
Relaxing DRAM Refresh Rate through Access Pattern Scheduling: A
Case Study on Stencil-based Algorithms

Tovletoglou, K., Nikolopoulos, D. S., & Karakonstantis, G. (2017). Relaxing DRAM Refresh Rate through Access
Pattern Scheduling: A Case Study on Stencil-based Algorithms. In 23rd IEEE International Symposium on On-
Line Testing and Robust System Design 2017: Proceedings (pp. 1-6). DOI: 10.1109/IOLTS.2017.8046197

Published in:
23rd IEEE International Symposium on On-Line Testing and Robust System Design 2017: Proceedings

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
 © 2017 IEEE. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of
the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:09. Sep. 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/96659498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pure.qub.ac.uk/portal/en/publications/relaxing-dram-refresh-rate-through-access-pattern-scheduling-a-case-study-on-stencilbased-algorithms(34267f22-79a9-4969-990c-86d5e92f186a).html


Relaxing DRAM Refresh Rate through Access Pattern
Scheduling: A Case Study on Stencil-based Algorithms

Konstantinos Tovletoglou
EEECS, Queen’s University Belfast

Email: ktovletoglou01@qub.ac.uk

Dimitrios S. Nikolopoulos
EEECS, Queen’s University Belfast

Email: d.nikolopoulos@qub.ac.uk

Georgios Karakonstantis
EEECS, Queen’s University Belfast
Email: g.karakonstantis@qub.ac.uk

Abstract—The main memory in today’s systems is based on
DRAMs, which may offer low cost and high density storage for
large amounts of data but it comes with a main drawback; DRAM
cells need to be refreshed frequently for retaining the stored
data. The refresh rate in modern DRAMs is set based on the
worst-case retention time without considering access statistics,
thereby resulting in very frequent refresh operations. Such high
refresh rate leads eventually to large power and performance
overheads, which are increasing with higher DRAM densities.
However, such high refresh rates may not even required due to
extremely low probability of the actual occurrence of the assumed
worst-case scenarios, or due to the implicit refresh operation
that occur during every memory access, a feature that has not
been yet been studied in depth. In this paper, we enhance the
state-of-the-art by systematically exploiting the implicit refresh
of memory access for relaxing the refresh rate, while minimizing
the resulting memory errors. This is achieved by modifying the
algorithmic parameters that influence the access patterns such
that all stored data are being touched within a target time interval
that is necessary for meeting a target error rate. The proposed
method is applied to stencil-based algorithms which represent
a wide class of algorithms used in numerical analysis, image
processing and cellular automata applications. The efficacy of
the proposed method is demonstrated on an off-the-shelf server
running a fully fledged Linux OS and results show that it is even
possible to completely disable DRAM refresh with minor quality
loss.

I. INTRODUCTION

The ever increasing need for higher memory capacity is
driving the aggressive scaling of Dynamic Random-Access
Memory (DRAM), which is an essential component of all
computing systems. However, aggressive DRAM scaling is
hampered by the need of periodic refresh operations to retain
the stored data, the frequency of which is conventionally being
determined by the worst-case retention time of the most leaky
cell. Such an approach might help to achieve error free storage,
but its viability is in doubt due to the large waste of power and
throughput that may incur reaching up-to 25-40% and 15-30%
respectively, in future 32Gb-64Gb densities [1].

To address such an alarming challenge, many recent studies
have shown that the retention time of DRAM cells varies a
lot and most of the cells do not require as frequent refresh
as the conventional paradigm dictates [2]. Based on such an
observation recent approaches [1], [3] proposed to group rows
into different retention bins and apply a high refresh rate only
for rows of low retention times. However, such multirate-
refresh techniques not only require costly and intrusive hard-
ware modifications but also they do not take into account
the fact that in practice the retention time of cells changes
over time [4], thus rendering error-free storage impossible.

A limited number of studies [5], [6] have also attempted to
leverage the inherent error-resilience of various applications to
relax DRAM refresh rates. However, these studies neglect to
identify and make use of the inherent ability of applications to
refresh memory by accessing their own data, a property that
we call Refresh-by-Access (RefA). We set the exploitation of
RefA as the main target of this paper.

We observe that in current DRRx technologies, the refresh
operation and memory accesses are mutually exclusive to each
other. This means that no row/chip within a rank are allowed
to be accessed while the specific rank is being refreshed. This
does not only cause a performance penalty, but also prevents
the exploitation of the implicit refresh incurred with each
memory read, which can in turn help the system relax the
conventional Auto-Refresh (AR) process. Recent works have
tried to exploit row access locality [7] or read operations [8]
for relaxing refresh. Such methods have demonstrated the
potential benefits of exploiting RefA but have been impractical
and evaluated only in simulation, since they require intrusive
modifications of the memory controller.

In this paper, we aim at exploiting systematically the RefA
property for facilitating aggressive refresh relaxation. This is
achieved by developing non-intrusive methods based on the
intelligent selection of application parameters that lead to an
adequate frequency of memory accesses while satisfying per-
formance and quality constraints. The proposed methods are
applied on popular stencil-based algorithms and are evaluated
on a real server-grade system stack. Our contributions are
summarized as follows:

• We introduce a non-intrusive technique that facilitates
RefA to a degree that is adequate for touching all stored
data within time intervals that are less than a target max-
imum cell retention time. This is achieved by selecting
the appropriate application parameters while considering
the performance overhead and quality loss that may be
incurred.

• We realize our approach on a commodity server with
a complete system stack and show for the first time
the benefits of the RefA on a real system capturing the
time-dependent system and application data interactions
under relaxed DRAM refresh rates. The stack allows non-
disruptive operation of the whole system under relaxed
DRAM refresh rates, which enable us to evaluate the
proposed method.



• We apply the proposed approach on the Pochoir stencil
compiler to expose parameters and allow us to control
the scheduling of memory accesses and exploit the RefA.

• We evaluate the efficacy of our approach on the developed
experimental platform using with a variety of stencil-
based algorithms that are commonly used in numerical
analysis, image processing and cellular automata.

Our findings demonstrate that it is possible to extend the
refresh rate of AR by orders of magnitude and even omit it
with limited quality loss and performance overheads.

The rest of the paper is organized as follows. Section II
describes the typical DRAM organization and refresh oper-
ation, while it discusses the related work and motivates the
proposed work. Section III presents the proposed approach,
while Section IV discusses its implementation. Section V
describes the executed benchmarks and presents the evaluation
results. Finally, conclusions are drawn in Section VI.

II. DRAM BACKGROUND

In this section, we briefly describe the DRAM organization
and the refresh operation, along with the state-of-the-art.

A. DRAM organization

A main memory system based on DRAMs is organized
hierarchically into channels, ranks, banks, rows and columns,
as shown in Fig. 1. Each DRAM module (referred to as
DIMM) usually has two ranks consisting of a number of two-
dimensional arrays of DRAM cells, the so called banks. Each
DRAM cell is a storing element of DRAM and consists of
a capacitor and an access transistor. Each access transistor
connects its associated capacitor to a wire called a bitline
and is controlled by a wire called wordline. Cells sharing a
wordline form a row. Before a row can be activated, all bitlines
in the bank must be precharged. The row’s wordline is enabled
by connecting all capacitors in that row to their respective
bitlines. This causes charge to flow from the capacitor to the
bitline. Finally, the sense amplifier connected to that bitline
detects the voltage change and amplifies it, driving the bitline
fully either to the power rail or to zero voltage.

B. Retention Time and Refresh Operation

The simple structure of the DRAM array and of each
DRAM cell may allow high storage density, however is not
capable of retaining the stored charge for a long period
due to the inherent transistor’s leakage current. Such leakage

RankN

DIMM

M
e
m

o
ry

 C
o
n
tr

o
lle

r

DRAM Device

C
o
n
tr

o
l 
Lo

g
ic

Sense Amplifiers

BanksColumns
Rows

Wordline
Bitline

DRAM Cells

D
a
ta

A
d

d
re

e
ss

Fig. 1: DRAM memory system organization

can eventually discharge the cell, manifesting a bit-flip. The
duration that the cell can correctly retain its state (i.e. ’0’
or ’1’) without eventually experiencing any bit-flip is called
retention time.

To avoid any error induced by the limited retention time,
modern day DRAMs employ an Auto-Refresh mechanism that
periodically recharges each cell in the DIMM by simply
bringing the data from a row into the sense amplifiers and
restoring them back in the row. To achieve this, the memory
controller issues a refresh command every tREFI cycles, at
which point all DRAM banks simultaneously refresh a number
of rows making the rank unavailable for tRFC cycles.

Currently, the refresh period TREFW , i.e. the interval within
which all cells of the DIMM must be refreshed, is set
according to the worst case retention time of all cells. In
fact all DDRx technologies adopt today a TREFW of 64 ms
under nominal environmental conditions or 32 ms in case of
temperatures higher than 85◦C.

Such a refresh period leads to considerable power and
performance overheads, which are expected to worsen as the
DRAM density increases [2]. In fact, the duration of the
refresh operation increases linearly with each new DRAM
generation, so the memory is expected to spend nearly one
quarter of the time refreshing and one third of the power
consumption for the refresh at 64Gb DRAM density [2].

C. State-of-the-Art

In an attempt to address the refresh related overheads, recent
studies have shown that the retention time of cells varies
considerably across and within a DRAM chip. Typically, only
a very small number of cells needs to be refreshed once every
TREFW = 64 ms [9], [10], [2], [11].

The so called multirate refresh techniques exploit such non-
uniformity in retention time of DRAM cells to reduce the
frequency of DRAM refresh. Such schemes [1], [3], [12], [13],
[14], [15], [16] group rows into different bins based on the
retention time profiling and apply a higher refresh rate only
for rows belonging to the lower retention time bin. However,
such approaches are highly intrusive since they assume fine
grain control of the refresh rate, i.e. at the level of the row
and have recently been deemed impractical since they neglect
the fact that the retention time of each cell can change at
runtime [17], [4].

Some recent works have tried to relax the refresh rate and
address the resulting errors either by correcting them through
traditional error-correcting codes [4] or by allowing them
to happen and exploiting the error-resiliency of application
for reducing their impact on quality [5], [6]. Although such
techniques are interesting they have not yet systematically
exploited the inherent refresh that takes place during each
memory access which is the primary target of our proposed
approach. The works in [8], [7] tried to exploit the implicit
refreshes through DRAM accesses. However they require
substantial changes in the DRAM controller. This makes them
impractical since controllers are currently providing restricted
access even to basic parameters (i.e. refresh-rate). Due to the



intrusive required modifications such works have also been
evaluated only on simulators and can not yet capture the real
efficacy of the refresh by access mechanism. Refrint [18] is
targeting eDRAM caches to optimize scheduling of writeback
to memory based on the tracking of accesses, it is only feasible
in caches as the size of caches is much smaller than that of
main memory.

In this paper, we aim at systematically exploiting the
RefA property, with no intrusive hardware modifications, and
evaluating its efficacy on a commodity server with a complete
system stack as we explain later.

III. PROPOSED APPROACH

Every DRAM access naturally opens the accessed row and
consequently restores the leaked charge in the capacitor of
DRAM cells, thus incurring an implicit refresh operation.
Refresh-by-Access can be exploited to significantly relax the
AR, while restricting the number of manifested errors.

To understand the proposed concept, let us consider a simple
scenario as depicted in Fig. 2 and assume that a running
application triggers Nr Memory Accesses (MemA) to the r
address in memory so that:

MemAr = {MemA0,r, ...,MemANr,r} (1)
Clearly, the intervals between consecutive accesses to the same
address can be calculated as:

∆ti,r = tMemAi+1,r
− tMemAi,r

(2)
If the maximum of all ∆ti,r is smaller than a target retention
time Ttarget of the DRAM cells, i.e.

max(∆ti,r) ≤ Ttarget (3)
then all cells would be implicitly refreshed though the memory
accesses. In this case, we can relax the conventional AR up-
to Ttarget while maintaining the actual Bit-Error Rate (BER)
low, since no cell that has up to Ttarget retention time will
fail. In fact, the BER will be bounded to a value lower than
when we adopt AR of Ttarget

BER(max(∆ti,r)) ≤ BERtarget (4)
To demonstrate the potential of our approach, we have

considered the following proof-of-concept. We used known
test patterns [19] for characterizing the BER of 8GB DIMMs
by aggressively relaxing the AR from the conservative 64 ms
to 1 sec and up to 30 sec. The resulted Cumulative Distribution
Function (CDF) is depicted in Fig. 3.

For showing the efficacy of our scheme, we turn off the
AR and test the resulting manifested errors of an artificial
benchmark that exploits RefA. The benchmark issues memory
accesses required for touching all the stored data iteratively
within intervals of 10sec and 20sec. Essentially, we have
ensured that max(∆ti,r) = {10, 20} sec in each case.

ΜemΑi+1,row

Δti,row Δti+1,row
ΜemΑi+2,rowΜemΑi,row

Ttarget Ttarget
Fig. 2: Graphical representation of our approach where all time
intervals between consecutive memory accesses are being kept
lower than a target time interval (target retention time).

Fig. 3: Cumulative distribution function of bit-errors for re-
laxed refresh rate. The impact of RefA is also being showcased
by showing the observed BER of a benchmark.

Interestingly, we can observe that by ensuring that all memory
access intervals are bound to a value, then the resulting BER
is equal to the one achieved by using AR with a more frequent
refresh. In particular, the first case resulted in a BER of 10−9

that is equal to the one achieved with AR of 8.6 sec while the
second case resulted in a BER of 2 ∗ 10−8 that is equivalent
to AR of 12 sec.

Our suggestion is that if we schedule the memory accesses
incurred by an application in such a way that all rows are
iteratively touched within a target refresh interval (that is
adequate for keeping the BER at acceptable levels), then the
refresh rate of AR can be aggressively relaxed, in our case be
omitted. The challenge that we need to address is how could
we achieve the above target, which brings us to the details of
the proposed methodology that is described next.

IV. METHODOLOGY

The main attribute that we need to control for relaxation
of the AR operations is memory accesses (MemA), which are
application-dependent. By setting suitably such parameters,
we can schedule the memory accesses in such way that we
eventually meet the required conditions of Equation 3.

Fig. 4 shows our methodology to achieve this. Initially, we
are selecting a set of values for the application parameters
p = {p1, p2, ...}, such as data structure size, scheduling of the

Application

New set of p={p1,p2,...}
that determine accesses

{MemAi,r}

Execute application with 
set p and calculate Δti

DRAM characterization

{Δti,r}

Yes

No

Meet constraints:
BER, Quality, 
Overheads

Final set of {p1,p2,...}

Fig. 4: Block diagram of the steps to explore the design space
of an application.



accesses or other parameters that are determining the accesses
of the application MemAi,r. We are executing the application
with the selected parameter set. At the same time we are
calculating the ∆ti,r : ∀i, r of the run, the overheads that
are introduced for this set of parameters or any quality metric
of interest.

Based on the DRAM characterization, we can calculate the
BER(max(∆ti,r)). If the achieved BER is smaller than
a selected BERtarget and all the other constraints that the
designer has specified (e.g. limited performance overhead)
are satisfied then we conclude that this set of parameters is
acceptable. In case that one of the constraints is violated,
we iterate the process with a new set of parameters until all
constraints meet.

Such a methodology can be well applied to iterative algo-
rithms, as they regularly access the same data. In this work, we
are going to focus on stencil-based algorithms to demonstrate
our method.

V. CASE STUDY: STENCIL-BASED ALGORITHMS

Stencil-based algorithms are a class of iterative kernels.
In each sweep, the stencil updates all the elements of a
n-dimensional grid using neighboring elements in a fixed
pattern, called stencil.

We are using Pochoir stencil compiler [20], which is built
on top of Cilk Plus multithread extension and uses trapezoidal
decompositions, which utilize the cache efficiently. The de-
composition is breaking down the problem into smaller tasks
that are responsible for a part of the grid and the associated
stencil for a number of sweeps. It decomposes the sweep
domain when the number of sweeps is greater than a threshold
and recursively process the lower sub-trapezoids before the
upper ones or the base domain. We are modifying the compiler
so that it schedules the memory accesses to facilitate RefA.

For our method to work, we need to control the interval
between consecutive memory accesses. For this reason, we are
introducing barriers, we call those borders, every borderheight
sweeps. Borders break down the sweep domain on the same
sweep for all the grid, as shown on Fig. 5 with the dashed line.
The border essentially does not allow to start any consequent
sweep forcing all tasks in the current borderheight to com-
plete. We can measure the time intervals between consecutive

borderheightsweep1

sweep2

sw
e
e
p
 d

o
m

a
in

base domain

ΔTborder

task1,2

task1,1 task1,3

task1,4

task1,5

task2,5

task2,4

task2,3

task2,2

task2,1

task3,1

border1

border2

border3

Fig. 5: Trapezoidal decomposition of 1-D problem. All the
tasks below border1 must be completed in order to continue
to next sweep.

completions of borders, we call this interval ∆tborder. All
elements will be accessed at least once during ∆tborder, we
can conclude that each ∆ti,r will be bound to be less than
∆tborder. Fig. 5 shows also the Original implementation that
would opportunistically progress as many sweeps as possible,
specifically after finishing task1,1, task1,2 and task1,3, it will
compute all the tasks up to the task3,1, highlighted in gray.

We are setting borderheight as a parameter for controlling
the ∆tborder. Lowering the borderheight will reduce the
required computation of each task also the ∆tborder, while
increasing the number of tasks. The borderheight must be
carefully selected so that the BER resulted from the ∆tborder
will be kept under the set threshold, BERtarget. Furthermore,
tasks should not be broken down to very small ones as there is
a considerable performance overhead caused by the function
calls and by breaking the cache efficiency.

VI. EVALUATION

In this section, we describe our experimental setup and
analyze our results.

A. Applications

To evaluate our approach, we have applied it to Pochoir
compiler and used it for a range of stencil-based algorithms,
that have different number of dimensions, grid size, data size
of each element and complexity of the stencil. Specifically, we
have experimented with the algorithms of Heat Dissipation
(Heat) [21], Conways’s Game of Life (Life) [21] and an
artificial benchmark (Artf ), the characteristics of which are
shown in Table 1. The Artf is designed as a 3 × 3 kernel
on 2-dimensional grid which in each sweep applies binary
arithmetic and shifting between different elements so that each
bit-error will persist during the execution and be manifested
once at the end result.

B. Experimental Setup

One of the aims of our work is to evaluate the efficacy
of our method on a real system in order to capture the time
dependent system and application memory access interactions,
as opposed to existing works that were evaluated on simu-
lators. To this end, we have built an experimental platform
based on a dual-socket commodity server. Each socket hosts
an Intel R©Xeon E5-2650 (Sandy Bridge) processor featuring
an integrated memory controller (iMC) to control the DRAM
devices attached to the socket, specifically four 8 GB DDR3
DIMMs at 1600 MHz. The iMC exposes a set of configuration
registers [22] to enable or disable refresh for the entire DRAM.

Following the fact that each iMC controls a single memory
domain of the socket, DRAMs attached to different CPU

Benchmark Grid Size Memory (GB) Execution Time

min max min max min max

Heat-2D 18000 30000 9.3 24 38 s 96 s
Heat-3D 780 1020 7.4 16.6 56 s 263 s
Life-2D 18000 30000 1.5 4 46 s 156 s
Artf-2D 18000 30000 6.2 16 37 s 98 s

Table 1: Benchmarks



20000
22000

24000
26000

28000
30000

Grid size

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
P
e
rc

e
n
ta

g
e
 o

f 
th

e
ru

n
s

th
a
t 

fi
n
is

h
e
d

 c
o
rr

e
ct

ly

Proposed
Original

(a) Percentage of the runs that com-
pleted correctly

20000
22000

24000
26000

28000
30000

Grid size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
v
e
ra

g
e
 n

u
m

b
e
r 

o
f 

b
it

-e
rr

o
rs

Proposed
Original

(b) Average number of errors per run

Fig. 6: Artf benchmark

sockets can have AR enabled or disabled separately. In our
dual-socket system, the first memory domain is deemed re-
liable with the nominal AR applied, in which the Operating
System is allocated, while the second one is configured with
no refresh. In this way, we can safe guard the kernel data
that cannot tolerate errors in the reliable domain for avoiding
any catastrophic failures and run the application on the second
memory domain.

C. Quality Metric

The algorithms, that we are experimenting with are not
resilient to errors. Even one error can have catastrophic
results as it may propagate to neighboring elements. So the
quality metric that we measure is the percentage of runs that
completed correctly. For further characterization and to be able
to measure the number of bit-errors, we are using the Artf.

D. Experimental Results

1) Artificial Benchmark: We start with the results obtained
from Artf as it is possible to measure manifested errors. We
are comparing the benchmark compiled with the Original
implementation of the Pochoir and our Proposed one.

In our experiments, we sweep the borderheight from 10 to
40 and the grid size from 18000 to 30000. The borderheight
in the results of Fig. 6 is chosen to be 20 so that the following
constraints are met: i) the maximum introduced performance
overhead is lower than 15% and ii) the maximum ∆tborder
is below 2 seconds that corresponds to BER of 10−10. The
results are obtained after executing Artf 1340 times, until
results stabilize, while varying the grid size. Fig. 6a compares
the percentage of the correct runs of the two implementations
and Fig. 6b shows the average number of bit-errors occurred.
We can observe that given the constraints, our Proposed
implementation outperforms retaining a high percentage, over
95%, of correct runs across the range of grid sizes, while the
Original implementation rapidly decrease its quality.

2) Application Benchmarks: Fig. 7 and 8 present the design
space exploration for the performance overhead and for the
∆tborder of the benchmarks Heat-2D and Heat-3D. The design
space is populated from the results of runs with variable
borderheight and grid size. We are sweeping the borderheight
for Heat-2D from 10 to 40 and for Heat-3D from 2 to 10.
Respectively, we are sweeping the grid size from 18000 to
30000 and from 900 to 1020.

We observe that the performance overhead is mainly af-
fected by the borderheight caused by the disruption of

18000
20000

22000
24000

26000
28000

30000
Grid size

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

bo
rd

er
he

ig
ht

0
5
10
15
20
25
30
35

(a) Heat-2D

900
920

940
960

980
1000

1020
Grid size

2
3
4
5
6
7
8
9

10

bo
rd

er
he

ig
ht

10
15
20
25
30
35
40
45
50

(b) Heat-3D

Fig. 7: Percentage of performance overhead introduced from
our technique

18000
20000

22000
24000

26000
28000

30000
Grid size

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

bo
rd

er
he

ig
ht

0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0

(a) Heat-2D

900
920

940
960

980
1000

1020
Grid size

2
3
4
5
6
7
8
9

10

bo
rd

er
he

ig
ht

3.0
4.5
6.0
7.5
9.0
10.5
12.0

(b) Heat-3D

Fig. 8: Achieved ∆tborder in seconds

20000

22000

24000

26000

28000

30000

Grid size

0%

20%

40%

60%

80%

100%
P
e
rc

e
n
ta

g
e
 o

f 
th

e
 r

u
n
s

th
a
t 

fi
n
is

h
e
d

 c
o
rr

e
ct

ly

borderheight = 10
borderheight = 20
borderheight = 40
Original

(a) Heat-2D

850
900

950
1000

Grid size

0%

20%

40%

60%

80%

100%

P
e
rc

e
n
ta

g
e
 o

f 
th

e
 r

u
n
s

th
a
t 

fi
n
is

h
e
d
 c

o
rr

e
ct

ly

Proposed
Original

(b) Heat-3D

Fig. 9: Percentage of the runs that completed correctly

cache locality and by the increased number of function calls
while having smaller tasks. ∆tborder is affected by both the
borderheight and the grid size, as the borderheight affects the
number of stencil computations for each task and the grid size
affects the number of tasks that belong in each borderheight.

We are using the design space to select the parameter values
that minimize refresh operations given different constraints
such as maximum acceptable performance overhead and the
maximum ∆tborder .

Based on the performed design space exploration, we
choose to analyze 3 possible scenarios for better under-
standing the efficacy of our approach. We are selecting
parameters to optimize: i) for the minimum ∆tborder and
consequently the lowest BER, ii) for the least perfor-
mance overhead and iii) for both those two previous crite-
rion together. So we are exploring the error characteristics
for the 3 scenarios with borderheight = {10, 40, 20},
equivalent max(∆tborder) = {1.5, 4.5, 2.4} seconds and
max(overhead) = {38%, 5%, 12%}. We can see the results
of 1968 runs in Fig. 9a, which depicts the percentage of the
runs that completed correctly.

We can observe that for the first and third scenario, the
percentage of correct runs remain over 90% for all the grid
sizes, while for borderheight = 40, the percentage decreases



2Gb
4Gb

8Gb
16Gb

32Gb
64Gb

Device density

0%

5%

10%

15%

20%
P

er
ce

nt
ag

e 
of

ba
nd

w
id

th
 lo

ss

(a) Throughput loss due to refresh

2Gb
4Gb

8Gb
16Gb

32Gb
64Gb

Device density

0%

10%

20%

30%

P
er

ce
nt

ag
e 

of
 r

ef
re

sh
ov

er
 to

ta
l m

em
or

y 
po

w
er

(b) Power overhead of refresh opera-
tions

Fig. 10: Refresh implications on power and performance on
current and future DRAM technologies [1]

more rapidly. However in each case the results are better than
the Original implementation.

In Fig. 9b, we explore one setting for Heat-3D with param-
eter of borderheight = 6 with equivalent max(∆tborder) = 8
seconds and max(overhead) = 44%. For the selected range
of grid sizes, the original implementation has no devastating
results even in the smaller grids, while the quality degrades
slowly with our Proposed implementation.

E. Performance and Power Gains

Based on the above results it is evident that there are
cases where our approach can relax or omit refresh with
minor quality losses. Currently, we do not consider the cost
of recovery, however exascale systems [23], [24] do already
implement efficient recovery techniques. If we omit the AR, we
obviously help to limit the AR overheads. As seen on Fig. 10,
we can gain from 4.4% performance in current technologies
and up to 19% in future technologies and decrease the power
consumption of the memory system by 9.6% to 31%.

Since our technique can help relax the AR or even disable
it by merely scheduling the accesses of the application, RefA
can work orthogonally and complementary to other techniques
that relax the refresh rate.

VII. CONCLUSIONS

In this paper, we present a non-intrusive method for relaxing
the refresh-rate by systematically exploiting the implicit re-
fresh that take place during each memory access. The proposed
approach, identifies the suitable algorithmic parameters that
influence the access patterns and sets them such that all
stored data are being accessed within a target time interval
without incurring major performance penalty. By ensuring
that all accesses take place within the target time interval
we guarantee than the bit-error-rate is kept within acceptable
levels. The proposed approach not only helps to limit the
power overhead by significantly relaxing the refresh-rate with
no required hardware modification but also helps to alleviate
the performance penalties incurred by the refresh, The efficacy
of the proposed method is demonstrated on an off-the-shelf
server running a fully fledged Linux OS and when applied to
stencil-based algorithms results show that it is even possible
to completely disable DRAM refresh with minor quality loss.

ACKNOWLEDGEMENTS

The presented research effort has received funding from the
European Community’ Horizon 2020 programme under grant
no. 688540 (UniServer).

REFERENCES

[1] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-aware
intelligent dram refresh,” in Proceedings of the 39th ISCA ’12, pp. 1–
12.

[2] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, O. Mutlu, J. Liu, B. Jaiyen,
Y. Kim, C. Wilkerson, and O. Mutlu, “An experimental study of data
retention behavior in modern DRAM devices,” in Proceedings of the
40th ISCA ’13, p. 60.

[3] R. Venkatesan, S. Herr, and E. Rotenberg, “Retention-Aware Placement
in DRAM (RAPID): Software Methods for Quasi-Non-Volatile DRAM,”
in 12th International Symposium on HPCA ’06, pp. 157–167.

[4] M. K. Qureshi, D.-H. Kim, S. Khan, P. J. Nair, and O. Mutlu, “Avatar:
A variable-retention-time (vrt) aware refresh for dram systems,” in
Proceedings of the 45th IEEE DSN ’15, pp. 427–437.

[5] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Saving
dram refresh-power through critical data partitioning,” in Proceedings of
the 16th ASPLOS ’11, pp. 213–224.

[6] A. Raha, H. Jayakumar, S. Sutar, and V. Raghunathan, “Quality-aware
data allocation in approximate DRAM?” in International Conference on
CASES’15, pp. 89–98.

[7] H. Hassan, G. Pekhimenko, N. Vijaykumar, V. Seshadri, D. Lee, O. Er-
gin, and O. Mutlu, “Chargecache: Reducing dram latency by exploiting
row access locality,” IEEE Symposium on HPCA ’16, pp. 581–593.

[8] M. Ghosh and H. H. S. Lee, “Smart refresh: An enhanced memory
controller design for reducing energy in conventional and 3d die-stacked
drams,” in 40th Annual IEEE/ACM MICRO ’07, pp. 134–145.

[9] I. Bhati, M. T. Chang, Z. Chishti, S. L. Lu, and B. Jacob, “DRAM
Refresh Mechanisms, Penalties, and Trade-Offs,” IEEE Transactions on
Computers, vol. 65, no. 1, pp. 108–121, jan 2016.

[10] K. Kinam Kim and J. Jooyoung Lee, “A New Investigation of Data
Retention Time in Truly Nanoscaled DRAMs,” IEEE Electron Device
Letters, vol. 30, 2009.

[11] M. Jung, D. M. Mathew, C. Weis, and N. Wehn, “Invited - approximate
computing with partially unreliable dynamic random access memory -
approximate dram,” in Proceedings of the 53rd DAC ’16, pp. 101–104.

[12] I. Bhati, Z. Chishti, S.-L. Lu, B. Jacob, I. Bhati, Z. Chishti, S.-L.
Lu, and B. Jacob, “Flexible auto-refresh,” ACM SIGARCH Computer
Architecture News, vol. 43, no. 3, pp. 235–246, jun 2015.

[13] Z. Cui, S. A. McKee, Z. Zha, Y. Bao, and M. Chen, “DTail,” in
Proceedings of the 28th ACM ICS ’14, pp. 43–52.

[14] M. Jung, D. M. Mathew, C. Weis, and N. Wehn, “Efficient reliability
management in SoCs - an approximate DRAM perspective,” in 21st
ASP-DAC ’16, pp. 390–394.

[15] J. Mukundan, H. Hunter, K.-h. Kim, J. Stuecheli, and J. F. Martı́nez,
“Understanding and mitigating refresh overheads in high-density DDR4
DRAM systems,” in 40th ISCA ’13.

[16] P. J. Nair, C.-C. Chou, and M. K. Qureshi, “Refresh pausing in DRAM
memory systems,” ACM TACO ’14, vol. 11, no. 1, pp. 1–26.

[17] Y. Han, Y. Wang, H. Li, and X. Li, “Data-aware dram refresh to squeeze
the margin of retention time in hybrid memory cube,” in IEEE/ACM
ICCAD ’14.

[18] A. Agrawal, P. Jain, A. Ansari, and J. Torrellas, “Refrint: Intelligent
refresh to minimize power in on-chip multiprocessor cache hierarchies,”
in 19th IEEE International Symposium on HPCA ’13, pp. 400–411.

[19] C. Huzum and P. Cascaval, “March test for static neighborhood pattern-
sensitive faults in random-access memories,” Elektronika ir Elektrotech-
nika ’12.

[20] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E.
Leiserson, “The pochoir stencil compiler,” in 23rd ACM SPAA ’11, p.
117.

[21] J. F. Epperson, An Introduction to Numerical Methods and Analysis.
Wiley-Interscience, 2007.

[22] “Intel Xeon Processor E5-1600/2400/2600/4600 (E5-Product Family)
Product Families Datasheet, Volume Two,” 2012. [Online]. Avail-
able: http://www.intel.com/content/www/us/en/processors/xeon/xeon-
e5-1600-2600-vol-2-datasheet.html

[23] M. Gamell, D. S. Katz, H. Kolla, J. Chen, S. Klasky, and M. Parashar,
“Exploring automatic, online failure recovery for scientific applications
at extreme scales,” in Proceedings of SC ’14, pp. 895–906.

[24] J. T. Daly, “A higher order estimate of the optimum checkpoint interval
for restart dumps,” Future Generation Computer Systems, vol. 22, no. 3,
pp. 303–312, Feb. 2006.


