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Effective radius of ground- and excited-state positronium in collisions with hard walls
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School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
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We determine effective collisional radii of positronium (Ps) by considering Ps states in hard-wall spherical
cavities. B-spline basis sets of electron and positron states inside the cavity are used to construct the states
of Ps. Accurate Ps energy eigenvalues are obtained by extrapolation with respect to the numbers of partial
waves and radial states included in the bases. Comparison of the extrapolated energies with those of a point-like
particle provides values of the effective radius ρnl of Ps(nl) in collisions with a hard wall. We show that, for
1s, 2s, and 2p states of Ps, the effective radius decreases with the increasing Ps center-of-mass momentum and
find ρ1s = 1.65 a.u., ρ2s = 7.00 a.u., and ρ2p = 5.35 a.u. in the zero-momentum limit.

DOI: 10.1103/PhysRevA.95.032705

I. INTRODUCTION

Positronium (Ps) is a light atom that consists of an electron
and its antiparticle, the positron. Positron- and positronium-
annihilation-lifetime spectroscopy is a widely used tool for
studying materials, e.g., for determining pore sizes and
free volume. For smaller pores the radius of the Ps atom
itself cannot be neglected. This quantity was probed in a
recent experiment which measured the cavity shift of the
Ps 1s-2p line [1], and the data calls for proper theoretical
understanding [2]. In this paper we calculate the eigenstates of
Ps in a hard-wall spherical cavity and determine the effective
collisional radius of Ps in 1s, 2s, and 2p states as a function
of its center-of-mass momentum.

The most common model for pore-size estimation is the
Tao–Eldrup model [3,4]. It considers an orthopositronium
atom (o-Ps), i.e., a Ps atom in the triplet state, confined in
the pore which is assumed to be spherical, with radius Rc. The
Ps is modeled as a point particle with mass 2me in a spherical
potential well, where me is the mass of an electron or positron.
Collisions of o-Ps with the cavity walls allow for positron
two-gamma (2γ ) annihilation with the electrons in the wall,
which reduces the o-Ps lifetime with respect to the vacuum
3γ -annihilation value of 142 ns. To simplify the description
of the penetration of the Ps wave function into the cavity wall,
the radius of the potential well is taken to be Rc + �Rc, where
the best value of �Rc has been empirically determined to be
0.165 nm [5]. The model and its extensions are still widely
used for pore sizes in 1–100 nm range [6–8].

Porous materials and Ps confinement in cavities also en-
abled a number of fundamental studies, such as measurement
of Ps-Ps interactions [9], detection of the Ps2 molecule [10] and
its optical spectroscopy [11], and measurements of the cavity-
induced shift of the Ps Lyman-α (1s-2p) transition [1]. Cavities
also hold prospects of creating a Bose–Einstein condensate of
Ps atoms and an annihilation-gamma-ray laser [12].

Seen in a wider context, the old subject of confined
atoms [13,14] has seen renewed interest in recent years

*Present address: School of Physics and Astronomy, The University
of Manchester, Manchester M13 9PL, United Kingdom.
†aswann02@qub.ac.uk
‡g.gribakin@qub.ac.uk

[15–20]. Studies in this area not only serve as interesting
thought experiments but also apply to real physical situations,
e.g., atoms under high pressure [21,22] or atoms trapped in
fullerenes [23–25]. For o-Ps there is a specific question about
the extent to which confinement in a cavity affects its intrinsic
3γ annihilation rate (see Ref. [26] and references therein).

For smaller cavities the effect of a finite radius of the
trapped particle on its center-of-mass motion cannot be
ignored. In fact, the radius of a composite quantum particle
depends on the way this quantity is defined and probed.
For example, the proton is usually characterized by its
root-mean-squared charge radius. It is measured in elastic
electron-proton scattering [27] or using spectroscopy of
exotic atoms, such as muonic hydrogen [28] (with as yet
unexplained discrepancies between these experiments). For
a particle trapped in a cavity, any practically defined radius
may depend on the nature of its interaction with the walls.

In the present work we consider the simple problem of a
Ps atom confined in a hard-wall spherical cavity. The finite
size of Ps gives rise to energy shifts with respect to the energy
levels of a point-like particle in the cavity. This allows us to
calculate the effective collisional radius of Ps that describes
its interaction with the impenetrable cavity wall.

Ps is a hydrogen-like atom with a total mass of 2 and reduced
mass of 1

2 (in atomic units). The most probable distance
between the electron and positron in a free ground-state Ps
atom is 2a0, where a0 is the Bohr radius, while the mean
electron-positron separation is 3a0 [29]. For excited states
Ps(nl) these quantities increase as n2. The Ps center of mass is
halfway between the two particles, so the most probable radius
of Ps(1s) is 1a0, its mean radius being 1.5a0. One can expect
that the distance of closest approach between the Ps center of
mass and the wall with which it collides will be similar to these
values. One can also expect that this distance will depend on
the center-of-mass momentum of the Ps atom, as it will be
“squashed” when colliding with the wall at higher velocities.

A proper quantum-mechanical treatment of this problem
is the subject of this work. A configuration-interaction (CI)
approach with a B-spline basis is used to construct the states of
Ps inside the cavity. Using these we determine the dependence
of the effective Ps radius on the center-of-mass momentum for
the 1s, 2s, and 2p states.

Of course, the interaction between Ps and cavity walls
in real materials is different from the idealized situation
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considered here. It can be modeled by changing the electron-
wall and positron-wall potentials. On the other hand, the
hard-wall cavity can be used as a theoretical tool for studying
Ps interactions with atoms [30]. An atom placed at the center
of the cavity will cause a shift of the Ps energy levels, whose
positions can be related to the Ps-atom scattering phase shifts
δL(K) for the Lth partial wave [31],

tan δL(K) = JL+1/2(K[Rc − ρ(K)])

YL+1/2(K[Rc − ρ(K)])
, (1)

where K is the Ps center-of-mass momentum, Jν is the Bessel
function, Yν is the Neumann function, Rc is the cavity radius,
and ρ(K) is the effective collisional radius of the Ps atom.

The paper is organized as follows: Section II describes the
theory and numerical implementation of the CI calculations of
the energy levels and effective radii of Ps in a spherical cavity.
In Sec. III these energies and radii are presented for a number of
cavity sizes and the dependence of the radii of Ps(1s), Ps(2s),
and Ps(2p) on the Ps center-of-mass momentum is analyzed.
We conclude in Sec. IV with a summary.

Unless otherwise stated, atomic units are used throughout.

II. THEORY AND NUMERICAL IMPLEMENTATION

A. Ps states in the cavity

The radial parts of the electron and positron states in an
empty spherical cavity with impenetrable walls are solutions
of the Schrödinger equation

−1

2

d2Pεl

dr2
+ l(l + 1)

2r2
Pεl(r) = εPεl(r), (2)

where l is the orbital angular momentum, that satisfy the
boundary conditions Pεl(0) = Pεl(Rc) = 0. Although Eq. (2)
has analytical solutions, we obtain the solutions numerically
by expanding them in a B-spline basis,

Pεl(r) =
∑

i

CiBi(r), (3)

where Bi(r) are the B splines, defined on an equispaced knot
sequence [32]. A set of 40 splines of order 6 has been used
throughout. Using B splines has the advantange that a central
atomic potential can be added in Eq. (2) to investigate Ps-atom
interactions [30].

We denote the electron states by φμ(re) =
r−1
e Pεl(re)Ylm(
e), where Ylm(
) is the spherical harmonic

that depends on the spherical angles 
, and the positron states
by φν(rp), where re (rp) is the position vector of the electron
(positron) relative to the center of the cavity. For Ps in an
empty cavity the two sets of states are identical. The indices
μ and ν stand for the possible orbital angular momentum and
radial quantum numbers of each state.

The nonrelativistic Hamiltonian for Ps inside the cavity is

H = − 1
2∇2

e − 1
2∇2

p + V (re,rp), (4)

where V (re,rp) = −|re − rp|−1 is the Coulomb interaction
between the electron and positron. The infinite potential of the
wall is taken into account through the boundary conditions at
re = rp = Rc. The Ps wave functions with a given total angular

momentum J and parity � are constructed as

�J�(re,rp) =
∑
μ,ν

Cμνφμ(re)φν(rp), (5)

where the Cμν are coefficients. The sum in Eq. (5) is over all
allowed values of the orbital and radial quantum numbers up
to infinity. Numerical calculations employ finite values of lmax

and nmax, respectively, and we use extrapolation to achieve
completeness (see below).

Substitution of Eq. (5) into the Schrödinger equation

H�J� = E�J�, (6)

leads to a matrix-eigenvalue problem

HC = EC, (7)

where the Hamiltonian matrix H has elements

〈ν ′μ′|H |μν〉 = (εμ + εν)δμμ′δνν ′ + 〈ν ′μ′|V |μν〉, (8)

εμ (εν) is the energy of the single-particle state μ (ν),
and 〈ν ′μ′|V |μν〉 is the electron-positron Coulomb matrix
element. The vector C contains the expansion coefficients
Cμν . Diagonalization of the Hamiltonian matrix yields the
energy eigenvalues E and the expansion coefficients. Working
expressions for the wave function and matrix elements, in
which the radial and angular variables are separated, are shown
in Appendix A.

B. Definition of Ps effective radius

The effective Ps radius is determined from the energy shifts
with respect to the states of a point particle with the same mass
as Ps. We employ the notation nl[N,L] to label the states of
Ps in the cavity. Here nl refers to its internal state, and [N,L]
describes the state of the Ps center-of-mass motion. The means
of determining the four quantum numbers n, l, N , and L for Ps
states is described in Sec. II C. Also, to obtain accurate values
of the effective Ps radius, the energy eigenvalues E and other
expectation values are extrapolated to the limits lmax → ∞ and
nmax → ∞; this is discussed in detail in Sec. II D.

We consider each energy eigenvalue Enl[N,L] as the sum

Enl[N,L] = Eint
nl + ECOM

nl[N,L], (9)

where Eint
nl = −1/4n2 is the internal Ps bound-state

energy, and ECOM
nl[N,L] is the energy of the center-of-mass motion.

The latter is related to the center-of-mass momentum Knl[N,L]

by

ECOM
nl[N,L] = K2

nl[N,L]

2m
, (10)

where m = 2 is the mass of Ps.
Away from the wall the Ps wave function decouples into

separate internal and center-of-mass wave functions, viz.,

�J�(r,R) �
∑
m,ML

CJM
lmLML

ψ int
nlm(r)�COM

nl[N,L](R), (11)

where r = re − rp, R = (re + rp)/2 is the position vector of
the Ps center of mass, and CJM

lmLML
is the Clebsch–Gordan

coefficient that couples the rotational state lm of the Ps internal
motion with that of its center-of-mass motion (LML). Since
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the center of mass is in free motion, its wave function is given
by

�COM
nl[N,L](R) ∝ 1√

R
JL+1/2(Knl[N,L]R)YLML

(
R). (12)

For a point-like particle, the quantization of the radial motion in
the hard-wall cavity of radius Rc gives Knl[N,L]Rc = zL+1/2,N ,
where zL+1/2,N is the N th positive root of the Bessel function
JL+1/2(z). (For S-wave Ps, L = 0, z1/2,N = πN .) When the
finite effective radius ρnl[N,L] of the Ps atom is taken into
account, one has

Knl[N,L](Rc − ρnl[N,L]) = zL+1/2,N , (13)

which gives the energy (9) as

Enl[N,L] = − 1

4n2
+ z2

L+1/2,N

4(Rc − ρnl[N,L])2 . (14)

This relation defines the effective collisional radius of Ps,

ρnl[N,L] = Rc − zL+1/2,N

(
4Enl[N,L] + 1

n2

)−1/2

. (15)

The Ps radius thus defined may depend on the Ps center-of-
mass state [N,L], as well as the cavity radius. As we show in
Sec. III, the radius is in fact determined only by the internal
Ps state nl and its center-of-mass momentum K , i.e., it can be
written as ρnl(K).

In the present work, most of the calculations were per-
formed for J� = 0+ and 1−, and cavity radii Rc = 10 a.u. and
12 a.u. The value of Rc was kept small to assist convergence
of the CI expansion (5).

C. Identification of Ps states

After diagonalizing the Hamiltonian matrix and finding the
energy eigenvalues, one must determine the quantum numbers
for each state before the corresponding Ps radius ρnl[N,L]

can be calculated from Eq. (15). To facilitate this, the mean
electron-positron separation 〈r〉 and contact density 〈δ(r)〉
were calculated for each state (see Appendix A for details).

The value of 〈r〉 for free Ps is twice the hydrogenic electron
radius [29],

〈r〉 = 3n2 − l(l + 1). (16)

Thus, the expected mean separations for the 1s, 2s, and 2p

states are 3, 12, and 10 a.u., respectively. In practice, the
calculated separations for the 2s and 2p states are noticeably
lower (see Sec. II D 2), since the free-Ps values of 〈r〉 are
comparable to the size of the cavity. Nevertheless, they are
useful for identifying the individual Ps states.

The contact density 〈δ(r)〉 is useful for distinguishing
between s and p states, and between the s states with different
principal quantum number n. For s states of free Ps, the contact
density is given by the hydrogenic electron density at the
origin [29] scaled by the cube of the reduced-mass factor,
viz.,

〈δ(r)〉 = 1

8πn3
. (17)

Hence, the expected contact densities of 1s and 2s states are
1/8π ≈ 0.04 and 1/64π ≈ 5 × 10−3, respectively. For p and

higher-angular-momentum states the contact density is zero.
In practice, the computed contact density for a p state was
observed to be of the order of 10−8 or smaller.

Although looking at the numerical values of 〈r〉 and 〈δ(r)〉
calculated for finite lmax and nmax is often sufficient for
distinguishing between the various states, their values can also
be extrapolated to the limits lmax → ∞ and nmax → ∞, as
demonstrated in Sec. II D.

Once the internal Ps state nl has been established using
the mean electron-positron separation and contact density, the
angular-momentum and parity selection rules,

|l − L| � J � l + L, (18)

� = (−1)l+L, (19)

allow one to determine the possible values of L.
Finally, for fixed n, l, and L, with the energy eigenvalues

arranged in increasing numerical order, the corresponding
values of N are 1, 2, 3, etc.

D. Extrapolation

1. Energy eigenvalues

To obtain the most precise values possible, the calculated
energy eigenvalues are extrapolated to the limits lmax → ∞
and nmax → ∞. To this end, each calculation was performed
for several consecutive values of lmax with fixed nmax, and this
process was repeated for several values of nmax. For J� = 0+
we used values of lmax = 11–15 and nmax = 10–15. Due to
computational restrictions,1 for J� = 1− it was necessary to
lower the values of lmax to the range 10–14, while keeping
nmax = 10–15 (Sec. II E). Extrapolation is first performed with
respect to lmax for each value of nmax, and afterwards with
respect to nmax.

The convergence of CI expansions of the type (5) is
controlled by the Coulomb interaction between the particles. In
our case, for s states the contributions to the total energy from
electron and positron states with orbital angular momentum l

behave as (l + 1
2 )−4, while for p states, as (l + 1

2 )−6 [33,34].
Denoting by E(lmax,nmax) a generic unextrapolated energy
eigenvalue computed with partial waves up to lmax with nmax

states in each, we can extrapolate in lmax by using fitting curves
of the form

E(lmax,nmax) = E(∞,nmax) + A
(
lmax + 1

2

)−3

+B
(
lmax + 1

2

)−4 + C
(
lmax + 1

2

)−5
(20)

for s states, and

E(lmax,nmax) = E(∞,nmax) + A
(
lmax + 1

2

)−5

+ B
(
lmax + 1

2

)−6
(21)

for p states, where A, B, and C are fitting parameters, and
higher-order terms are added to improve the fit. Such curves
were found to give excellent fits for our data points. Figure 1
shows the extrapolation of the six lowest energy eigenvalues

1We use an x86_64 Beowulf cluster.
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FIG. 1. Extrapolation in lmax for the lowest six energy eigenvalues
for J � = 0+, Rc = 10 a.u., and nmax = 15. Solid lines connect the
data points to guide the eye, while the dashed lines show extrapolation
to lmax → ∞ by using Eq. (20) or (21).

for J� = 0+, Rc = 10 a.u., and nmax = 15. The effect of
extrapolation can be seen better in Fig. 2, which shows it
for the lowest eigenvalue.

To extrapolate with respect to the maximum number of
states in each partial wave, we assume that the increments
in the energy with increasing nmax decrease as its negative
power. The extrapolated energy eigenvalue Enl[N,L] is then
found from the fit

E(∞,nmax) = Enl[N,L] + αn−β
max, (22)

where α and β are fitting parameters. Again, such curves
produced very good fits for our data points. Figure 3 shows
the extrapolation of the six lowest energy eigenvalues for
J� = 0+ and Rc = 10 a.u.

It is known that CI-type or many-body-theory calculations
for systems containing Ps (either real or virtual) exhibit slow
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FIG. 2. Extrapolation in lmax for the lowest energy eigenvalue for
J � = 0+, Rc = 10 a.u., and nmax = 15. The solid line connects the
data points to guide the eye, while the dashed line shows extrapolation
to lmax → ∞ by using Eq. (20).
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FIG. 3. Extrapolation of the energy in nmax for the lowest six
energy eigenvalues for J � = 0+ and Rc = 10 a.u. Solid lines connect
the data points to guide the eye, while the dashed lines show
extrapolation to nmax → ∞ by using Eq. (22).

convergence with respect to the number of partial waves
included [35–40]. Accordingly, the extrapolation in lmax is
much more important than the extrapolation in nmax, which
provides only a relatively small correction. This can be seen in
Table I, which shows the final extrapolated energy eigenvalues
Enl[N,L] together with E(∞,nmax) and E(lmax,nmax) obtained
for the largest lmax and nmax values.

2. Electron-positron separation

Expectation values of the electron-positron separation 〈r〉
and contact density 〈δ(r)〉 can also be extrapolated to the
limits lmax → ∞ and nmax → ∞. As with the energy, the
extrapolation in nmax makes only a small correction, which
makes it superfluous here. We only use these quantities to
identify Ps states, so precise values are not needed.

For the mean separation we used fits of the form

〈r〉[lmax] = 〈r〉 + A
(
lmax + 1

2

)−2 + B
(
lmax + 1

2

)−3
(23)

for s states, and

〈r〉[lmax] = 〈r〉 + A
(
lmax + 1

2

)−4 + B
(
lmax + 1

2

)−5
(24)

for p states, where 〈r〉[lmax] is the value obtained in the
calculation with a given lmax. Figure 4 shows this extrapolation
for J� = 0+, Rc = 10 a.u., and nmax = 15 for the six lowest
energy eigenvalues, along with tentative identifications of the
quantum numbers n and l.

The internal Ps states were determined as follows: States
1 and 2 appear to be 1s states since 〈r〉 ≈ 3 for them. State
4 is also a 1s state; its 〈r〉 values for smaller lmax are close
to 3, but increasing lmax and extrapolation lead to a higher
value of 〈r〉 ≈ 4. This distortion occurs due to level mixing
between the 1s state with L = 0 and N = 3 (state 4) and 2s

state with L = 0 and N = 1 (state 3; see below). These states
are close in energy, and the energy separation between them
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TABLE I. Calculated energy eigenvalues, center-of-mass momenta, and effective radii for J� = 0+, 1− and Rc = 10 and 12 a.u.

J � Rc State no. nl[N,L] E(lmax,nmax)a E(∞,nmax)b Enl[N,L]
c Knl[N,L] ρnl[N,L]

0+ 10 1 1s[1,0] −0.2144498 −0.215911 −0.216100 0.368239 1.469
2 1s[2,0] −0.1174946 −0.119914 −0.120167 0.720647 1.281
3 2s[1,0] 0.02472915 0.0241658 0.0239796 0.588148 4.659
4 1s[3,0] 0.03396135 0.0310792 0.0309400 1.060075 1.109
5 2p[1,1] 0.07686479 0.0768633 0.0768631 0.746627 3.982
6 2s[2,0] 0.1511621 0.150550 0.150504 0.923047 3.193

0+ 12 1 1s[1,0] −0.2251509 −0.227540 −0.227819 0.297866 1.453
2 1s[2,0] −0.1593054 −0.162912 −0.163350 0.588727 1.328
3 1s[3,0] −0.05568137 −0.0601980 −0.0605930 0.870418 1.172
4 2s[1,0] −0.01046464 −0.0107571 −0.0108531 0.454519 5.088
5 2p[1,1] 0.02539311 0.0253906 0.0253903 0.592926 4.422
6 2s[2,0] 0.07401803 0.0721989 0.0719415 0.733325 3.432
7 1s[4,0] 0.08558862 0.0811920 0.0809612 1.150585 1.078

1− 10 1 1s[1,1] −0.1787461 −0.181426 −0.181500 0.523450 1.416
2 1s[2,1] −0.05370988 −0.0571538 −0.0573473 0.877844 1.200
3 2p[1,0] 0.004981346 0.00497852 0.00497844 0.519532 3.953
4 2s[1,1] 0.08365396 0.0831681 0.0830909 0.763128 4.112
5 2p[1,2] 0.1112176 0.111200 0.111199 0.833544 3.086
6 1s[3,1] 0.1228439 0.118529 0.118321 1.213789 1.016
7 2p[2,0] 0.1344290 0.134426 0.134425 0.887525 2.921

1− 12 1 1s[1,1] −0.2004982 −0.204725 −0.204872 0.424867 1.424
2 1s[2,1] −0.1152794 −0.120225 −0.120512 0.719689 1.266
3 2p[1,0] −0.02131484 −0.0213199 −0.0213201 0.405857 4.259
4 1s[3,1] 0.006377168 6.09126 × 10−4 1.97942 × 10−4 1.000396 1.100
5 2s[1,1] 0.02855653 0.0278117 0.0277551 0.600850 4.522
6 2p[1,2] 0.05077695 0.0507504 0.0507503 0.673054 3.437
7 2p[2,0] 0.06707912 0.0670723 0.0670721 0.719922 3.272

aEnergy eigenvalues obtained in the largest calculation with nmax = 15 and lmax = 15 (0+) or lmax = 14 (1−) for the positron.
bEnergy eigenvalues obtained after extrapolation in lmax.
cEnergy eigenvalues obtained after extrapolation in lmax and nmax.
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FIG. 4. Extrapolation of the expected electron-positron sepa-
ration in lmax for the six lowest-energy eigenstates for J � = 0+,
Rc = 10 a.u., and nmax = 15. Solid lines connect the data points to
guide the eye, while the dashed lines show extrapolation to lmax → ∞
by using Eq. (23) or (24).

becomes smaller for lmax → ∞ (see Fig. 1). This increases the
amount of level mixing and causes a noticeable decrease of
the expectation value of 〈r〉 with lmax for state 3. This analysis
is confirmed by the values of the contact density shown in
Sec. II D 3.

State 5 appears to be a 2p state due to the much larger
value of 〈r〉 compared with the 1s states, and also because an
excellent fit of the data points is obtained by using Eq. (24),
not Eq. (23). The value of the contact density confirms this
(Sec. II D 3). States 3 and 6 can be identified as 2s states
because their mean separations are higher than those of the
1s and 2p states [cf. Eq. (16)], and the data points are
fit correctly by using Eq. (23), not Eq. (24). Note that the
calculated separations for the 2s and 2p states are lower than
the free-Ps values of 12 and 10 a.u. due to confinement by the
cavity.

3. Electron-positron contact density

Expectation values of the contact density 〈δ(r)〉 provide a
useful check of the identification of the Ps states. This quantity
has the slowest rate of convergence in lmax, and its extrapolation
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FIG. 5. Extrapolation of the expected contact density in lmax for
the six lowest-energy eigenstates for J � = 0+, Rc = 10 a.u., and
nmax = 15. Solid lines connect the data points to guide the eye, while
the dashed lines show extrapolation to lmax → ∞ by using Eq. (25).

uses the fit [34]

〈δ(r)〉[lmax] = 〈δ(r)〉 + A

lmax + 1
2

+ B(
lmax + 1

2

)2 . (25)

Figure 5 shows that, for Rc = 10 a.u. and lmax = 15, extrapo-
lation contributes up to 30% of the final contact-density values
for the six lowest-energy J� = 0+ eigenstates.

Values of the contact density confirm the state identifi-
cations made in Sec. II D 2. States 1, 2, and 4 have contact
densities in the range 0.037–0.041, close to the free-Ps value
of 1/8π ≈ 0.0398 for the 1s state. State 5 has an extrapolated
contact density of ∼10−15, confirming that it is a 2p state (for
which the free-Ps value is zero).

States 3 and 6, which we identify as 2s sates, have contact
densities 0.018 and 0.014, respectively; the free-Ps value for
the 2s state is 1/64π ≈ 0.005, i.e., about three times smaller.
The explanation for this difference is that the confining cavity
compresses the radial extent of the Ps internal wave function,
thereby increasing its density at re = rp. This effect has been
observed in calculations of radially confined Ps [41]. The
effect of compression on the contact density of Ps in 2s states
can be estimated from the ratio of the free-Ps mean distance
〈r〉 = 12 a.u. to the values obtained in our calculation (Fig. 4).
The corresponding density enhancement is proportional to
the cube of this ratio, giving (12/6.9)3/64π ≈ 0.026 and
(12/7.9)3/64π ≈ 0.017, for states 3 and 6, respectively, that
are close to the extrapolated densities in Fig. 5. The same
compression effect hardly affects 1s states because they are
much more compact, and the corresponding electron-positron
separation values (for states 1 and 2) are only a little smaller
than the free-Ps value of 3 a.u. As noted earlier, the 0+ states
3 (1s) and 4 (2s) exhibit some degree of level mixing, which
reduces the contact density of the former and increases that of
the latter.

E. Eigenstates with J �= 0

Figures 1–5 show how the accurate energies, electron-
positron separations, and contact densities of the six lowest-
energy J� = 0+ Ps eigenstates in the cavity of radius Rc were
obtained. For this symmetry, the electron and positron orbital
angular momenta lν and lμ in the expansion (5) are equal,
and the dimension of the Hamiltonian matrix in Eq. (7) is
(lmax + 1)n2

max (3600 in the largest calculation). The ground
state of the system describes Ps(1s) with the orbital angular
momentum L = 0 in the lowest state of the center-of-mass
motion, N = 1. Higher-lying states correspond to excitations
of the center-of-mass motion of Ps(1s) (N > 1), as well as
internal excitations of the Ps atom (2s and 2p). For 0+
symmetry, the center-of-mass orbital angular momentum of
Ps(2p) is L = 1, which is why this state (5 in Fig. 1) lies
higher than the lowest L = 0, N = 1 state of Ps(2s) (state 4).

We also calculated the eigenstates for a larger cavity radius
Rc = 12 a.u. Increasing Rc lowers the energies of all states, and
for J� = 0+ we identify four 1s states (L = 0, N = 1–4), two
2s states (L = 0, N = 1, 2), and one 2p state (L = 1, N = 1);
see Table I. States that lie at higher energies, above the Ps
breakup threshold [E = 0 for free Ps, or above 2π2/(2R2

c ) ∼
0.1 a.u. in the cavity] do not have the form (11) but describe a
relatively weakly correlated electron and positron “bouncing”
inside the cavity.

To find other states of Ps(2p) we performed calculations
of J� = 1− states for both Rc = 10 and 12 a.u. For this
symmetry the electron and positron orbital angular momenta
are related by lμ = lν ± 1, and the size of the Hamiltonian
matrix is 2lmaxn

2
max, i.e., about a factor of two larger than

for J� = 0+. For computational reasons, it is convenient to
define lmax as the maximum angular momentum of one of the
particles, e.g., the positron. In this case the electron orbital
angular momentum can be as large as lmax + 1. Limiting its
value by 14, we restrict the value of lmax used for extrapolation
to the range 10–13. This difference aside, extrapolation of the
energy eigenvalues and other quantities for the 1− states is
performed as described in Sec. II D. In total, we find seven
eigenstates for J� = 1−: three for Ps(1s) (L = 1, N = 1–3),
three for Ps(2p) (L = 1, N = 1, 2 and L = 2, N = 1), and
one for Ps(2s) (L = 0, N = 1); see Table I.

III. RESULTS

Table I shows the quantum numbers and energy eigenvalues
Enl[N,L] of the J� = 0+ and 1− states we found for Rc = 10
and 12 a.u. alongside the corresponding Ps center-of-mass
momenta Knl[N,L] and effective Ps radii ρnl[N,L]. As expected,
the values of ρnl[N,L] for the Ps(1s) states are much smaller
than those for Ps in the 2s and 2p states. The Ps radius for
each internal state also displays significant variation with the
Ps center-of-mass quantum numbers N and L and with the
cavity radius Rc. It turns out that, to a good approximation,
this variation can be analyzed in terms of a single parameter;
namely, the Ps center-of-mass momentum K .

Figure 6 presents 13 values of the radius of Ps(1s) states
from Table I, plotted as a function of K . The figure shows that,
to a very good approximation, the dependence of the Ps radius
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FIG. 6. Dependence of the effective Ps(1s) radius ρ1s(K) on the
Ps center-of-mass momentum K . The dashed line is the linear fit,
Eq. (26).

on its center-of-mass momentum is linear, as described by the
fit

ρ1s(K) = 1.65 − 0.51K. (26)

When Ps collides with the wall at higher momenta, its effective
radius is smaller. This could be expected from a naive picture
of Ps as a “soft ball” that gets “squashed” when it hits the hard
wall. For higher impact velocities the distortion is stronger,
and the Ps center of mass gets closer to the wall. The predicted
“static” (i.e., zero-incident-momentum) radius for the 1s state
is ρ1s(0) = 1.65 a.u. This value is close to the mean distance
between the Ps center of mass and either of its constituent
particles, 1

2 〈r〉 = 1.5 a.u.
Figure 7 shows the data for the radius of the 2s state. They

also suggest a near-linear relationship between the Ps radius
and center-of-mass momentum, with two points near K≈0.75
deviating slightly from it. The larger deviation, observed for
the J� = 0+, Rc = 12 a.u. datum (blue cross), could be, at
least in part, due to level mixing between eigenstates 6 and 7,
which are separated by a small energy interval (see Table I).
A linear fit of the data gives

ρ2s(K) = 7.00 − 4.18K. (27)

The corresponding static radius ρ2s(0) = 7.00 a.u. is close to
the mean radius of free Ps(2s), 1

2 〈r〉 = 6 a.u.
Finally, Fig. 8 shows the dependence of the radius on the

center-of-mass momentum for the Ps(2p) states. In this case,
the six data points for the J� = 1− states again indicate a
linear dependence of ρ2p on K , while the points with J� = 0+
appear as outliers. To understand this behavior, we performed
additional sets of calculations for J� = 1+ and 2+, with Rc =
10 and 12 a.u. For J� = 1+ we used lmax = 10–14 and nmax =
10–15, while for J� = 2+ we used lmax = 9–13 and nmax =
8–13, due to computational restrictions. For both values of Rc

we found one Ps(2p) state with N = 1 and L = 1 for each
symmetry. Table II shows the data for these states.
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FIG. 7. Dependence of the effective Ps(2s) radius ρ2s(K) on the
Ps center-of-mass momentum K . The dashed line is the linear fit,
Eq. (27).

Figure 9 shows the dependence of the radius on the
momentum for the Ps(2p) states, using the data from all of the
calculations performed. As noted above, the negative-parity
J� = 1− data that describe the states of Ps(2p) with the
center-of-mass angular momentum L = 0 or 2 display a clear
linear trend. In contrast, the three positive-parity states with
J� = 0+, 1+, and 2+ (for a given Rc) do not follow the
trend and suggest J -dependent values of the Ps radius. These
states correspond to three possible ways of coupling the
Ps(2p) internal angular momentum l = 1 and its center-of-
mass angular momentum L = 1. Since neither Ps(2p) nor
its center-of-mass wave function for L = 1 [cf. Eq. (11)] is
spherically symmetric, it is not surprising that the distance
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FIG. 8. Dependence of the effective Ps(2p) radius ρ2p(K) on the
Ps center-of-mass momentum K .
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TABLE II. Calculated energy eigenvalues, center-of-mass mo-
menta, and effective radii for J � = 1+, 2+ and Rc = 10 and 12 a.u.
Only the Ps(2p) states are shown.

J � Rc State no. [N,L] E2p[N,L] K2p[N,L] ρ2p[N,L]

1+ 10 1 [1,1] 0.0477391 0.664045 3.233
1+ 12 1 [1,1] 0.00718021 0.527940 3.489
2+ 10 3 [1,1] 0.0576334 0.693205 3.518
2+ 12 3 [1,1] 0.0134862 0.551312 3.850

of closest approach to the wall (i.e., the Ps radius) depends
on the asymmetry of the center-of-mass motion through J . A
simple perturbative estimate of the J splitting of these states
is provided in Appendix B.

To define a spherically averaged collisional radius of Ps(2p)
we take a weighted average of these data (KJ ,ρ2p[1,1]J ) with
weights 2J + 1 for each Rc. The corresponding values are
shown by diamonds in Fig. 9. They lie close to the J� = 2+
data points (see Appendix B for an analytical explanation), and
agree very well with the momentum dependence predicted by
the J� = 1− data. Using these together gives the linear fit

ρ2p(K) = 5.35 − 2.77K. (28)

The static radius for the 2p state ρ2p(0) = 5.35 a.u. is again
close to the mean radius of free Ps(2p), i.e., 1

2 〈r〉 = 5 a.u.
Regarding J� = 1− data, the Ps(2p) radii in the states with

L = 0 (two for each of Rc) are naturally spherically averaged.
The J� = 1− states with L = 2 are parts of the J -dependent
manifold (J = 1, 2, and 3). Here it appears that the J = 1
state here is close to the J -averaged value (see Appendix B),
so that all J� = 1− data follow the same linear momentum
dependence.
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FIG. 9. Dependence of the effective Ps(2p) radius ρ2p(K) on the
Ps center-of-mass momentum K , including data for J� = 1+ and 2+

states. The dashed line is the linear fit, Eq. (28).

Estimate of cavity shift of Lyman-α transition

Measurements of the Ps Lyman-α transition in porous
silica revealed a blueshift of the transition energy �E =
1.26 ± 0.06 meV [1]. The pore size in this material is estimated
to be a ∼ 5 nm [42]. Assuming spherical pores for simplicity,
we find their radius Rc ∼ 50 a.u. The Ps center-of-mass
momentum in the lowest-energy state in such pores is K �
π/Rc ∼ 0.06 a.u. For such a small momentum one can use
static values of the Ps radius in 1s and 2p states (see Figs. 6
and 9). Considering S-wave Ps (L = 0), we estimate the cavity
shift of the Lyman-α transition energy from Eq. (14),

�E � π2

2R3
c

(ρ2p − ρ1s). (29)

For static radii ρ1s = 1.65 a.u. and ρ2p = 5.35 a.u., and Rc =
50 a.u., we obtain �E = 4 meV. This value is close to the
naive estimate that uses mean Ps radii [1] and is significantly
larger than the experimental value.

It appears from the measured �E that the radius of Ps(2p)
is only slightly greater than that of Ps(1s). This effect is
likely due to the nature of the Ps interaction with the wall in
a real material. The Ps(2p) state is degenerate with Ps(2s),
and their linear combination (a hydrogenic eigenstate in
parabolic coordinates [29]) can possess a permanent dipole
moment. Such a state can have a stronger, more attractive
interaction with the cavity wall than the ground-state Ps(1s).
This interaction will result in an additional phase shift of the
Ps center-of-mass wave function reflected by the wall. The
scattering phase shift δnl(K) is related to the Ps radius ρnl(K)
by δnl(K) = −Kρnl(K) [cf. Eq. (13)], with the static radius
ρnl(0) playing the role of the scattering length. It is known that
the van der Waals interaction between the ground-state Ps and
noble-gas atoms can significantly reduce the magnitude of the
scattering length [30,43–45]. It can be expected that a similar
dispersive interaction between excited-state Ps and the cavity
wall can reduce the effective radius of Ps(2p) by more than
that of Ps(1s), to produce the difference ρ2p − ρ1s ≈ 1 a.u.
compatible with experiment.

IV. CONCLUSIONS

A B-spline basis was employed to obtain single-particle
electron and positron states within an otherwise empty spheri-
cal cavity. These states were used to construct the two-particle
states of positronium, including only finitely many partial
waves and radial states in the expansion. Diagonalization of
the Hamiltonian matrix allowed us to determine the energy
and expectation values of the electron-positron separation and
contact density for each state. Extrapolation of the energy
with respect to the maximum orbital angular momentum lmax

and the number of radial states nmax included for each partial
wave was carried out. The electron-positron separation and
contact density values were also extrapolated with respect to
the number of partial waves included and used to determine
the nature (i.e., the quantum numbers) of each positronium
state. From the extrapolated energies, the effective collisional
radius of the positronium atom was determined for each
state.
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We have found that the radius of the Ps atom in the
ground state has a linear dependence on the Ps center-of-
mass momentum, Eq. (26), the radius being smaller for
higher-impact momenta. The radius of Ps(2s) also displays
a linear momentum dependence, Eq. (27). The static (i.e.,
zero-momentum) collisional radii of the 1s and 2s states are
1.65 and 7 a.u., respectively. Determining the effective radius
of Ps in the 2p state is more complex due to its asymmetry.
Spherically averaged values of the collisional radius are
obtained directly for Ps S-wave states in the cavity, with
Ps D-wave states giving similar radii. However, determining
the corresponding values for the Ps P -wave states required
averaging over the total angular momentum of the Ps states in
the cavity. (See Appendix B for a quantitative explanation for
the J dependence of the 2p[1,1] and 2p[1,2] energy levels.)
After this, all data points were found to follow the linear
dependence on the Ps momentum, giving the static radius of
5.35 a.u. In all three cases, the static values of the effective Ps
radius are close to the expectation value of the radius of free
Ps, i.e., a half of the mean electron-positron separation.

While the linear fits obtained here for the dependence of
the effective Ps radius on the center-of-mass momentum are
clearly very good, particularly for the 1s state, it must be
noted that there is a certain amount of scatter around the
lines. This phenomenon may be due to numerical errors in
the two-particle-state calculations or in the extrapolation of
the energy eigenvalues (or both). The main issue here is the
slow convergence of the single-center expansion for states
that describe the compact Ps atom away from the origin.
This issue also prevented us from performing calculations for
larger-sized cavities, which would provide effective Ps radii
for lower center-of-mass momenta. A possible means to reduce
the scatter in the data and tackle large cavities could be to
include more partial waves and radial states per partial wave
in the CI expansion. However, with the Hamiltonian matrix
dimensions increasing as lmaxn

2
max, this quickly becomes

computationally expensive. An alternative would be to use
a variational approach with explicitly correlated two-particle
wave functions.

Although we have only considered the 1s, 2s, and 2p

states in the present work, it is possible to use the method to
investigate the effective radii of higher excited states, e.g., the
3s, 3p, and 3d states. However, this would require calculations
with much larger cavities that can fit the n = 3 Ps states without
significantly squeezing them.

It was noted earlier that confinement can cause a Ps atom to
“shrink” from its size in vacuo. This manifests in the form of
a reduced electron-positron separation and increased contact
density; these effects were observed for the 2s and 2p states.
While this is true in an idealized hard-wall cavity, in physical
cavities (e.g., in a polymer) there is a second, competing
effect. Polarization of the Ps atom by the surrounding matter
may actually lead to a swollen Ps atom, which causes the
contact density to be reduced from its value in vacuo [46,47].
Experimentally, it has generally been found that the net result
of these two effects is that the contact density is reduced
from its in vacuo value, although increased values are not
necessarily impossible [47,48]. It may be possible to determine
more physical effective Ps radii by using realistic electron- and
positron-wall potentials in place of the hard wall we have used

here. Such development of the approach adopted in the present
work should yield much more reliable data for the distorted Ps
states than crude model calculations [26].

The technique outlined in this paper is eminently suitable
for implementing a bound-state approach to low-energy Ps-
atom scattering. By calculating single-particle electron and
positron states in the field of an atom at the center of the cavity
(rather than the empty cavity) and constructing two-particle Ps
wave functions from these, a shifted set of energy levels may be
found. From these, the Ps-atom scattering phase shifts can be
determined [cf. Eq. (1)] using the now known collisional radius
of Ps. We have carried out several preliminary calculations
in this area for elastic Ps(1s)-Ar scattering at the static
(Hartree–Fock) level and found a scattering length of 2.85 a.u.,
in perfect agreement with an earlier fixed-core stochastic
variational method calculation in the static approximation by
Mitroy and Ivanov [43]. This provides evidence that the linear
fits presented here account for the finite size of the Ps atom in
scattering calculations very accurately. In our calculations we
have also observed fragmented Ps states at higher energies (this
manifests as a larger-than-usual electron-positron separation).
These have been ignored in the present work, but it may be
possible to use them to obtain information about inelastic
scattering using this method.

It is hoped that the results presented here will be of use in
future studies of both confined positronium and positronium-
atom scattering.
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APPENDIX A: WORKING EXPRESSIONS FOR
HAMILTONIAN MATRIX AND EXPECTATION VALUES

Written in terms of the angular and radial parts of the
electron and positron basis states, the Ps wave function is

�J�(re,rp) = 1

rerp

∑
μ,ν

mμ,mν

C(J )
μν Pμ(re)Pν(rp)

× CJM
lμmμlνmν

Ylμmμ
(
e)Ylνmν

(
p), (A1)

where CJM
lμmμlνmν

is the Clebsch–Gordan coefficient, and the
indices μ and ν enumerate the radial electron and positron
basis states with various orbital angular momenta, μ ≡ εμlμ
and ν ≡ ενlν . Besides the selection rules due to the Clebsch–
Gordan coefficient, the summation is restricted by parity,
(−1)lμ+lν = �, where � = 1 (−1) for the even (odd) states.

Integration over the angular variables in the Coulomb
matrix elements is performed analytically [49], and the
Hamiltonian matrix elements for the Ps states with the total
angular momentum J are given by

H
(J )
μ′ν ′,μν = (εμ + εν)δμμ′δνν ′ + V

(J )
μ′ν ′,μν, (A2)
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where

V
(J )
μ′ν ′,μν =

∑
l

(−1)J+l

{
J lμ′ lν ′

l lν lμ

}
〈ν ′μ′‖Vl‖μν〉, (A3)

and the reduced Coulomb matrix element is

〈ν ′μ′‖Vl‖μν〉 = √
[lν ′][lμ′][lμ][lν]

(
lμ′ l lμ
0 0 0

)

×
(

lν ′ l lν
0 0 0

)∫ Rc

0

∫ Rc

0
Pν ′(rp)Pμ′(re)

× rl
<

rl+1
>

Pμ(re)Pν(rp) dre drp, (A4)

with [l] ≡ 2l + 1, r< = min(re,rp), and r> = max(re,rp).
The expectation value of the electron-positron separation

rep = |re − rp| for an eigenstate with eigenvector C(J )
μν is found

as

〈rep〉 =
∑
μ′,ν ′
μ,ν,l

C
(J )
μ′ν ′C

(J )
μν (−1)J+l

{
J lμ′ lν ′

l lν lμ

}
〈ν ′μ′‖Sl‖μν〉,

(A5)

where

〈ν ′μ′‖Sl‖μν〉 = √
[lν ′][lμ′][lμ][lν]

(
lμ′ l lμ
0 0 0

)

×
(

lν ′ l lν
0 0 0

) ∫ Rc

0

∫ Rc

0
Pν ′ (rp)Pμ′(re)

× rl
<

rl+1
>

(
r2
<

2l + 3
− r2

>

2l − 1

)
Pμ(re)

×Pν(rp) dre drp. (A6)

Similarly, the expectation value of the electron-positron
contact density δep = δ(re − rp) is

〈δep〉 =
∑
μ′,ν ′
μ,ν,l

C
(J )
μ′ν ′C

(J )
μν (−1)J+l

{
J lμ′ lν ′

l lν lμ

}
〈ν ′μ′‖δl‖μν〉,

(A7)

where

〈ν ′μ′‖δl‖μν〉 =
√

[lν ′]
[
lμ′

]
[lμ][lν]

(
lμ′ l lμ
0 0 0

)

×
(

lν ′ l lν
0 0 0

)
[l]

4π

∫ Rc

0
Pν ′ (r)Pμ′(r)Pμ(r)

×Pν(r)
dr

r2
. (A8)

APPENDIX B: SPLITTING OF Ps nl[N,L] STATES DUE TO
INTERACTION WITH CAVITY WALL

The angular part of the Ps wave function in the cavity,
Eq. (11), is

�
(J )
lL (
r,
R) =

∑
m,ML

CJM
lmLML

Ylm(
r)YLML
(
R). (B1)

The electron and positron repulsion from the wall is strongest
when the vectors r and R are parallel or antiparallel. In
the simplest approximation, we can take the corresponding
perturbation as being proportional to cos2 θ , where θ is the
angle between r and R. Shifting this by a constant to make the
spherical average of the perturbation zero, we write it as

δV (
r,
R) = αP2(cos θ ), (B2)

where α is a constant that can depend on the quantum numbers
n and N and on the cavity radius Rc, and P2 is the second
Legendre polynomial. The corresponding energy shift is

�E
(pert)
J = α

∫∫ ∣∣�(J )
lL (
r,
R)

∣∣2
P2(cos θ ) d
r d
R, (B3)

by first-order perturbation theory. Integrating over the angles,
one obtains [49]

�E
(pert)
J = α(2l + 1)(2L + 1)

(
l 2 l

0 0 0

)(
L 2 L

0 0 0

)

× (−1)J
{
L l J

l L 2

}

= α(2l + 1)(2L + 1)

(
l 2 l

0 0 0

)(
L 2 L

0 0 0

)

TABLE III. Comparison of the energy shifts �EJ obtained from the numerical eigenvalues EJ with the perturbative estimates �E
(pert)
J ,

Eq. (B4), for Ps(2p) states with N = 1 and L = 1, 2, for cavity radii Rc = 10 and 12 a.u.

nl[N,L] Rc J � EJ 〈EJ 〉 �EJ �E
(pert)
J /α α �E

(pert)
J

2p[1,1] 10 0+ 0.0768631 0.0203912 2/5 0.019022
1+ 0.0477391 0.0564719 −0.0087328 −1/5 0.047556 −0.009511
2+ 0.0576334 0.0011615 1/25 0.001902

12 0+ 0.0253903 0.0126834 2/5 0.011915
1+ 0.00718021 0.0127069 −0.0055267 −1/5 0.029787 −0.005957
2+ 0.0134862 0.0007793 1/25 0.001191

2p[1,2] 10 1− 0.111199 −0.000037 1/5 0.008045
2− 0.103201 0.111236 −0.008035 −1/5 0.040224 −0.008045
3− 0.116992 0.005756 2/35 0.002299

12 1− 0.0507503 0.0008605 1/5 0.005357
2− 0.0443476 0.0498898 −0.0055422 −1/5 0.026787 −0.005357
3− 0.0534797 0.0035899 2/35 0.001531
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FIG. 10. Values of �EJ and �E
(pert)
J for the 2p[1,1] and 2p[1,2]

states in a cavity of radius Rc = 10 a.u.

× (−1)l+L

√
(2L − 2)! (2l − 2)!

(2L + 3)! (2l + 3)!

× (
6X2 + 6X − 8Y

)
, (B4)

where X = J (J + 1) − l(l + 1) − L(L + 1) and Y = l(l +
1)L(L + 1).

It is easy to check that the average energy shift is zero, i.e.,∑
J

(2J + 1)�E
(pert)
J = 0, (B5)

as it should be for a perturbation with a zero spherical average,
〈δV 〉 = 0.

For Ps states 2p[1,1] and 2p[1,2] the possible values of J

are 0, 1, 2 and 1, 2, 3, respectively. In each case, let EJ denote
the calculated energy eigenvalues of the J manifold, with the
average energy

〈EJ 〉 =
∑

J (2J + 1)EJ∑
J (2J + 1)

. (B6)

To compare the numerical energy shifts �EJ ≡ EJ − 〈EJ 〉
with �E

(pert)
J , we choose α to reproduce the calculated mean-

squared shift, viz.,∑
J

(2J + 1)
[
�E

(pert)
J

]2 =
∑

J

(2J + 1)[�EJ ]2. (B7)
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FIG. 11. Values of �EJ and �E
(pert)
J for the 2p[1,1] and 2p[1,2]

states in a cavity of radius Rc = 12 a.u.

Table III shows the energy eigenvalues, J -averaged en-
ergies, numerical and perturbative energy shifts �EJ and
�E

(pert)
J , as well as the values of α, for Ps(2p) states with

L = 1 and L = 2, for Rc = 10 and 12 a.u.
To complete the multiplet for L = 2, calculations for J� =

2− and 3− were carried out by using lmax = 9–13 and nmax =
8–13. For a given Rc the values of α for L = 1 and 2 states
are similar. On the other hand, when Rc increases from 10 to
12 a.u., the values of α decrease as 1/R

q
c with q ∼ 2.5. This

is close to the expected 1/R3
c dependence of the energy shifts

with the cavity radius [2].
Figures 10 and 11 compare the values of �EJ with

their perturbative estimates �E
(pert)
J for Rc = 10 and 12 a.u.

respectively.
For L = 1 the perturbative estimates of the energy shifts are

in excellent agreement with their numerical counterparts. Note
that the small shift of the J� = 2+ level is explained by the
small magnitude of the corresponding 6j symbol in Eq. (B4).
For L = 2 states, the perturbative estimate reproduces the
overall J dependence of the calculated energy shift, with the
J = 2 state being the lowest of the three. However, the relative
positions of the J = 1 and J = 3 states are reversed. This is
probably due to higher-order corrections or level mixing not
described by Eq. (B2). Note that the numerical shift is smallest
for the J = 1 state, which justifies its use in determining the
fit (28).
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