O16 andO17 each with its ra-
dius r2 equal to0.25r0. In Layer 3, there are 12 nodes (i.e., leaf
nodes), namelyO1, O2, ..., O12, each with its radiusr3 equal to
0.125r0. In the figure, we list the center of each node below the
label of the node. For example, there is a labelp2 below the label
O13, which means that the center ofO13 is p2.

Consider the leaf nodeO1 with its center equal top1 and its
radius equal tor3. It is easy to see that diskD(p1, r3) contains only
one point inP (i.e., p1) as shown in Figure 3. The representative
set of this node is a set containing only the center of this node (i.e.,
p1). This holds as well for each of the other leaf nodes (e.g., node
O2 and nodeO3).

Consider the internal nodeO13 with its center equal top2 and
its radius equal tor2. The center of each child of nodeO13 (i.e.,
nodeO1, nodeO2 and nodeO3) is in diskD(p2, r2) as shown in
Figure 3. Besides, the radius of each child of nodeO13 is equal
to 0.5 · r2 (since the radius of each child is equal to0.125r0 and
r2 = 0.25r0). The representative set of this node is a set containing
the centers of all the leaf nodes in the subtree root atO13 (i.e., the
center of nodeO1 (which isp1), the center of nodeO2 (which is
p2) and the center of nodeO3 (which isp3)). This holds as well for
each of the other internal nodes.

It is easy to verify that the partition tree shown in this figure
satisfies the three properties described above.

Next, we present our top-down method for building the partition
tree.
• Step 1 (Root Node Construction):We create the root node as

follows.
– Step (a) (Initialization): We assign a variablei, denoting

the layer number, with 0.
– Step (b) (Point Selection):We randomly select a pointp in

P .
– Step (c) (Radius Computation): We perform a single-

source all-destination (SSAD) exact shortest path algo-
rithm [34, 6, 26] which takesp as an input of the source
point and executes until the search region of the algo-
rithm covers all points inP . When we terminate the

p10

p9

p8p7

p6

p5

p4

p3

p2

p1

p12

p11

Figure 2: An Example

D p ,r()2 2

p10

p9

p8

p7

p6p5

p4

p3

p2

p1

p12

p11

D p ,r()3 3

D p ,r()1 3

D p ,r()7 0

r =0.5r1 0

1r =0.5r2

2r =0.5r3

D p ,r()2 1

D p ,r()2 3

Figure 3: Some Disks Used in Our Example

p10

p9

p8

p7

p6p5

p4

p3

p2

p1

p12

p11

D p ,r()2 2

D p ,r()7 0

r =0.5r1 0

1r =0.5r2

2r =0.5r3

D p ,r()2 1

D p ,r()5 2

D p ,r()7 1

D p ,r()10 1
D p ,r()10 2

D p ,r()12 2
D p ,r()7 2

Figure 4: All Disks Used in Our Example

Layer 0:

Layer 1:

Layer 2:

Layer 3:

r r2 0=0.25

r =60

r r3 0=0.125

r1=0.5r0

O1
O12O11O10O9O8O7O6O5O4O3O2

O21

O18 O19 O20

O17
O16O15

O14O13

p7

p7
p2

p12p10p7p5p2

p12p11p10p9p8p7p6p5p4p3
p2p1

p10

Figure 5: An Example of Partition Tree

Layer 0:

Layer 1:

Layer 2:

Layer 3:

r r2 0=0.25

r =60

r3=0

r1=0.5r0

O1
O12O11O10O9O8O7O6O5O4O3O2

O21

O19 O20

O16O15
O14O13

p12p11p10p9p8p7p6p5p4p3
p2p1

p10p7p5p2

p7

p7

p10

Figure 6: An Example of Compressed Par-
tition Tree

Layer 0:

Layer 1:

Layer 2:

Layer 3:

r r2 0=0.25

r =60

r3=0

r1=0.5r0

O O10 t()O O1 s()

O21

O20

O16O13

As At

O21 O21

O20

O13 O16

O1
O10

Figure 7: An Example of Distance
Query Processing

algorithm, we obtain the maximum distanced between
p and a point inP .

– Step (d) (Node Construction): We create a root nodeO
where its center is set top and its radius is set tod.
Note that in this layer,r0 = d.

• Step 2 (Non-Root Node Construction):We perform the follow-
ing operations.

– Step (a) (Initialization): We increment variablei by 1. We
assign a variableP ′, denoting a set of remaining points
in P to be “covered” by a node in Layeri, with P .

– Step (b) (Iterative Step): We perform the following itera-
tive steps.

∗ Step(i) (Point Selection):Let C be a set containing the
centers of all nodes in Layeri − 1 and letPC be
the set of remaining points inP ′ each of which is
one of the centers of all nodes in Layeri− 1 (i.e.,
PC = P ′ ∩ C). We randomly select a pointp from
PC if PC 6= ∅, and select a pointp from P ′ based
on a point selection strategy (to be described later)
otherwise.

∗ Step (ii) (Point Covering): We find a setS of all points
in P ′ that are inD(p, r0

2i
) by performing a single-

source all-destination (SSAD) exact shortest path
algorithm which takesp as an input of the source
point and executes the algorithm until the distance
between the boundary of the search region andp
is greater thanr0

2i
. We remove all points inS from

P ′.
∗ Step (iii) (Node Creation): We create a nodeO where

its center is set top and its radius is set tor0
2i

. Then,
we find the nodeOparent in Layer (i − 1) whose
distance toO is the minimum. We set the parent
of O toOparent .

∗ Step (iv) (Additional Node Creation): We repeat the
above steps (i.e., Steps (i)-(iii)) untilP ′ is empty.

– Step (c) (Next Layer Processing):We repeat the above
steps (i.e., Step (a) and Step (b)) until the number of
nodes in Layeri is equal ton.

LEMMA 1. The partition tree generated by the above procedure
satisfies the Separation, Covering and Distance Properties.

PROOF. For the sake of space, all the proofs in the paper can be
found in Appendix B.

Some implementation details of this algorithm are given as fol-
lows.

Implementation Detail 1 (Point Selection Strategy in Step
2(b)(i)): We propose two heuristic-based point selection strategies
as follows. The first one is called therandom selection strategy.
It randomlyselects a pointp from P ′. The second one is called
thegreedy selection strategywhich is to select a point fromP ′ in
the “densest” region (or formally cell) on the surface of theterrain.
The major idea of this strategy is to select a point fromP ′ in the
densest region (because if this point is selected as the “center” of
the disk, then this disk can cover many points (which could come
from the densest region)). Specifically, this strategy requires some
additional operations included in other steps, and we describe them
as follows. (A) Between Step 2(a) and Step 2(b), we constructa
grid on thex-y plane with the cell width equal toO(r0

2i
). Then, we

insert all points fromP ′ in corresponding cells, and all point IDs
in each cell are indexed in a B+-tree. We also build a max-heap
containing all non-empty cells whose keys are the sizes of their
B+-trees. (B) In Step 2(b)(i), in the case thatPC = ∅, we select a
point p in P ′ by finding the cell with the greatest number of points
in P ′ and randomly selecting a pointp from P ′ in the cell. (C) In
Step 2(b)(ii), for each pointp′ in S, we removep′ from the B+-
tree of its corresponding cell and decrease the key of the cell in the
max-heap by 1.

Implementation Detail 2 (SSAD algorithm): Note that in Step
1(c) and Step 2(b)(ii), we need to perform the SSAD algorithm[6,

26] which is a best-first search algorithm. There are two versions of
this algorithm here, but the major principle is the same for each but
with different stopping criteria. The major principle is described
as follows. The algorithm performs a search that starts froms and
expands its search with the vertex inV which has not been pro-
cessed and has its minimum geodesic distancedmin to s. For each
vertex expansion, all points inP on each face expanded together
with the vertex are computed with their geodesic distances.Note
that we know that for each vertex expansion, all vertices inV with
their geodesic distances smaller thandmin have been processed.
The first version of this algorithm (in Step 1(c)) has an inputof a
source points only. For each vertex expansion, the first version
of the algorithm checks whether all points inP have been visited.
If yes, this algorithm terminates. The second version of this algo-
rithm (in Step 2(b)(ii)) takes as its inputs a source points and a
distance thresholdd′ (denoting the boundary of the search region
starting froms). For each vertex expansion, the second version of
the algorithm checks whetherdmin is larger thand′. If yes, this
algorithm terminates. The time complexity of each of these two
versions isO(N logN + k), whereN is the number of vertices in
V processed andk is the number of points inP processed.

Finally, we analyze the depthh of the partition tree. The follow-
ing lemma presents the depth of the partition tree.

LEMMA 2. h ≤ log(
maxp,q∈P dg(p,q)

minp,q∈P dg(p,q)
) + 1

By our assumption of Section 2 that there are no duplicate POIs,
it follows thatminp,q∈P dg(p, q) is strictly positive. We want to

emphasize that the upper bound ofh (i.e., log(
maxp,q∈P dg(p,q)

minp,q∈P dg(p,q)
)+

1) is a small value in practice. Firstly, in all of our experimental
results,h is at most 30. Secondly, even in the extreme case where
the minimum distance is one nanometer (= 10−9m) and the max-
imum distance is the length of the Earth’s equator (≈ 4 × 107m),
Lemma 2 yields an upper bound of only 56.

Consider the first component called thecompressed partition tree
which is a variation of the partition tree.

We construct the compressed partition treeTcompress based on
the original partition treeTorg as follows. Firstly, we generate
Tcompress by duplicatingTorg . Secondly, whenever there is a node
O in Tcompress containing only one child nodeOchild , if there is a
parent nodeOparent of O, then we remove the parent-and-child re-
lationship betweenO andOchild and then the parent ofOchild is set
to Oparent . Then, we deleteO. We repeat this step iteratively until
there is no node inTcompress containing only one child. Thirdly, for
each leaf node inTcompress , we set its radius to 0.

Note that each leaf node (containing no child node) is still kept
after the above operation since each node removal operationin-
volves a node containing only one child node. Note that for each
point p in P , there exists exactly one leaf node whose center isp.
Given a pointp in P , itscorresponding leaf node, denoted byOp, is
defined to be the leaf node in the compressed partition tree whose
center isp. Besides, given a nodeO in the compressed partition
tree, the layer number of the layer containingO in the compressed
partition tree is defined to be the layer number of the layer contain-
ingO in the (original) partition tree.

EXAMPLE 2 (COMPRESSEDPARTITION TREE). Consider
the partition tree (Figure 5) in Example 1. According to the above
procedure, since nodeO17 has only one child node (i.e., node
O12), we remove the parent-and-child relationship betweenO17

andO12 and then we set the parent ofO12 to nodeO20 (which is
the parent ofO17 in the original partition tree). Then, we remove
nodeO17. After this operation, we do a similar operation for node

O18 containing only one child nodeO13. After that, no node in the
resulting tree contains only one child. Finally, for each leaf node in
the resulting tree, we set its radius (i.e.,r3) to 0. The resulting tree
is the compressed partition tree as shown in Figure 6. Note that the
layer number of the layer containing nodeO20 is 1 and the layer
number of the layer containing nodeO12 is 3 (although the node
O17 in Layer 2 of the (original) partition tree (which connectsO12

andO20) is removed).

As will be shown later, the space complexity of the compressed
partition tree isO(n) (which is linear ton).

3.3 Oracle Component 2: Node Pair Set
Consider the second component ofSEcalled thenode pair set.

Before we define this, we give some definitions based on the com-
pressed partition tree which will be used in the node pair set.

Given two nodesO andO′ in the compressed partition tree,O
andO′ arewell-separated[5] if and only if dg(cO , cO′) ≥ (2

ǫ
+

2) ·max{r, r′} wherer is the radius of the enlarged disk ofO and
r′ is the radius of the enlarged disk ofO′. Given two nodesO and
O′ which are well-separated in the compressed partition tree,we
say that〈O,O′〉 is awell-separated (node) pair.

Given a node pair〈O,O′〉 and two nodesO andO′ in a tree
where (1)O is eitherO or a descendant node ofO and (2)O′ is
eitherO′ or a descendant node ofO′, we say that〈O,O′〉 contains
〈O,O′〉. Note that in our context, a node pair〈O,O′〉 has an order.
Specifically, even if〈O,O′〉 contains〈O,O′〉, it is possible that
〈O′, O〉 does not contain〈O,O′〉.

In practice, given two pointsp andq ∈ P with their correspond-
ing leaf nodesOp andOq in the compressed partition tree, we say
that〈O,O′〉 contains〈p, q〉 if 〈O,O′〉 contains〈Op, Oq〉.

Next, we give a method of generating the node pair set given a
compressed partition tree. We maintain a variableS storing a set of
node pairs, initialized as{〈Oroot , Oroot 〉} whereOroot is the root
node of the compressed partition tree. At each iteration, weextract
a pair〈Oi, Oj〉 fromS which is not well-separated. Then, we select
the node in the pair〈Oi, Oj〉 whose radius is larger. Without loss of
generality, we assume thatOi is selected and letC1, C2,, Cm

denote its children. Next, we insert〈C1, Oj〉, 〈C2, Oj〉, ..., and
〈Cm, Oj〉 into S. For eachx ∈ [1, m], 〈Cx, Oj〉 is said to be a
pairgenerated by〈Oi, Oj〉 andOi is said to besplit from 〈Oi, Oj〉.
Note that ifOi andOj have the same radius, then we select the
node with a smaller node ID in the pair〈Oi, Oj〉 for processing. We
repeat the above procedure until each pair inS is well-separated.

Let S be the set of node pairs returned by the above procedure.
S is called thenode pair setof SE.

In the above procedure, note that whenever we check whether
a node pair〈Oi, Oj〉 is well-separated, we have to compute the
distance betweenOi andOj . Later in Section 3.5 as a part of the
oracle construction, we will explain how we compute this distance
efficiently.

The following theorem shows a key property of the node pair set
generated, namely theunique node pair match property.

THEOREM 1. LetS be the node pair set ofSE. Each node pair
in S is a well-separated pair and for any two pointsp andq in P ,
there exists exactly one node pair〈O,O′〉 in S containing〈p, q〉
and the distance associated with this node pair is anǫ-approximate
distance ofdg(p, q).

Next, we present the following theorem showing that there are
O(nh

ǫ2β
) node pairs considered in the procedure of generating the

node pair set (which is linear ton) whereβ is a real number and is
in the range from 1.5 and 2 in practice.

THEOREM 2. There are onlyO(nh

ǫ2β
) node pairs considered in

the procedure of generating the node pair set and thus there are
O(nh

ǫ2β
) in the node pair set ofSE.

Finally, we adopt a standard hashing technique, namely theper-
fect hashing scheme[7], to index all node pairs in the node pair set
of SE. The hashing technique takes a linear space and requires a
linear preprocessing time in expectation in terms of the number of
the node pairs in the node pair set ofSE. Given two nodesO and
O′ in the compressed partition tree, we could check whether there
exists a node pair〈O,O′〉 in the node pair set ofSE in constant
time and if so, it could also return the associated geodesic distance
dg(O,O′) in constant time.

3.4 Query Processing
Next, we present how we use our distance oracleSE for a dis-

tance query with a source points ∈ P and a destination point
t ∈ P .

We first present one naive method, whose time complexity is
O(h2), for this distance query. Next, we present an efficient algo-
rithm whose time complexity isO(h).

Naive Method: Before we introduce the naive method, we give
some notations first. LetOroot be the root node of the compressed
partition tree. By our notation convention, we know thatOs de-
notes the corresponding leaf node of points in the compressed par-
tition tree andOt denotes the corresponding leaf node of pointt in
the compressed partition tree. LetAs be the array of sizeh + 1
whereAs[i] is equal to the node in Layeri along the path fromOs

to Oroot in the compressed partition tree if there exists a node in
Layeri and is equal to∅ otherwise for eachi ∈ [0, h]. We have an-
other notationAt which has a definition similar toAs and involves
the path starting fromOt instead ofOs. We denote the Cartesian
product between the set of all nodes inAs and the set of all nodes
in At byAs×At. It is easy to have the following observation from
Theorem 1: there exists exactly one pair〈O,O′〉 in As × At such
that 〈O,O′〉 contains〈s, t〉 and〈O,O′〉 is in the node pair set of
our SE.

Based on this observation, we have the following naive method
for a distance query. Firstly, we find a leaf nodeOs and a leaf
nodeOt. Then, we construct arrayAs (At) by traversing fromOs

(Ot) to Oroot . Secondly, for each nodeO ∈ As and each node
O′ ∈ At, we check whether node pair〈O,O′〉 is in the node pair
set of ourSE. If so, we return the distance associated with〈O,O′〉.
Otherwise, we continue to check the next node pair.

Note that by this observation, the above naive method must re-
turn one distance value (associated with one node pair) at the end.

The correctness of the naive method (i.e., theǫ-approximation)
comes naturally from Theorem 1.

It is easy to verify that the time complexity of the naive method
is O(h2) since the first step takesO(h) time and the second step
takesO(h2) time (because the second step involvesO(h2) node
pairs and each node pair requires to be checked with its existence
in the node pair set of ourSEin O(1) time using the perfect hashing
scheme).

Efficient Method: Next, we will present our efficient algorithm for
the distance query which takesO(h) time. Before we present the
algorithm, we give some concepts first.

Let Layer(O) be the layer number of the layer containing node
O.

We categorize node pairs〈O,O′〉 into one of three types. A
node pair〈O,O′〉 is said to be asame-layer node pairif O
has the same layer asO′ in the compressed partition tree (i.e.,
Layer(O) = Layer(O′)). A node pair〈O,O′〉 is said to be

a first-higher-layer node pairif O has a higher layer thanO′ in
the compressed partition tree (i.e.,Layer(O) < Layer(O′)). A
node pair〈O,O′〉 is said to be afirst-lower-layer node pairif O
has a lower layer thanO′ in the compressed partition tree (i.e.,
Layer(O) > Layer(O′)).

Consider the compressed partition tree as shown in Figure 6.
The node pair〈O14, O15〉 is a same-layer node pair. The node
pair 〈O14, O7〉 is a first-higher-layer node pair and the node pair
〈O6, O15〉 is a first-lower-layer node pair.

By definition, in a same-layer node pair〈O,O′〉, both nodeO
and nodeO′ are in the same layer. We know that in a first-higher-
layer node pair〈O,O′〉, since nodeO has a higher layer than node
O′, we know that there exists a layer higher than the layer contain-
ing nodeO′, and thus we deduce thatO′ has a parent node in the
compressed partition tree. With the following lemma, interestingly,
we know that the layer containing the parent of nodeO′ is equal to
or higher than the layer containing nodeO. We could have a similar
conclusion for a first-lower node pair.

LEMMA 3. Consider a node pair〈O,O′〉 in the node pair set
of ourSE. If 〈O,O′〉 is a first-higher-layer node pair, then the layer
containing the parent of nodeO′ is equal to or higher than the layer
containing nodeO. If 〈O,O′〉 is a first-lower-layer node pair, then
the layer containing the parent of nodeO is equal to or higher than
the layer containing nodeO′.

Consider the compressed partition tree as shown in Figure 6.
The error parameterǫ is set to 2. Note that for illustration pur-
pose, this error parameter is set to 2 but in practice, it should be
set to a smaller value (e.g., 0.1) as what we did in our experimental
studies. The node pairs〈O14, O7〉 and〈O16, O12〉 are both first-
higher-layer node pairs in the node pair set of ourSE. The parent
of O7 (O12) is O15 (O20). The layer containingO15 is the same
as that containingO14 and the layer containingO20 is higher than
that containingO16. Similar illustrations could be made to the two
first-lower-layer node pairs in the node pair set of ourSE, namely
〈O6, O15〉 and〈O13, O20〉, in a symmetric way.

Let parent(O) be the parent of nodeO in the compressed par-
tition tree.

With Lemma 3, we have the following observation.

OBSERVATION 1. Consider a node pair〈O,O′〉 in the node
pair set of ourSE. If 〈O,O′〉 is a first-higher-layer node pair, then
Layer(parent(O′)) ≤ Layer(O) < Layer(O′). If 〈O,O′〉
is a first-lower-layer node pair, thenLayer(parent(O)) ≤
Layer(O′) < Layer(O).

Consider the compressed partition tree as shown in Fig-
ure 6. The node pairs〈O14, O7〉 and 〈O16, O12〉 are both
first-higher-layer node pairs in the node pair set of ourSE.
parent(O7) (parent(O12)) is O15 (O20). It is clear that
Layer(parent(O7)) ≤ Layer(O14) < Layer(O7) and
Layer(parent(O12)) ≤ Layer(O16) < Layer(O12). Similar
illustrations could be made to the two first-lower-layer node pairs
in the node pair set of ourSE, namely〈O6, O15〉 and〈O13, O20〉,
in a symmetric way.

Based on Observation 1, we give the major idea why we could
have an efficient algorithm. Note that the naive method requires
thatO(h2) node pairs should be enumerated. However, our effi-
cient method just needs to enumerateO(h) node pairs. Specifi-
cally, our efficient method involves three steps. Roughly speaking,
the first step handles same-layer node pairs inAs ×At, the second
step handles first-higher-layer node pairs inAs ×At, and the third
step handles first-lower-layer node pairs inAs ×At.

Specifically, the first step checks whether there exists a node
O in As and a nodeO′ in At such that〈O,O′〉 is a same-layer
node pair and〈O,O′〉 is in the node pair set ofSE. If there ex-
ists such a node pair〈O,O′〉, we return the distance associated
with 〈O,O′〉. This can be done inO(h) time by linearly scan-
ning both arraysAs andAt from index 0 throughh and checking
whether〈As[i], At[i]〉 is in the node pair set ofSEwherei ∈ [0, h]
(note that〈As[i], At[i]〉 is a same-layer node pair). The second
step is to check whether there exists a nodeN in As and a node
N ′ in At such that〈O,O′〉 is a first-higher-layer node pair and
〈O,O′〉 is in the node pair set ofSE. If there exists such a node
pair 〈O,O′〉, we return the distance associated with〈O,O′〉. This
can be done inO(h) time by the following sub-steps. For each
i ∈ [1, h], if At[i] 6= ∅, then we obtain the layer numberj of
the layer containing the parent ofAt[i] (in O(1) time) and, for
eachk ∈ [j, i), check whether〈As[k], At[i]〉 is in the node pair
set of SE (in O(j − i) time) (note that it is sufficient to scan to
check〈As[j], At[i]〉, 〈As[j + 1], At[i]〉, ..., 〈As[i − 1], At[i]〉 for
one particular nodeAt[i] in At based on Observation 1). It is easy
to verify that the second step takesO(h) time since we can scan
O(h) elements inAs andO(h) elements inAt. The third step is
similar to the second step, but this step focuses on the first-lower-
layer node pairs instead of the first-higher-layer node pairs. Details
are skipped here since similar descriptions are applied. Thus, the
overall time complexity of the efficient method isO(h).

EXAMPLE 3 (QUERY PROCESSING). The error parameterǫ
is set to 2. Consider the example as shown at the left hand sidein
Figure 7, whereOs isO1 andOt isO10. It shows all edges and all
nodes along the path from the leaf nodeO1 with its centerp1 to the
root node and the path from the leaf nodeO10 with its centerp10 to
the root node. The pair〈O13, O16〉 containing〈O1, O10〉 is the pair
in the node pair set ofSE. In this example,As = [O21, ∅, O13, O1]
andAt = [O21, O20, O16, O10]. Consider the figure at the right
hand side in Figure 7. All node pairs processed in the query pro-
cessing algorithm are shown in the form of node pairs connected
by lines (which are solid lines, thin dashed lines and thick dashed
lines). Specifically, each node pair connected by a solid line is a
same-layer node pair processed. Each node pair connected bya thin
dashed line is a first-higher-layer node pair processed. Each node
pair connected by a thick dashed line is a first-lower-layer node pair
processed. Our query algorithm checks all the three types ofnode
pairs. When one of the node pairs processed is in the node pairset
of SE, we return the distance associated with this node pair.

It is worth mentioning that the total number of lines in this figure
corresponds to the greatest number of node pairs processed,which
is equal toO(h) instead ofO(h2) (denoting the total number of
lines in a complete bipartite graph betweenAs andAt). Thus, the
query step is very efficient.

It is easy to verify that the distance returned by the efficient
method isǫ-approximate based on Theorem 1.

3.5 Oracle Construction
In this section, we first present a naive method of constructing

SEand then present an efficient method of constructingSE.

Naive Method: We first present a naive method of constructingSE.
First, we build a partition treeTorg . Then, we build a compressed
partition treeTcompress based onTorg and deleteTorg . Next, we
follow the procedure described in Section 3.3 to generate all node
pairs for the node pair set. Note that for each node pair considered,
we have to compute the distance between the two nodes in the node

pair. In the naive method, for each node pair considered, we per-
form the SSAD algorithm, which takes the center of one node inthe
node pair as an input of the starting point and performs the search
until it reaches the center of the other node in the node pair.

We proceed to analyze the running time of the naive method. It
takesO(nhN log2 N) to build Torg since there areO(nh) nodes
in Torg and each node has to perform the SSAD algorithm which
takes the center of this node as an input of the starting pointand
performs the search until it reaches a certain radius inO(N log2 N)
time. It takesO(nh) time to constructTcompress , sinceTcompress

could be constructed with a postorder traversal ofTorg and there
areO(nh) nodes inTorg . For each node pair〈O,O′〉 generated,
we need to perform the SSAD algorithm which takes the center
of one node in the node pair as an input of the starting point and
performs the search until it reaches the center of the other node in
the node pair to computedg(cO, cO′). Thus, the total running time
of generating the node pair set isO(nh

ǫ2β
N log2 N). In conclusion,

the total running time of the naive method of constructingSE is

O(nhN log2 N

ǫ2β
).

Efficient Method: Since the naive method takesO(nhN log2 N

ǫ2β
)

time to construct theSEdistance oracle, which is very costly, we
propose an efficient algorithm of constructingSEnext. The major
reason why the naive method is slow is that in the naive method,
for each node pair considered in the procedure described in Sec-
tion 3.3, the naive method has to perform an expensive SSAD al-
gorithm, and thus the number of times that the SSAD algorithm
is called is equal to the number of node pairs considered. How-
ever, we will present an efficient algorithm which could reduce the
number of times that the SSAD algorithm is called from the total
number of node pairs considered to the total number of nodes in
the (original) partition tree by using a new concept called an en-
hanced node pair(which is a node pair involving two nodes in the
same layer of the (original) partition tree and satisfying acondition)
(to be introduced later). Specifically, the efficient methodhas two
major differences from the naive method. The first difference is
that the efficient method includes an additional (pre-computation)
step of computing the distance between the two nodes involved in
each possible enhanced node pair. Although there areO(hn2) pos-
sible enhanced node pairs and we have to compute the distances
of these pairs, the total number of times that the SSAD algorithm
is called in this additional step is just equal to the total number
of nodes in the (original) partition tree (which isO(hn)). The
second difference is that the efficient method finds the distance
of each node pair〈O,O′〉 considered in the procedure described
in Section 3.3 by searching one of the “pre-computed” distances
of the enhanced node pairs containing the node pair〈O,O′〉 and
assigning this distance (of the enhanced node pair found) tothe
distance of the node pair〈O,O′〉 (instead of performing the ex-
pensive SSAD algorithm). Note that the time complexities ofboth
the search operation and the assignment operation areO(h) (to be
shown later), which is much lower than the time complexity ofthe
SSAD algorithm (i.e.,O(N log2 N)). Later, we will show that
for each node pair〈O,O′〉 considered in the procedure described
in Section 3.3, there exists one enhanced node pair containing the
node pair〈O,O′〉, which is a key to the efficiency of the efficient
method.

Before we present the efficient method, we define the concept of
theenhanced node pair. Given two nodesO andO′ in the (original)
partition tree,〈O,O′〉 is said to be anenhanced node pairif O
andO′ are in the same layer of the (original) partition tree and
dg(O,O′) < l · rO wherel = 8

ǫ
+ 10. Note thatl is about 4 times

the well-separated factor (i.e.,2
ǫ
+ 2). The ratio of 4 (= 2 × 2)

is split two parts. The first part (i.e., a ratio of 2) comes from the
radius of theenlargeddisk of a nodeO (defined in the definition of
thewell-separated pair) which is two times the radius of nodeO.
The second part (i.e., another ratio of 2) comes from our design.

With the definition of theenhanced node pair, we give the fol-
lowing lemma which is used in our efficient method.

LEMMA 4. Consider a node pair〈O,O′〉 considered in the
procedure described in Section 3.3. There exists an enhanced node
pair 〈O,O

′
〉 such that (1)〈O,O

′
〉 contains〈O,O′〉, (2) cO = cO

and (3)c
O

′ = cO′ .

The major idea why we can design an efficient method compared
with the naive method is that the efficient method is designedbased
on Lemma 4 using the concept of theenhanced node pair.

We present the efficient algorithm of constructingSEas follows.
• Step 1 (Tree Construction):We build the partition treeTorg

and a compressed partition treeTcompress based onTorg .
Tcompress just constructed becomes the first component of
SE.

• Step 2 (Enhanced Edge Creation):We insert all possible
enhanced edgesinto Torg . Specifically, for any two nodesO
andO′ in thesamelayer of the (original) partition treeTorg ,
if 〈O,O′〉 is an enhanced node pair, then we add an edge
connecting them. We call an edge added in this step anen-
hanced edge. We associate a distance to each enhanced edge
added. Specifically, for each enhanced edge connectingO
andO′, we associate the distance between these two nodes
(i.e., dg(cO , cO′)) with this edge. To construct all the en-
hanced edgestogether, for each nodeO in the partition tree,
we perform the SSAD algorithm which takescO as an in-
put of the source point and performs the search until the disk
D(cO , l · rO) is totally expanded.

• Step 3 (Perfect Hash Construction): We insert all en-
hanced edges into the perfect hash [7] (with an oracle build-
ing time and a space cost which are linear to the total number
of edges in expectation).

• Step 4 (Node Pair Set Generation):We generate the node
pair set, the second component ofSE, usingTorg added with
enhanced edges. Specifically, we follow the procedure de-
scribed in Section 3.3 to generate all node pairs for the node
pair set. However, we present a detailed implementation of
how to computedg(cO, cO′) for each node pair〈O,O′〉 gen-
erated in the procedure. For each node pair〈O,O′〉 gener-
ated, we find an enhanced edge connecting a nodeO and a
nodeO

′
in Torg such that (1)〈O,O

′
〉 is an enhanced node

pair, (2) 〈O,O
′
〉 contains〈O,O′〉, (3) cO = cO and (4)

c
O

′ = cO′ . (Note that by Lemma 4, there exists such an
enhanced edge.) This step of finding an enhanced edge can
be done inO(h) time by

– (1) first obtainingcO fromO andcO′ fromO′ (in O(1)
time),

– (2) then accessing the corresponding leaf nodeO of cO
and the corresponding leaf nodeO′ of cO′ (in O(1)
time),

– (3) traversing both the pathP from O to the root node
and the pathP ′ fromO′ to the root node together start-
ing from Layerh to Layer 0 to check whether the node
O being traversed alongP and the nodeO

′
being tra-

versed alongP ′ (in the same layer) have their node pair
〈O,O

′
〉 found in the perfect hash (inO(h) time), and

– (4) returning the enhanced node edge connectingO and
O

′
(if these two nodes have their node pair〈O,O

′
〉

found in the perfect hash) (inO(1) time).
Then, the distance associated with this enhanced edge corre-
sponds to the distance we want (i.e.,dg(cO, cO′)).

3.6 Theoretical Analysis
Before analyzingSE, we introduce a well-known concept called

the largest capacity dimensionoriginally defined on a metric
space [21, 13]. For the sake of space, the definition and the dis-
cussion of thelargest capacity dimensioncould be found in the
appendix. In the appendix, we show that in an extreme case where
the terrain surface is a 2D plane, thelargest capacity dimensionβ
is at most 1.3. In a general case,β is a little bit larger than 1.3
(since the terrain surface could be regarded as a 2D surface with
some fluctuations in terms of height).

Our experimental results show that thelargest capacity dimen-
sionβ of the terrain surface that we considered is between 1.3 and
1.5.

Then, we present the oracle building time, oracle size, query time
and distance error bound of ourSEin the following theorem.

THEOREM 3. The oracle building time, oracle size, query time

and distance error bound ofSEareO(N log2 N

ǫ2β
+nh log n+ nh

ǫ2β
),

O(nh

ǫ2β
), O(h) andǫ, respectively.

4. RELATED WORK AND BASELINES
In this section, we present the related work and baseline methods

in Section 4.1 and Section 4.2, respectively.

4.1 Related Work
The existing studies of finding theexactgeodesic distance be-

tween two vertices are [26, 6] and [34]. Their time complexities
areO(N2 logN), O(N2), O(N log2 N) andO(N2 logN), re-
spectively, which are impractical even on moderate terraindata.

Motivated by the intrinsic expensive cost of computing exact
geodesic distances, many existing studies focus on computing ap-
proximategeodesic distances [24, 20, 19]. In [24], the authors stud-
ied the problem of finding an approximate geodesic shortest path
which satisfies aslope constraint. In [20], the authors proposed an
algorithm for finding a geodesic path between two points satisfy-
ing a condition on the terrain surface and computing the lower and
upper bounds of the geodesic shortest distance based on the length
of the path found, but the gap between the bounds depends on the
structure of the terrain surface, and thus it could be very large im-
plying that there exists no guarantee on the qualities of thebounds.
In [19], the authors proposed aSteiner point-basedalgorithm in-
troducing additional points calledSteiner pointson the surface of
the terrace for finding anǫ-approximate geodesic shortest path be-
tween two points, whereǫ is a user-specified parameter. The al-
gorithm computes tighter lower and upper bounds of the geodesic
distance than those of [20], which do not depend on the underlying
terrain. According to the experimental results in [19], thealgorithm
ran more than 300 seconds even for a setting with a very loose error
parameterǫ = 0.25. All of these algorithms compute the approxi-
mate geodesic distanceson-the-fly, which is not efficient enough in
(real-time) applications involving many distance queries.

In order to answer the geodesic shortest path/distance queries
more efficiently, some existing studies aim at designing oracles [18,
2, 3, 12]. [18] proposed a data structure for the Single-Source All-
Destination (SSAD) approximate geodesic shortest path queries,
where the source point of each shortest path query is alreadygiven
before the data structure is built. This data structure could answer

Algo. Oracle Building Time Oracle Size Query Time

SP-Oracle [12] O(N

sin(θ)·ǫ2 log3(N
ǫ
) log2 1

ǫ
) O(N

sin(θ)·ǫ1.5 · log2(N
ǫ
) log2 1

ǫ
) O(1

sin(θ)·ǫ log 1
ǫ
+ log log(N + n))

SE(Naive) O(nhN log2 N

ǫ2β
) O(nh

ǫ2β
) O(h2)

K-Algo [19] – – O(
l3maxN

(lmin·ǫ·
√

1−cos θ)3
+ lmax·N

ǫ·lmin·
√

1−cos θ
log(lmax·N

ǫ·lmin·
√

1−cos θ
))

SE O(N log2 N

ǫ2β
+ nh logn + nh

ǫ2β
) O(nh

ǫ2β
) O(h)

Table 1: Comparison of Different Methods with Error Bound ǫ (whereβ ∈ [1.3, 1.5] and h < 30 in practice)

Dataset No. of
Ver-
tices

Resolution Region
Covered

No. of
POIs

BH 1.4M 10 meters 14km ×

10km
4k

EP 1.5M 10 meters 10.7km×

14km
4k

SF 170k 30 meters 14km ×

11.1km
51k

Table 2: Dataset Statistics

SE(Greedy)
SE(Random)

SE-Naive
SP-Oracle

K-Algo
Theoretical bound (ε)

101

102

103

104

0.05 0.1 0.15 0.2 0.25

(a)

B
ui

ld
in

g
T

im
e

(s
)

ε

10-2
10-1
100
101
102

0.05 0.1 0.15 0.2 0.25

(b)

S
iz

e
(M

B
)

ε

10-410-310-210-1100101102103104105

0.05 0.1 0.15 0.2 0.25

(c)

Q
ue

ry
 T

im
e

(m
s)

ε

0.01

0.05

0.1

0.15

0.2

0.25

0.05 0.1 0.15 0.2 0.25

(d)

E
rr

or

ε

Figure 8: Effect of ǫ on SF dataset (Smaller Version) (P2P Distance Queries)

any shortest path query from this fixed source point to any desti-
nation. However, this data structure is limited to a fixed source
point. Even though different data structures from all possible
source points could be built, the total space occupied by allthese
data structures is prohibitively large, which is not feasible in prac-
tice. [2, 3] designed an oracle for approximate geodesic shortest
path queries and [12] designed an oracle for approximate geodesic
shortest distance queries. These two oracles share similarideas,
and the one in [12] is better in terms of oracle size and query time
mainly because geodesic distance queries are intrinsically easier
than geodesic path queries. Specifically, the oracle in [12]has its
space complexity ofO(N

sin(θ)·ǫ1.5 · log2(N
ǫ
) log2 1

ǫ
) and its query

time complexity ofO(1
sin(θ)·ǫ1 log 1

ǫ
+ log logN), whereθ is the

minimum inner angle of any face on the terrain surface.
As will be introduced later, we use this oracle as a baseline or-

acle for comparison, and our experimental results show thatthis
oracle has a scalability issue due to its large oracle size, and its cor-
responding query time is significantly larger than that of our oracle.

Some other related studies include those proximity queriesre-
lying on the geodesic shortest distance queries [9, 10, 29, 35,
36]. Specifically, [9, 10, 29] studiedk-NN queries, [35] studied
dynamickNN queries and [36] studied reverse nearest neighbor
queries.

Besides, some studies [5, 14, 27] focused on studying well-
separated pairs. [5] studied it in the Euclidean space, [14]studied
its dynamic case (e.g., insertion and deletion) and [27] studied it on
road networks. However, they are different from ours because we
studied it in the terrain context and different contexts give different
challenges (e.g., in the terrain context, how to build a distance or-
acle involving many expensive geodesic distance computations is
very challenging).

4.2 Baseline Methods
In this section, we first present two baseline oracles (Sec-

tion 4.2.1), then give one baseline on-the-fly algorithm (Sec-
tion 4.2.2) and finally compare them withSE(Section 4.2.3).

4.2.1 Baseline Oracles
In this part, we first introduce two baseline oracles, namelythe

Steiner point-based oracle(in short,SP-Oracle) and the naive im-
plementation ofSE(in short,SE(Naive)).

Steiner Point-Based Oracle: The first baseline oracle is called
the Steiner point-based oracle(in short, SP-Oracle) proposed in
[12] which were originally proposed for vertex-to-vertex distance
queries and could also be adapted for both POI-to-POI (P2P)

distance queries and arbitrary point-to-arbitrary point (A2A) dis-
tance queries. Next, we describe how this adapted distance oracle
[12] could handle A2A distance queries only (since A2A distance
queries could be regarded as a general setting compared withP2P
distance queries). Its major idea is as follows. It first introduces
O(1

sin(θ)·√ǫ
log 1

ǫ
) additional points calledSteiner pointson each

face of the terrain surface andO(N
sin(θ)·ǫ log

1
ǫ
) Steiner edges con-

necting Steiner points on the same face, whereθ is the minimum
inner angle of any face on the terrain surface. It then constructs
a graph, denoted byGǫ, where the set of vertices in the graph is
the set containing all the Steiner points and all existing vertices
and the set of edges in the graph is the set of all existing edges
and all the additional edges added each with its weight equalto
its correspondingEuclidean distance. SP-Oracleindexes the exact
distances between any two Steiner points onGǫ. Consider a A2A
distance query. Given two arbitrary points, namelys andt, on the
surface of the terrain,SP-Oraclefinds (1) a setXs of Steiner points
on the face containings and its adjacent faces, and (2) another set
Xt of Steiner points on the face containingt and its adjacent faces.
Then, for each pointps in Xs and each pointpt in Xt, it computes
a distance equal to the sum of the Euclidean distance betweens and
ps, the exact distance betweenps andpt onGǫ and the Euclidean
distance betweenpt andt. Finally, it returns the smallest distance
computed as the estimated geodesic distance betweens andt. We
present the oracle building time, oracle size, query time, and dis-
tance error bound ofSP-Oraclein Table 1.

SE(Naive): The second baseline is called the naive method ofSE
(in short,SE(Naive)) which is exactly ourSEwith the naive method
for the both the oracle construction and the query processing. We
present the oracle building time, oracle size, query time, and dis-
tance error bound ofSE(Naive)in Table 1.

4.2.2 Baseline On-the-fly Algorithm
The Kaul’s algorithm (in short, K-Algo) recently proposed

in [19] could be used as the baseline algorithm which computes
the approximate geodesic distanceon-the-fly(since it is the best-
known algorithm in the literature). AlthoughK-Algo is a non-
distance oracle algorithm, it is interesting to compare it with our

SE. The time complexity ofK-Algo is O(
l3maxN

(lmin·ǫ·√1−cos θ)3
+

lmax·N
ǫ·lmin·√1−cos θ

log(lmax·N
ǫ·lmin·√1−cos θ

))1 wherelmin (resp.,lmax) is
the length of the shortest (resp., longest) edge andθ is the minimum

1By Section 4.2 of [19], its running time isO((N +N ′)(log(N +
N ′) + (lmax·K

lmin

√
1−cos θ

)2) whereN ′ = O(lmax·K
lmin

√
1−cos θ

N) andK

inner angle of any face.

4.2.3 Comparison
We compare the oracle proposed in this paper, i.e.,SE, and the

three baselines, i.e.,SP-Oracle, SE(Naive)andK-Algo, in terms of
error bound, oracle building time, oracle size and query time, and
the results are shown in Table 1. We highlight some of the compar-
ison results as follows. Consider the error bound. OurSEand all
baseline methods, namelySP-Oracle, SE(Naive)andK-Algo, have
the same error bound equal toǫ. Consider the oracle building time.
As described before, we know thatSEhas a lower oracle building
(or oracle construction) time complexity thanSE(Naive). Besides,
in our experimental results, the empirical oracle buildingtime of
SEis smaller than that ofSP-Oracle. Consider the oracle size. The
oracle size ofSE is the same as that ofSE(Naive). Besides, in our
experimental results, the empirical oracle size ofSEis smaller than
that ofSP-Oracle. Consider the query time. Sinceh is very small
(at most 30 in our experimental results),SE has the lowest query
time complexity compared withSE(Naive)andSP-Oracle. K-algo
has the largest query time which is significantly larger thanothers.

5. EMPIRICAL STUDIES

5.1 Experimental Setup
We conducted our experiments on a Linux machine with

2.67 GHz CPU and 48GB memory. All algorithms were imple-
mented in C++.
Datasets. Following some existing studies on terrain data [29,
9, 24], we used three real terrain datasets, namely BearHead
(in short, BH), EaglePeak (in short, EP) and San Francisco
South (in short, SF) and these datasets can be downloaded from
http://data.geocomm.com/. For each of these terrain datasets, we
extracted a set of POIs from the corresponding region in Open-
StreetMap. Table 2 shows the dataset statistics. Besides, asmaller
version of SF dataset which corresponds to a small sub-region of
the SF dataset and contains 1k vertices and 60 POIs was also used
since one of the baselines,SE-Naive, is not feasible on any of the
full datasets due to its expensive cost of building an oracle.
Algorithms. Our new oracleSE and three baselines,SP-
Oracle [12], K-Algo [19] andSE-Naive, are studied in the exper-
iments. ForSE, we study two variations: one isSE(Greedy)which
is based on the greedy point selection strategy and the otheris
SE(Random)which is based on the random point selection strat-
egy.
Query Generation. Each P2P (V2V) query was generated by ran-
domly sampling two POIs (vertices) on the surface of a terrain,
one as a source and the other as a destination. Each A2A query
was generated by randomly selecting two arbitrary points, one as
a source and the other as a destination. To randomly select anar-
bitrary point, we first generated a 2D coordinate(x, y) which is
a point randomly selected in the 2D rectangular region covered by
the terrain and then computed the point on the terrain surface whose
projection on thex-y plane is(x, y).

Table 3 shows the statistics of the query distances of all queries
performed on each dataset as shown in Table 2.

Factors & Measurements.Three factors, namelyǫ (the error pa-
rameter),n (the number of POIs), andN (the number of vertices
in a terrain), were studied. Four measurements, namely (1)oracle

is a parameter which is a positive number at least 1. By Theorem 1
of [19], we obtain that its error boundǫ is equal to 1

K−1
. Thus, we

obtain this time complexity.

Dataset max min avg. std.

BH 16.57 0.82 7.8 3.33
EP 14.15 0.33 6.25 3.15
SF 16.92 0.48 7.09 3.6

Table 3: Statistics of Query Distances (km)

SE SP-Oracle K-Algo

105

106

107

60 90 120 150 180

(a)

Bu
ild

in
g

Ti
m

e
(s

)

n (k)

101
102
103
104
105
106

60 90 120 150 180

(c)

Q
ue

ry
 T

im
e

(m
s)

n (k)

102

103

104

105

60 90 120 150 180

(b)

Si
ze

 (M
B)

n (k)

Figure 11: Effect of n on SF dataset (V2V Distance Queries)

building time(which is the time for constructing the distance ora-
cle), (2)oracle size(which is the space consumption of the distance
oracle), (3)query time(which is the time for answering a distance
query based on the oracle) and (4)error (which is the error of the
distance returned based on the oracle), were used for evaluating the
oracles. For the query time, 100 queries were answered and the
average running time was returned.

5.2 Experimental Results
In this section, we present the results of P2P distance queries in

Section 5.2.1, other experiments (e.g., V2V distance queries and
A2A distance queries) in Section 5.2.2, and a summary of the re-
sults in Section 5.2.3.

5.2.1 P2P Distance Queries
Effect of ǫ. We tested 5 different values ofǫ from
{0.05, 0.1, 0.15, 0.2, 0.25}. Figure 8(a)-(d) show the results on the
smaller version of the SF dataset. According to the results,(1) the
building times ofSE(Greedy)andSE(Random)are almost the same
and are both smaller than those ofSP-OracleandSE-Naive, e.g.,
when ǫ = 0.05, SE(Greedy)and SE(Random)have their build-
ing times 1 order (resp., at least 2 orders) smaller than thatof SP-
Oracle(resp.,SE-Naive), (2) the sizes ofSE(Greedy), SE(Random)
andSE-Navieare 2-3 orders of magnitude smaller than that ofSP-
Oracle, (3) the query time ofSE(Greedy)is the smallest and about
half of that ofSE(Random), and the query times of bothSE(Greedy)
andSE(Random)are orders of magnitude smaller than those of oth-
ers, and (4) the errors of all oracles are very small and much smaller
than the theoretical bound (which isǫ).

Based on the results shown above, we adopt the following for
the simplicity of presentation: (1) the results of error forthe rest of
experiments are omitted since the errors of all oracles are similar
and very small (smaller thanǫ/10) compared with the error bound,
(2) the results ofSE-Naiveon any full datasets are not shown sim-
ply because it cannot be built within a reasonable amount of time,
e.g., within a month, and (3) the results ofSE(Greedy)are omitted
for the rest of experiments sinceSE(Random)andSE(Greedy)have
similar performance and we omitSE(Greedy)for the clarity and by
SE, it meansSE(Random)for the remaining presentation.

The results on the other two datasets, namely BH nad EP, are
shown in Figure 13 and Figure 14, respectively, where the results
of SP-Oraclefor all settings ofǫ are not shown since the size ofSP-
Oracleexceeds our memory budget (i.e., 48GB). Since the results
on the BH and EP datasets are similar to those on the SF datasets,
for the sake of space, they could be found in [33].
Effect of n. We tested 5 different values ofn from
{60k, 90k, 120k, 150k, 180k} and used the SF dataset for this ex-

SE SP-Oracle K-Algo

105

106

107

60 90 120 150 180

(a)

Bu
ild

ing
 T

im
e

(s
)

n (k)

100
101
102
103
104
105
106

60 90 120 150 180

(c)

Qu
er

y T
im

e
(m

s)

n (k)

102

103

104

105

60 90 120 150 180

(b)

Si
ze

 (M
B)

n (k)

Figure 9: Effect of n on SF dataset (P2P Distance Queries)

SE K-Algo

105

106

107

0.5 1 1.5 2 2.5

(a)

Bu
ild

ing
 T

im
e

(s
)

N (M)

103

104

105

106

107

0.5 1 1.5 2 2.5

(c)

Qu
er

y T
im

e
(m

s)

N (M)

100

101

102

103

0.5 1 1.5 2 2.5

(b)

Si
ze

 (M
B)

N (M)

Figure 10: Effect ofN on BH dataset (P2P Distance Queries)

periment. As mentioned in Section 5.1, we have51k POIs in the
SF South dataset (170k vertices), and in order to obtain a setof
the targeted number of POIs, we do as follows. Letn denote the
targeted number of POIs we want to generate. LetP be the set of
POIs that we have andn′ be the number of POIs inP . We generate
(n − n′) 2-dimensional points(x, y) based on a Normal distribu-

tion N(µ, σ2), whereµ = (x =
∑

p′∈P xp′
n′ , y =

∑
p′∈P yp′

n′) and
σ2 = (1

n

∑
p′∈P

(xp′ − x)2, 1
n

∑
p′∈P

(yp′ − y)2). If a generated
point (x, y) is outside the range of the terrain, we simply discard
it and re-do the process until a point within the range is generated.
At the end, we project each generated point(x, y) to the surface of
the terrain and take the projected point as a newly generatedPOI.
The results are shown in Figure 9. According the these results, our
oracleSEoutperformsSP-Oraclein terms of oracle building time,
oracle size and query time and significantly outperformsK-Algo in
terms of query time.
Effect of N . We tested 5 values of N from
{0.5M, 1M, 1.5M, 2M, 2.5M} on synthetic datasets. Each
synthetic dataset withN vertices is a terrain surface from an
enlarged BH dataset (4.2M vertices) simplified by a surface
simplification algorithm [24]. Note that each simplified terrain
surface covers the same region as the original BH dataset with a
different simplification ratio and still has 4k POIs. The enlarged
BH dataset was generated from the BH dataset as follows. On each
face of BH, we added a new vertex on its geometric center and add
a new edge between the new vertex and each of the three vertices
on the face. The results are shown in Figure 10, where the results
of SP-Oracleare not shown since the size ofSP-Oracleexceeds
our memory budget (i.e., 48GB).

5.2.2 Other Experiments
V2V Distance Queries:In V2V queries, the original POIs are dis-
carded, and we treat all vertices as POIs. We variedn and ǫ for
the experiments. Consider the experiment studying the effect of n.
Note thatN = n in this experiment. We tested 5 values ofn (i.e.,
N) from {60k, 90k, 120k, 150k, 180k} on synthetic datasets, and
each synthetic dataset withN vertices corresponds to a sub-region
of a SF dataset with a higher resolution (10m×10m resolution, 1M
vertices). The results are shown in Figure 11, and accordingto the
results,SE has its building time and size both at least 1 order of
magnitude smaller thanSP-Oracleand its query time 2-3 (resp.,
5-6) orders of magnitude smaller than that ofSP-Oracle(resp.,K-
Algo).

We also conducted the experiment studying the effect ofǫ with
values in{0.05, 0.1, 0.15, 0.2, 0.25} on the smaller version of the
SF dataset. The results are also similar. In particular, thequery
time of SE is 5-6 orders (resp., 6-8 orders) of magnitude smaller
than that ofSP-Oracle(resp.,K-Algo).
Arbitrary Point to Arbitrary Point (A2A) Queries. We tested
the A2A distance queries where the query point is not a POI butan
arbitrary point on the terrain surface. We used the low resolution
BH (resolution: 30 meter, 150k vertices) dataset by varyingǫ from
{0.05, 0.1, 0.15, 0.2, 0.25}. Figure 12(a), (b), and (c) shows the

SE SP-Oracle K-Algo

105

106

107

0.05 0.1 0.15 0.2 0.25

(a)

B
ui

ld
in

g
T

im
e

(s
)

ε

103

104

105

0.05 0.1 0.15 0.2 0.25

(b)

S
iz

e
(M

B
)

ε

100
101
102
103
104
105
106
107

0.05 0.1 0.15 0.2 0.25

(c)

P
2P

 Q
ue

ry
 T

im
e

(m
s)

ε

100
101
102
103
104
105
106
107

0.05 0.1 0.15 0.2 0.25

(d)

A
2A

 Q
ue

ry
 T

im
e

(m
s)

ε

Figure 12: P2P Queries In The Casen > N and A2A Queries

building time, oracle size and query time, respectively. According
to the results,SEoutperformsSP-Oracleby several times in terms
of building time and size. The query time ofSE is 2-3 (resp., 5-6)
orders of magnitude smaller than that ofSP-Oracle(resp.,K-Algo).
P2P Queries In The Casen > N . We tested P2P queries of the
casen > N on the low resolution BH (resolution: 30 meter, 150k
vertices) dataset by varyingǫ from {0.05, 0.1, 0.15, 0.2, 0.25}. We
generated 1M POIs by the same method as mentioned in Sec-
tion 5.2.1. Figure 12(a)(b)(d) shows the building time, oracle size
and query time, respectively. The result is similar to that of A2A
query. Note that the building time and space of P2P Queries inthe
casen > N is the same as those of A2A queries since each tested
oracle is the same in the two queries.

5.2.3 Experimental Result Summary
Our SEconsistently outperforms the state-of-the-art oracle, i.e.,

SP-Oracle, in terms of all measurements (i.e., building time, oracle
size, and query time) and for any types of distance queries (i.e., P2P
queries, V2V queries and A2A queries).

6. CONCLUSION
In this paper, we studied an important spatial query, the shortest

distance query, which is fundamental to many other spatial queries
and many data mining applications. We proposed a distance or-
acle calledSEwhich have three good features: (1) low construc-
tion time, (2) small size and (3) low query time (compared with
the best-known oracle [12]). Our experimental studies showthat
SE consistently outperforms than the best-known algorithm,SP-
Oracle, in terms of all measurements for P2P queries, V2V queries
and also A2A queries. There are several interesting research direc-
tions. One of them is to study how to efficiently update the distance
oracle when there is an update on some POIs.

Acknowledgements: We are grateful to the anonymous review-
ers for their constructive comments on this paper. The research
of Victor Junqiu Wei and Raymond Chi-Wing Wong is supported
by HKRGC GRF 16219816. The research of David M. Mount is
supported by NSF CCF-1618866.

7. REFERENCES
[1] A. Al-Badarneh, H. Najadat, and A. Alraziqi. A classifierto detect

tumor disease in mri brain images. InASONAM, 2012.
[2] L. Aleksandrov, H. N. Djidjev, H. Guo, A. Maheshwari,

D. Nussbaum, and J.-R. Sack. Algorithms for approximate shortest
path queries on weighted polyhedral surfaces. InDiscrete &
Computational Geometry, 2010.

[3] L. Aleksandrov, A. Maheshwari, and J.-R. Sack. Determining
approximate shortest paths on weighted polyhedral surfaces.JACM,
2005.

[4] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest
neighbor. InICML, 2006.

[5] P. B. Callahan and S. R. Kosaraju. A decomposition of
multidimensional point sets with applications to k-nearest-neighbors
and n-body potential fields.JACM, 1995.

[6] J. Chen and Y. Han. Shortest paths on a polyhedron. InSOCG, 1990.
[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms. MIT Press and McGraw-Hill, 3rd
edition, 2009.

[8] K. Deng, H. T. Shen, K. Xu, and X. Lin. Surface k-nn query
processing. InICDE, 2006.

[9] K. Deng and X. Zhou. Expansion-based algorithms for finding single
pair shortest path on surface. InWWGIS. 2005.

[10] K. Deng, X. Zhou, H. T. Shen, Q. Liu, K. Xu, and X. Lin. A
multi-resolution surface distance model for k-nn query processing.
VLDBJ, 2008.

[11] B. G. Dickson and P. Beier. Quantifying the influence of topographic
position on cougar (puma concolor) movement in southern california,
usa.Journal of Zoology, 2007.

[12] H. N. Djidjev and C. Sommer. Approximate distance queries for
weighted polyhedral surfaces. InESA. 2011.

[13] M. Fan, H. Qiao, and B. Zhang. Intrinsic dimension estimation of
manifolds by incising balls.Pattern Recognition, 2009.

[14] J. Fischer and S. Har-Peled. Dynamic well-separated pair
decomposition made easy. InCCCG, 2005.

[15] F. Fodor. The densest packing of 12 congruent circles ina circle.
Contributions to Algebra and Geometry, 2000.

[16] J. Golay and M. Kanevski. A new estimator of intrinsic dimension
based on the multipoint morisita index.Pattern Recognition, 2015.

[17] S. A. Huettel, A. W. Song, and G. McCarthy. Functional magnetic
resonance imaging. InSinauer Associates, 2004.

[18] T. Kanai and H. Suzuki. Approximate shortest path on a polyhedral
surface based on selective refinement of the discrete graph and its
applications. InGMPTA, 2000.

[19] M. Kaul, R. C.-W. Wong, and C. S. Jensen. New lower and upper
bounds for shortest distance queries on terrains.VLDB, 2015.

[20] M. Kaul, R. C.-W. Wong, B. Yang, and C. S. Jensen. Findingshortest
paths on terrains by killing two birds with one stone.VLDB, 2013.

[21] B. Kégl. Intrinsic dimension estimation using packingnumbers. In
NIPS, 2002.

[22] M. Kortgen, G. J. Park, M. Novotni, and R. Klei. 3d shape matching
with 3d shape contexts. InCESCG, 2003.

[23] J.-F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert. Natural
terrain classification using three-dimensional ladar datafor ground
robot mobility.Journal of field robotics, 2006.

[24] L. Liu and R. C.-W. Wong. Finding shortest path on land surface. In
SIGMOD, 2011.

[25] A. Mårell, J. P. Ball, and A. Hofgaard. Foraging and movement paths
of female reindeer: insights from fractal analysis, correlated random
walks, and lévy flights.Canadian Journal of Zoology, 2002.

[26] J. S. Mitchell, D. M. Mount, and C. H. Papadimitriou. Thediscrete
geodesic problem.SIAM Journal on Computing, 1987.

[27] J. Sankaranarayanan and H. Samet. Distance oracles forspatial
networks. InICDE, 2009.

[28] L. T. Sarjakoski, P. Kettunen, H.-M. Flink, M. Laakso,
M. Rönneberg, and T. Sarjakoski. Analysis of verbal route
descriptions and landmarks for hiking.Personal and Ubiquitous
Computing, 2012.

[29] C. Shahabi, L.-A. Tang, and S. Xing. Indexing land surface for
efficient knn query.VLDB, 2008.

[30] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint

appearance, shape and context modeling for multi-class object
recognition and segmentation. InECCV, 2006.

[31] F. Tauheed, L. Biveinis, T. Heinis, F. Schurmann, H. Markram, and
A. Ailamaki. Accelerating range queries for brain simulations. In
ICDE, 2012.

[32] N. Vandapel, R. R. Donamukkala, and M. Hebert. Unmannedground
vehicle navigation using aerial ladar data.The International Journal
of Robotics Research, 2006.

[33] V. J. Wei, R. C.-W. Wong, C. Long, and D. M. Mount. Distance
oracle on terrain surface (technical report). In
http://www.cse.ust.hk/~raywong/paper/distanceOracle-technical.pdf.

[34] S.-Q. Xin and G.-J. Wang. Improving chen and han’s algorithm on
the discrete geodesic problem.ACM Trans. Graph., 2009.

[35] S. Xing, C. Shahabi, and B. Pan. Continuous monitoring of nearest
neighbors on land surface. InVLDB, 2009.

[36] D. Yan, Z. Zhao, and W. Ng. Monochromatic and bichromatic
reverse nearest neighbor queries on land surfaces. InCIKM, 2012.

APPENDIX

A. LARGEST CAPACITY DIMENSION
Consider a metric spaceX with a distance metricd(·, ·). Given a

positive real numberr, a setY ⊆ X is said to ber-separatedif for
any two distinct pointsx, y ∈ Y , d(x, y) ≥ r. Given a positive real
numberr and a setS ⊆ X, ther-packing numberof S, denoted
by M(r, S), is defined to be the maximum cardinality of anr-
separated subset ofS. Given a metric spaceX and a distance mea-
sured, a setS ⊆ X and two positive real numbersr1 andr2, the
scale-dependent capacity dimensionof S w.r.t. r1 andr2, denoted
by D(S, r1, r2), is defined to be− logM(r1,S)−logM(r2,S)

log r1−log r2
[21].

This dimension is used to measure the ‘intrinsic dimension’ of a
metric space. Many high-dimensional data points are believed to
be distributed in a manifold with a low ‘intrinsic dimension’. In-
tuitively, the ‘intrinsic dimension’ is the number of independent
variables needed to represent the whole dataset. A good estimate
of the ‘intrinsic dimension’ could be used to set the input parame-
ters of the dimension reduction algorithms (e.g., Principle Compo-
nent Analysis). There are many different specific formulations of
the ‘intrinsic dimension’ capturing certain properties [21, 13, 16,
4]. Thescale-dependent capacity dimensioncaptures the geomet-
ric property of the data and provides a multi-resolution dimension-
ality which depends on the radiusr. It measures the growth rate of
M(r, S) w.r.t. r of a subsetS of X. In our context, the data space
X is the setP of all then POIs and the distance metricd(·, ·) is
the geodesic distancedg(·, ·). Then, we give the definition of a
‘ball’ on a terrain surface. Given a pointp ∈ P and a non-negative
real numberr, a ball centered atp with radius equal tor, denoted
by B(p, r), is defined to be a set of all POIs in the diskD(p, r).
Then, we give the definition of thecapacity dimensionof a ball
B(p, r) on the terrain surface which only measures the growth rate
of M(r,B(p, r)) whenr reduces from2r to r

2
.

DEFINITION 1. Given a ball B(p, r) on a terrain surface,
wherep is a point inP and r is a positive real number, the ca-
pacity dimension ofB(p, r) is defined to beD(B(p, r), 2r, r

2
) =

−
logM(2r,B(p,r))−logM(r

2
,B(p,r))

log 2r−log r
2

= 0.5 log
M(r

2
,B(p,r))

M(2r,B(p,r))
.

Consider a set of points whose pairwise geodesic distances are
at least2r. Since the diskD(p, r) could overlap with at most 2 of
them, we obtain thatM(2r,B(p, r)) = 2. Thus, for a given ball

B(p, r), the capacity dimensionis equal to0.5 log
M(r

2
,B(p,r)

2
).

Thus, we obtain that given a diskD(p, r), 2 · 22D(B(p,r),2r, r
2
) is

the maximum number of POIs whose pairwise geodesic distances
are at leastr

2
such that the diskD(p, r) contains them.

Next, we define thelargest capacity dimensionof a setP of
POIs on a terrain surface to bemaxp∈P,r∈(0,∞)D(B(p, r), 2r, r

2
),

denoted byβ. By the definition of thelargest capacity dimension,
any diskD(p, r), wherep is a point inP andr is a positive real
number, could contain at most2 · 22β (i.e. O(22β)) POIs whose
pairwise geodesic distance is at leastr

2
.

The definition oflargest capacity dimensionhas an equivalent
presentation as follows. Given a setP of POIs on a terrain surface,
its largest capacity dimensionβ is the largest positive real number
such that for any pointp in P and any non-negative real numberr,
the diskD(p, r) overlaps with at most2 · 22β disjoint disks each
with radius at leastr

4
. [15] proved that in the 2D Euclidean space,

a disk with radiusr overlaps with at most 12 disjoint disks with
radii equal to r

4.029
. Thus, in the 2D Euclidean space, a disk with

radiusr overlaps with at most 12 disjoint disks with radii equal
to r

4
. Based on this, we obtain that in an extreme case where the

terrain surface is a 2D plane, thelargest capacity dimensionβ is
at most 1.3. In general cases, intuitively,β is a little bit larger than
1.3, since the terrain surface could be regarded as a 2D surface with
some fluctuations in terms of height.

B. PROOF

LEMMA 5. Given disksD1(c1, r1) and D2(c2, r2) where (1)
c1 and c2 are two points inP and (2) r1 and r2 are two non-
negative real numbers, for any pointp1 in D1 and any pointp2
in D2, dg(c1, c2) is an ǫ-approximate distance ofdg(p1, p2) if
dg(c1, c2) ≥ (2

ǫ
+ 2) ·max{r1, r2}.

PROOF. By Triangle Inequality, we obtain thatdg(c1, c2) −
dg(p1, c1)−dg(p2, c2) ≤ dg(p1, p2) ≤ dg(c1, c2)+dg(p1, c1)+
dg(p2, c2). Thus, we obtain thatdg(p1, p2) − r1 − r2 ≤
dg(c1, c2) ≤ dg(p1, p2) + r1 + r2. We further obtain that
dg(p1, p2) ≥ (2

ǫ
+ 2) · max{r1, r2} − r1 − r2 ≥ (2

ǫ
+

2) · max{r1, r2} − 2max{r1, r2} = 2
ǫ
· max{r1, r2}. By the

two inequalities obtained above, we obtain thatdg(p1, p2) − ǫ ·
dg(p1, p2) ≤ dg(c1, c2) ≤ dg(p1, p2) + ǫ · dg(p1, p2).

PROOF OFLEMMA 1. By Step (b) in the partition tree con-
struction algorithm, the tree built satisfies Separation Property and
Covering Property. Then, we prove that it also satisfies the dis-
tance property: Consider a nodeO and any of its descendents
O′. Let (O,O1, O2, O3,, Ot, O

′) denote the path fromO
to O′ in the partition tree. By Separation Property, we obtain
that rOi

= rO
2i

(1 ≤ i ≤ t), rOt = 2 · rO′ . By our build-
ing method, we obtain thatdg(cOi

, cOi+1) ≤ rOi
(1 ≤ i ≤

t − 1), dg(cO, cO1) ≤ rO, dg(cOt , cO′) ≤ rOt . By Trian-
gle Inequality, we obtain thatdg(cO, cO′) ≤ dg(cO, cO1) +∑t−1

i=1 dg(cOi
, cOi+1) + dg(cOt , cO′). By integrating all the in-

equalities above, we obtain thatdg(cO, cO′) ≤
∑t

i=0
rO
2i

≤
2 · rO.

PROOF OFLEMMA 2. Since∀i ∈ [0, h− 1], ri = 2 · ri+1, we
obtain thath = log r0

rh
. We obtain thatr0 ≤ maxp,q∈P dg(p, q)

sincer0 is a geodesic distance between two POIs (the center of
the root and its farthest neighbor). It is obvious thatrh−1 ≥
minp,q∈P dg(p, q), since otherwise,∀p ∈ P , the diskD(p, rh−1)
contains only 1 POI and the construction algorithm stops at layer
h-1. Sincerh =

rh−1

2
, we obtain thatrh ≥ 0.5·minp,q∈P dg(p, q)

by contradiction.
Finally, we obtain thath ≤ log

maxp,q∈P dg(p,q)

0.5·minp,q∈P dg(p,q)
.

PROOF OFTHEOREM1. By the algorithm for generatingS, we
obtain that every pair inS is well-separated at the end. Then, we

prove that for any two pointsp andq in P , there is exactly one pair
〈O,O′〉 containing〈p, q〉 in S. Consider each iteration of the pro-
cedure presented in Section 3.3. We proceed to prove the statement:
there is exactly one node pair inS containing〈p, q〉 at the end of
the iteration if at the beginning of the iteration, there is exactly one
node pair, denoted by〈O1, O2〉, inS containing〈p, q〉. If 〈O1, O2〉
is not extracted in the iteration, then〈O1, O2〉 is still the only one
containing〈p, q〉 at the end of the iteration. Otherwise,〈O1, O2〉 is
extracted and w.l.o.g., we assume thatO2 is split. Since only one
child of O2 is Oq or an ancestor ofOq , exactly one newly inserted
node pair contains〈p, q〉. Besides, it must be true that at the begin-
ning of the first iteration, exactly one node pair (i.e.〈Oroot , Oroot 〉)
contains〈O1, O2〉. By induction, we obtain that at the end of the
final iteration, exactly one node pair inS contains〈p, q〉.

Consider the unique pair〈O,O′〉 containing 〈p, q〉 in the
node pair set of ourSE. Since 〈O,O′〉 is well-separated, then
dg(O,O′) ≥ (2

ǫ
+2)·max{r′O, r

′
O′}, wherer′O (resp.,r′O′) denote

the radius of the enlarged disk ofO (resp.,O′). Since the enlarged
disk of O (resp.,O′) containsp and q by Distance Property, we
obtain thatdg(O,O′) = dg(cO, cO′) is anǫ-approximate distance
of dg(p, q) by Lemma 5.

LEMMA 6. Consider a chain of node pairs
〈O1, O

′
1〉, 〈O2, O

′
2〉, ..., 〈Oi, O

′
i〉, ..., 〈Om, O′

m〉, where 〈Oi, O
′
i〉

is generated by〈Oi−1, O
′
i−1〉 for each integeri ∈ [2,m]. LetrOi

denotemax{rOi
, rO′

i
} for each integeri ∈ [1, m]. ∀k, j ∈ [1, m],

rOk
≥ rOj

if and only ifk < j.

PROOF OFLEMMA 6. It is easy to see that∀k, j ∈ [1, m]
wherek < j, Ok (resp.,O′

k) is Oj (resp.,O′
j) or an ancestor

of Oj (resp.,O′
j) in Tcompress . Thus, we obtain thatrOk

≥ rOj

and rO′
k

≥ rO′
j
. SincerOk

= max{rOk
, rO′

k
} and rOj

=

max{rOj
, rO′

j
}, we obtain thatrOk

≥ rOj
.

PROOF OFLEMMA 3. Consider the chain of pairs
〈O1, O

′
1〉, 〈O2, O

′
2〉, ..., 〈Oi, O

′
i〉, ..., 〈Om, O′

m〉, where
O1 = O′

1 = Oroot , Om = O, O′
m = O′ and 〈Oi, O

′
i〉 is

generated by〈Oi−1, O
′
i−1〉 for all integer i in [2, m] in our

method of constructing the node pair set ofSE. Consider the
case that〈O,O′〉 is a first-higher-layer node pair. We denote
the parent ofO′ in Tcompress by parent(O′), there must exist
an integerk such thatk ∈ [1, m − 1] and parent(O′) is split
from 〈Ok, O

′
k〉. This is because otherwise,〈O,O′〉 would not be

generated. Consider the pair〈Ok, O
′
k〉 from whichparent(O′) is

split and thus,rparent(O′) = max{rOk
, rO′

k
}. By Lemma 6, we

obtainrparent(O′) ≥ max{rO, rO′} and thus the layer containing
parent(O′) is higher than or equal to that containingO. For
the case that〈O,O′〉 is a first-lower-layer node pair, the proof is
symmetric and we omit the details.

PROOF OFLEMMA 4. Consider a node pair〈O,O′〉 consid-
ered in the procedure described in Section 3.3, where〈O,O′〉 6=
〈Oroot , Oroot 〉. Letparent(O) (resp.,parent(O′)) denote the par-
ent ofO (resp.,O′) in Tcompress if O (resp.,O′) is not the root
node. It is obvious that〈O,O′〉 is generated by〈O, parent(O′)〉
or 〈parent(O),O′〉.

W.l.o.g., we assume that〈O,O′〉 is generated by
〈parent(O),O′〉. By Lemma 6, we obtain thatrparent(O) ≤
rparent(O′) sinceparent(O′) is split before〈parent(O),O′〉 is
generated. By Lemma 3, we obtain thatrO′ ≤ rparent(O) and
rO ≤ rparent(O′). Let O denote the child ofparent(O) in the
original partition treeTorg which is on the path fromparent(O)
to O. There are two cases ofO and we present that in both cases,
it is true thatcO = cO . If O = O, it is obvious thatcO = cO .

Then, consider the case whereO 6= O. Since any node on the path
from O toO excludingO must have only one child, we obtain that
cO = cO by Step (i) of the building algorithm ofTorg . Similarly,
the child Oc of parent(O′) in the original partition treeTorg

which is on the path fromparent(O′) to O′ has the same center
with O. Sincerparent(O) ≤ rparent(O′), we obtain thatrO ≤ rOc .

Then, consider the nodeO
′

on the path fromOc to O′ in Torg

which is on the same layer asO and has the same center asOc (By
Step (i), we could always find such a nodeO). Sincec

O
′ = cO′ ,

we obtain thatdg(O,O
′
) = dg(O,O′). Since〈parent(O),O′〉

is not a well-separated pair, we obtain thatdg(parent(O),O′) ≤
2(2

ǫ
+ 2) · max{rparent(O), rO′} = 2(2

ǫ
+ 2)rparent(O). Thus,

we obtain thatdg(parent(O),O
′
) ≤ 2(2

ǫ
+ 2)rparent(O).

Since O is a child of parent(O) in the original par-
tition tree Torg , we obtain that dg(parent(O),O) ≤
rparent(O) = 2rO. By triangle inequality, we obtain that

dg(O,O
′
) ≤ dg(parent(O),O

′
) + dg(O, parent(O)) ≤

2(2
ǫ
+ 2)rparent(O) + 2rO = 4(2

ǫ
+ 2)rO + 2rO = (8

ǫ
+ 10)rO.

Thus,〈O,O
′
〉 must be an enhanced node pair, wherecO = cO and

c
O

′ = cO′ .

LEMMA 7. The maximum number of child nodes of each node
O in a partition tree or a compressed partition tree isO(22β).

PROOF. By the definition of the partition tree, the center of each
children ofO must lie in the diskD(cO , rO). Besides, by the Sep-
aration Property, the minimum pairwise distance of all its children
must be at mostrO

2
. Thus, by the definition of thelargest capacity

dimensionβ, we obtain that the maximum number of children of
each nodeO in a partition tree isO(22β). It is easy to see that the
converting from a partition tree to a compressed partition tree does
not change the number of children of any undeleted node. Thus,
we obtain that the maximum number of children of each nodeO in
a compressed partition tree isO(22β).

LEMMA 8. Any diskD(c, r), wherec ∈ P and r is a non-
negative real number, can hold at mostO((22β)i) points, the min-
imum pairwise geodesic distance of which is at leastr

2i
.

PROOF. Consider a setPSET of points inD(c, r) such that
their minimum pairwise geodesic distance is at leastr

2i
. We first

build a partition tree uponPSET as follows: first, we create the
root to beO(cO = c, rO = r) instead of following Step(a) and the
building procedure of other nodes is the same as Step(b). Since the
radius of each non-root node is half of its parent’s radius, we obtain
that there are totallyi layers in the tree. By Lemma 7, we obtain
that the number of children of any node in the compressed partition
tree is at mostO(22β). Thus, the number of nodes in Layeri is at
mostO(22β) times that in Layeri − 1, where0 < i ≤ h. Thus,
we obtain that there are at mostO((22β)i) nodes in the Layeri. In
other words,PSET has at mostO((22β)i) points.

LEMMA 9. The compressed partition treeTcompress hasO(n)
nodes.

PROOF. Let m, k denote the number of nodes and edges in
Tcompress , respectively. By the construction ofTcompress , Tcompress

hasn leaf nodes and every inner node inTcompress has at least
2 children. Thus,Tcompress hasm − n inner nodes and at least
2 · (m − n) edges. SinceTcompress is a tree, we obtain that
k = m − 1. Thus, we obtain thatk = m − 1 ≥ 2(m − n).
Finally, we obtain thatm ≤ 2n− 1.

PROOF OFTHEOREM2. Proof Sketch. To give the intuition
of the proof, we present an intermediate node pair setS′ which is

conceptual. LetT ′ denote the tree which is the same as the orig-
inal partition tree except that the radius of each leaf node is 0. S′

denote a node pair set built by the node pair generating algorithm
presented in Section 3.3 which takesT ′ as input instead of the com-
pressed partition tree. It is clear from a high-level intuition that the
node pair setS of SE is not larger thanS′ and the number of the
node pairs considered in the process of generatingS isO(|S|) (see
the full proof for the details). In the following, we denoterOx as
the radius of a nodeOx in the original partition tree. Consider a
nodeO in T ′ and a setS ′(O) which is {O′|〈O,O′〉 or 〈O′, O〉
is in S′ andrO ≥ rO′}. Note that∪O∈TS

′(O) = S′. By the
node pair generating algorithm, we obtain that for each nodeO′

in S ′(O), 1. O′ is in the same layer asO or one layer lower than
O (see Lemma 10) 2. there is a upper bound ondg(O,O′), i.e.,
O′ lies in a diskD centered atcO′ with a rO- and ǫ-related ra-
dius (see Lemma 11). Then, together with a property (see Lemma
8) derived fromβ, we obtain that|S ′(O)| = O((1

ǫ
)2β) and thus

|S′| = O((1
ǫ
)2βnh).

Detailed Proof. Now, we delve into the detailed proof and adopt
the same notations as shown in the proof sketch.

LEMMA 10. ∀O′ ∈ S ′(O), rO′ ≤ rO ≤ 2 · rO′

PROOF. Sinceparent(O′) is split before the node pair〈O,O′〉
is generated, by Lemma 6, we obtainrparent(O′) ≥ rO.

Sincerparent(O′) = 2 · rO′ , we obtain thatrO′ ≤ rO ≤ 2 ·
rO′ .

LEMMA 11. ∀O′ ∈ S ′(O), dg(cO, cO′) ≤ (4 2
ǫ
+ 10) · rO.

PROOF. By our node pair set generating algorithm presented
in Section 3.3, 〈O,O′〉 is generated by〈parent(O),O′〉 or
〈O, parent(O′)〉 and the node pair which generated〈O,O′〉 is not
well separated. Consider the case where〈O,O′〉 is generated by
〈O, parent(O′)〉 (the analysis of the case where〈O,O′〉 is gen-
erated by〈parent(O),O′〉 is symmetric, i.e., just withO andO′

swapped, and has the same result and thus, we do not present this
case for the sake of space). We obtain thatdg(cO, cparent(O′)) ≤
2 · (2

ǫ
+ 2) · max{rO, rparent(O′)}, whererparent(O′) = 2rO′

by the definition of the partition tree. By Lemma 10, we obtain
thatdg(cO, cparent(O′)) ≤ 2 · (2

ǫ
+ 2) · rparent(O′). By Triangle

Inequality, we obtain thatdg(cO, cO′) ≤ dg(cO, cparent(O′)) +
dg(cO′ , cparent(O′)). By the definition of the partition tree, we
obtain thatdg(cO′ , cparent(O′)) ≤ rparent(O′). Thus, we obtain
that dg(cO , cO′) ≤ 2 · (2

ǫ
+ 2) · rparent(O′) + rparent(O′). By

Lemma 10, we obtain thatdg(cO , cO′) ≤ (4 2
ǫ
+ 10) · rO.

Let S ′′ be a point set containing the centers of all nodes in
S ′(O). By Lemma 10, we obtain thatO′ is either in the same layer
asO in the partition tree or one layer lower thanO in the partition
tree. LetS ′′

1 (resp.,S ′′
2) denote{O′′|O′′ ∈ S ′′, O′′ is in the same

layer asO} (resp.,{O′′|O′′ ∈ S ′′, O′′ is one layer lower thanO}).
By the Separation Property, we obtain that the minimum pair-

wise geodesic distance ofS ′′
1 (resp.,S ′′

2) must be at leastrO (resp.,
rO
2

). By Lemma 8, we obtain that the DiskD(rO , (4 2
ǫ
+ 10) ·

rO) can holdO((22β)log(4
2
ǫ
+10)) (resp.,O((22β)log(2(4

2
ǫ
+10))))

points whose minimum pairwise geodesic distance is at least
rO (resp., rO

2
). Thus, we obtain that|S ′(O)| ≤ 2 ·

(22β)log(2·(4
2
ǫ
+10)) = O((1

ǫ
)2β). There are at mostnh such node

O in T . Thus, we obtain that|S′| is O(nh

ǫ2β
) since∪O∈TS

′(O) =

S′.
Next, we prove that|S| is at most|S′| (i.e. O(nh

ǫ2β
)), whereS

is the node pair set ofSE. Consider a node pair〈O,O′〉 in S. We

SE K-Algo

105

106

107

0.05 0.1 0.15 0.2 0.25

(a)

Bu
ild

in
g

Ti
m

e
(s

)

ε

101

102

103

104

0.05 0.1 0.15 0.2 0.25

(b)

Si
ze

 (M
B)

ε

100
101
102
103
104
105
106
107

0.05 0.1 0.15 0.2 0.25

(c)

Q
ue

ry
 T

im
e

(m
s)

ε

Figure 13: Effect of ǫ on BearHead dataset (P2P Distance Queries)

SE K-Algo

105

106

107

0.05 0.1 0.15 0.2 0.25

(a)

Bu
ild

in
g

Ti
m

e
(s

)

ε

101

102

103

104

105

0.05 0.1 0.15 0.2 0.25

(b)

Si
ze

 (M
B)

ε

10-1100101102103104105106107

0.05 0.1 0.15 0.2 0.25

(c)

Q
ue

ry
 T

im
e

(m
s)

ε

Figure 14: Effect of ǫ on EaglePeak dataset (P2P Distance Queries)

denote the node inT ′ which comes from the same node in the par-
tition treeTorg asO (resp.,O′) by Ox (resp.,Oy). Since〈O,O′〉
are well-separated,〈Ox, Oy〉 are well-separated and thus, we could
find a node pair〈Ox, Oy〉 in S′ containing〈Ox, Oy〉. We call
〈Ox, Oy〉 the corresponding pair of〈O,O′〉. Let Op (resp.,O′

p)
denote the node inT ′ which comes from the same node inTorg as
the parent ofO (resp.,O′) in Tcompress . Op andO′

p are not well
separated, since otherwise,〈O,O′〉 could not be generated.Ox

(resp.,Oy) must be on the path fromOp (resp.,O′
p) to Ox (resp.,

Oy) and any node on the path excludingOx andOp (resp.,Oy and
O′

p) must have only one child. Thus, we obtain that any two differ-
ent node pairs inS must have different corresponding pairs. Thus,
we obtain that|S| ≤ |S′| = O(nh

ǫ2β
). Since in each iteration of

the procedure of generatingS, we extract one pair and insert more
than one pair toS. The number of node pairs considered must be
at most 2 times the size of the finalS and thus it isO(nh

ǫ2β
).

LEMMA 12. The oracle building time ofSE is O(N log2 N

ǫ2β
+

nh log n+ nh

ǫ2β
).

PROOF. The oracle building time ofSE consists of the time
torg of building the original partition treeTorg , the timettran of
transforming the partition tree to the compressed partition tree
Tcompressed , the timeten of creating all the enhanced edges and
the timetnp of generating the node pair set ofSE. torg consists of
the running time of B+-tree operations, the point selectionalgo-
rithm and all SSAD algorithms invoked. Note that we index a set
of points/nodes with a B+-tree and we find the parent ofO in Step
(iii) with a SSAD algorithm anddg(O,Oparent) is at most2rO due
to the covering property. The running time of all the B+-treeopera-
tions intorg is O(nh log n) since there areh layers and each layer
needsO(n) insertion/search operation in B+-tree. For the point
selection algorithm, therandom selection algorithmtakesO(nh)
time since there are at mostnh nodes inTorg and each takes at
mostO(1) time. Thegreedy selection algorithmtakesO(nh log n)
time since in each layer since it takesO(n log n) time to create the
grid and corresponding B+-tree in each cell and there are at most
O(n) heap operations and B+-tree operations. It is obvious that the
overall running time of all SSAD algorithms performed intorg is
smaller thanten . ttran is O(nh) time since the partition tree has
O(nh) nodes. By Theorem 2, there are at mostO(nh

ǫ2β
) node pairs

considered in the procedure described in Section 3.3 and thus, tnp
is O(nh

ǫ2β
). Next, we will analyzeten .

We introduce a new parameter of the terrain surface, denotedby
θ. θ is defined to be the largest positive real number such that the
number of vertices on the terrain surface in a diskD(c, r) is at least
2θ times the number of vertices on the terrain surface contained in
the diskD(c, r

2
), wherec is a POI on the terrain surface andr is a

positive real number at mostmaxp∈V dg(c, p). Thus, the number
of vertices contained in a disk centered at any POI is at most1

2θ

times that in a disk with double radius and the same center. For the
root nodeOroot , we expand the diskD(cOroot , r0). For any nodeO
in other layers, we expand the diskD(cO , l·rO), wherel = 8

ǫ
+10.

Note that∀i ∈ [⌈log l⌉, h], l · ri ≤ r0. SinceD(c, r0) is a sub-
region on the terrain surface, wherec is any point on the surface,
we obtain that the vertices of terrain visited by SSAD algorithm

invoked for each node in layeri is at mostN, if i ∈ [0, ⌈log l⌉−1];
otherwise, it is N

2θ(i−⌈log l⌉) .

By Lemma 7, there are at most(22β)i nodes in Layeri. Thus,
we obtain thatten is at mostO(

∑⌈log l⌉−1
i=0 (22β)iN log2 N +

∑h

i=⌈log l⌉
(22β)iN log2 N

22θ(i−⌈log l⌉)) = O(N log2 N (22β)⌈log l⌉−1

22β−1
+

(22β)⌈log l⌉ ∑h−⌈log l⌉
i=0

(22β)iN log2 N

22θi
) =

O((22β)⌈log l⌉N log2 N
∑h

i=0(
22β

22θ
)i). Our empirical study

verified thatθ ≥ β. Thus, we obtain that2
2β

22θ
< 1 and thusten is

O((22β)⌈log l⌉−1N log2 N) = O(N log2 N

ǫ2β
). Thus, we obtain that

the oracle building time isO(N log2 N

ǫ2β
+ nh log n+ nh

ǫ2β
).

PROOF OFTHEOREM 3. By Lemma 12, Theorem 2, and the
analysis in Section 3.4, we obtain the result.

C. A2A DISTANCE QUERY PROCESSING
We present an oracle to answer the arbitrary point-to-arbitrary

point (A2A) distance query based on our proposed distance ora-
cle SE. This oracle is the same as that presented in Section 3 ex-
cept that it takes some Steiner points introduced as input instead of
all POIs, where Steiner points are introduced by the method pro-
posed in [12] (there areO(N

sin(θ)·√ǫ
log 1

ǫ
) Steiner points, where

θ is the minimum inner angle of any face). Then, we present the
query processing. Given two arbitrary pointss andt, we first find
the neighborhood ofs (resp.,t), denoted byN (s) (resp.,N (t))
(It is a set of Steiner points on the same face containings (resp.,
t) and its adjacent face(s) [12]. Finally, we returñdg(s, t) =

minp∈N (s),q∈N (t)[dg(s, p) + d̃g(p, q) + dg(q, t)], wheredg(s, p)
and dg(q, t) could be computed in constant time by SSAD al-
gorithm andd̃g(p, q) is the distance betweenp and q estimated
by the oracle constructed. By [12],|N (s)| · |N (t)| = 1

sin(θ)·ǫ
and if d̃g(p, q) is an ǫ-approximate distance ofdg(p, q), then
d̃g(s, t) is also anǫ-approximate distance ofdg(s, t). By Theo-
rem 3, we obtain that for any two Steiner pointsp andq, d̃g(p, q)
is an ǫ-approximate distance ofdg(p, q) and it takesO(h) time
to computed̃g(p, q) and the building time (resp., oracle size) is

O(N log2 N

ǫ2β
+ Nh

sin(θ)
√

ǫ
· log 1

ǫ
· log

N log 1
ǫ

sin(θ)
√

ǫ
+ Nh

sin(θ)
√

ǫ·ǫ2β · log 1
ǫ
)

(resp.,O(Nh

sin(θ)
√

ǫ·ǫ2β · log 1
ǫ
)). Thus, we obtain that for any two

arbitrary pointss andt, the oracle gives anǫ-approximate distance
of dg(s, t) and the query time isO(h

sin(θ)·ǫ).

D. DISCUSSION FOR CASE WHEN n > N

When n > N , we adopt the same distance oracle described
in Appendix C, which is POI-independent. This distance oracle
could answer not only A2A distance queries but also V2V distance
queries and P2P distance queries (because A2A distance queries
could be regarded as a general setting compared with V2V distance
queries and P2P distance queries).

