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One scenario for the nonclassical moment of inertia of solid 4He discovered by Kim and Chan [Nature
(London) 427, 225 (2004)] is the superfluidity of microcrystallite interfaces. On the basis of the most
simple model of a quantum crystal—the checkerboard lattice solid—we show that the superfluidity of
interfaces between solid domains can exist in a wide range of parameters. At strong enough interparticle
interaction, a superfluid interface becomes an insulator via a quantum phase transition. Under the
conditions of particle-hole symmetry, the transition is of the standard U�1� universality class in 3D,
while in 2D the onset of superfluidity is accompanied by the interface roughening, driven by fractionally
charged topological excitations.
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Recent observation by Kim and Chan [1] of the non-
classical moment of inertia (NCMI) of 4He at pressures
significantly higher than the solidification point is a breath-
taking result, especially striking in view of the theoremlike
theoretical arguments against the existence of commensu-
rate supersolids [2]. The fact of commensurability—
equivalently, one may put it as the absence of vacancies,
interstitials, or both—of the equilibrium solid 4He at T �
0 is supported by extensive experimental work over the
past several decades (for review, see, e.g., [3]), as well as
by the most recent experimental and numeric studies [4,5].
The commensurability of solid 4He rules out NCMI based
on Bose-Einstein condensation of vacancies [6]. Two of us
have proposed recently [2] that NCMI might be due to the
superfluidity of interfaces between 4He crystallites. At
present, the weak point of this hypothesis is the absence
of a theoretical analysis and/or direct experimental evi-
dence of the superfluidity in the walls separating insulating
domains.

The problem of interface superfluidity in a quantum
solid is of significant general interest in its own right, being
potentially relevant not only to the solid 4He polycrystal,
but also to the properties of domain walls in spin arrays and
ultracold atoms in optical lattices.

In this Letter, we present a proof-of-principle study of
superfluidity in interfaces between insulating domains with
broken translation symmetry (solids). We address the prob-
lem by studying the checkerboard lattice solid (CB). We
start with giving a simple illustrative theoretical argument
that at least under certain limiting conditions the domain
wall in our system has to be superfluid. Our numeric
simulations of 2D and 3D models reveal superfluidity of
the CB domain walls in a large range of parameters. We
pay special attention to the study of the superfluid (SF)-
insulator (I) quantum phase transition in the interface. In
3D, the transition turns out to be in the U�1� universality
class. In 2D, we conclude that the I-to-SF transition in the
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wall is driven by proliferation of topological excitations
that carry the fractional particle charge 1=2, as well as the
quantum of the interface shift in the transversal direction.
The latter circumstance results in an interesting effect: The
transition is accompanied by the wall roughening.

The simplest system featuring both superfluid and CB
phases is that of the hard-core lattice bosons with nearest-
neighbor repulsion, at half-integer filling factor (see, e.g.,
[7], and references therein). The model can be exactly
mapped onto spin-1=2 XXZ antiferromagnet, which leads
to the following correspondence. The CB phase is equiva-
lent to the easy-axis antiferromagnet (characterized by the
broken Z2 symmetry), while the SF phase is identified with
the easy-plane antiferromagnet (characterized by broken
U�1� symmetry). Correspondingly, in terms of the Néel
vector, ~S, the CB order parameter (i.e., staggered magne-
tization) is M � Sz, while the SF order parameter is � �

Sx � iSy. Generically, the ground state of the model is
either SF or CB, depending on the Hamiltonian parameters
(we work at half filling only, and the CB� SF phase
separation issue [8] is thus irrelevant). There is also a
special SU�2�-symmetric Heisenberg point. In 2D and
3D ground states of the Heisenberg Hamiltonian the
SU�2� symmetry is broken, so that the vector ~S is nonzero
and can point at any direction.

Let us take now, say, a 3D system with an easy-axis
Hamiltonian that is very close to the Heisenberg point
(T � 0), and create two large domains, Sz � M and Sz �
�M. What is the structure of the domain wall? Being close
to the Heisenberg point, we are forced to conclude that the
wall is very thick in the transverse direction, with the
vector ~S well defined locally inside the wall and evolving
smoothly from (0; 0;M) to (0; 0;�M) across the wall. The
energetic cost is controlled by the closeness to the
Heisenberg point and can be rendered arbitrarily small.
In the middle of the wall, ~S � �Sx; Sy; 0�, which means that
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the wall is characterized by broken U�1� symmetry imply-
ing superfluidity in the bosonic case. As the system is taken
deeper into the solid state in the bulk, it becomes energeti-
cally favorable to suppress the module of ~S to zero in the
wall, which means an insulating state of the wall. Similar
transformation of the domain wall—from the Bloch-type,
where j ~Sj is finite everywhere, to the Ising-type, where
j ~Sj � 0 is in the middle of the wall—takes place in clas-
sical ferromagnets close to the Curie point [9].

Once the superfluidity of a domain wall is established in
the limiting case, one may expect that it can take place
under more general conditions, especially in view of the
following, almost obvious, energetic argument: Because of
geometrical frustration, the energy cost to translate a par-
ticle along the wall is less than in the bulk. For example, in
the case of the 2D CB solid, the particle jump increases the
energy by �3V, where V > 0 is the nearest neighbor
interaction energy. A jump of a particle at the wall [see,
e.g., Fig. 4(a)] costs only �V.

A point of concern, however, is that generically the
transition from SF to CB is of the first order so that for a
given system or range of parameters it may turn out that the
interface between two insulating domains is always in the
insulating state.

To get an idea of how likely it is to get the interface
between the two CB domains superfluid, we simulate a
domain wall in the bond-current model—a discrete-imagi-
nary-time analog of a (d� 1)-dimensional world line rep-
resentation of a quantum bosonic or spin system in d
spatial dimensions [10]. The Hamiltonian of the model
reads

H � t
X
n

Xd
��1

J2n;� � 2p
X
hn;mi

�
Jn;� �

1

2

��
Jm;� �

1

2

�
: (1)

Here the integer vector n � �n1; . . . ; nd; n�� labels sites of
the (d� 1)-dimensional cubic lattice, � � 1; . . . ; d enu-
merates the spatial directions, and � denotes the temporal
direction. The dimensionless parameters t and p are related
to the hopping amplitude and the nearest-neighbor inter-
action of the corresponding quantum model, respectively
[10]. Currents Jn;� and Jn;� are integers associated with
bonds adjacent to the site n in directions � and �, respec-
tively. The summation in the second term runs over all
pairs of temporal bonds having a common plaquette. The
configurations of bond currents are subject to the zero-
divergence constraint. Without loss of universality, we
restrict the values of bond currents to Jn;� � 0, 
1, and
Jn;� � 0, 1. The zero-divergence constraint then reads

X
�

�Jn;� � Jn;��� � �Jn;� � Jn;��� � 0; (2)

where the negative sign means the opposite direction, so
that Jn;�� � �J�n��̂�;� and Jn;�� � �J�n��̂�;�; the hats
stand for unit vectors in the corresponding directions.
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We simulate the model (1), using the Worm algorithm
[11], in the range of parameters where the bulk is deep into
the solid regime. To automatically create a domain wall,
we take a lattice with periodic boundary conditions and an
odd number of sites in the spatial direction x (system sizes
in all the other directions are even). The domain wall
superfluidity manifests itself as a nonzero mean square of
winding numbers [12] in the direction(s) parallel to the
wall: hW2

k
i � 0, while hW2

x i � 0. More specifically, for a
3D system with the domain wall in the yz plane, the
superfluid stiffness is given by �s � hW2

y �W2
z i=2L�;

and the compressibility is likewise defined in terms of
the winding numbers in temporal direction [12]. In a 2D
system with the domain wall in the y direction the statistics
of winding numbers is essentially discrete, P�Wy� /

exp���Ly=L��W2
y=2�s�, and an appropriate estimator for

the superfluid stiffness is ��1
s � �2�L�=Ly��

ln�P�Wy � 1�=P�Wy � 0��, and likewise for the com-
pressibility. Here L� and Ly are the linear system sizes in
the corresponding directions. In our simulations, we set
Ly � Lz � L� � L and Lx � L� 1.

In 3D, we found that for t & 1 the interfaces are never
superfluid. Simulations at t � 1:3 revealed a first-order SF-
CB transition in the bulk at p � 0:2 with the interface
remaining superfluid until p becomes equal to pc �
0:2711�5�. In 2D, the simulations were performed at t �
0:9. The first-order bulk SF-CB transition was found at
p � 0:5, while the interface becomes insulating only at
pc � 0:7667�5�.

A superfluid interface embedded into a d-dimensional
solid is a (d� 1)-dimensional superfluid, and the scenario
for the quantum phase transition from SF to I state in such a
system is interesting on its own. Our model, Eq. (1), has a
particle-hole symmetry. Thus, commensurability should
play a key part in the criticality [13]. Fundamentally, there
are two qualitatively different cases, depending on whether
the interface is smooth or rough. If the interface is centered
at x � 0 and x� ~�� is its instantaneous shape ( ~� is the vector
in the hyperplane perpendicular to the x axis), then, by
definition, hx� ~��2i � 1 for a smooth interface, while for a
rough interface hx� ~��2i is macroscopically large (scales as
some power of the system size). For a smooth interface, the
CB environment plays a role of a periodic external poten-
tial that doubles the interface unit cell. This means that a
smooth interface can be treated as a commensurate system
with an integer (unity) filling factor. Its SF-I transition then
corresponds to the superfluid-Mott insulator (MI) transi-
tion at integer filling, known to be of the U�1� universality
class [14]. If the interface is rough, then the effect of the
solid environment is averaged out by the zero-point fluc-
tuations of x� ~�� and the effective filling factor for the
interface remains half-integer, with corresponding impli-
cations for the universality class of the SF-I quantum phase
transition.

In our simulations, we observe the smooth-interface
scenario in 3D and the rough-interface scenario in 2D.
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FIG. 1. Criticality for the interface in a 3D system. The data
for �s as a function of the parameter p is consistent with the
exponent � � 0:671 of the U�1� universality class.
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In Fig. 1 we present the 3D data in the vicinity of the
critical point, pc � 0:2711�5�. A very good data collapse
with the critical exponent � � 0:671 of the U�1� universal-
ity class is indicative of the standard SF-MI scenario. In
2D, the interface forms a 1D Luttinger liquid, the main
characteristic of which is the dimensionless parameter g �

!
��������
�s"

p
, where �s and " are the 1D superfluid stiffness and

compressibility, respectively. In a Luttinger liquid with a
filling factor 1=m (m is an integer) the SF-I (Kosterlitz-
Thouless type) transition takes place at g � gc � 2=m2

[15]. As we argued above, a smooth interface implies m �
1 and, correspondingly, criticality at gc � 2. The results of
our simulation show that the SF-I transition actually takes
place at gc � 1=2, corresponding to the half-filling case,
implying the rough-interface scenario.

As is always the case with SF-I transitions in 1D sys-
tems, a brute-force numeric observation of the critical gc is
problematic in view of the exponentially divergent corre-
lation length. We thus need to perform the finite-size
analysis of the data using Kosterlitz-Thouless
renormalization-group flow:
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FIG. 2. Luttinger-liquid parameter g as a function of p. Dotted
lines are to guide the eye. The solid line is the Kosterlitz-
Thouless extrapolation to the infinite system size.
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Z g�L2�=gc

g�L1�=gc

dt

t2�lnt� $� � t
� 4 ln�L1=L2�: (3)

Here g�L� is the Luttinger parameter g as a function of the
system size, $ is an L-independent microscopic parameter
(which is an analytic function of p). At a given p, the value
of $ is obtained with Eq. (3) from numeric values of g�L1�
and g�L2�. The consistency with the Kosterlitz-Thouless
renormalization-group flow is checked by the data collapse
for different pairs of system sizes and also by the shape of
the curve $�p�, which should look as a straight line in the
vicinity of the critical point, in contrast to the g�L; p�
curves—as functions of p, at large enough L. These curves
should demonstrate a considerable curvature consistent
with a (slow) evolution, as L ! 1, towards the jump at
pc from g � 1=2 to g � 0. These features are seen in
Figs. 2 and 3. After extracting the function $�p�, the
macroscopic g�p� � g�L ! 1; p� limit is obtained—in
accordance with Eq. (3)—from �g=gc��lng=gc � $� �
�1. The critical value g � 1=2 implies a rough interface,
since roughening is apparently the only mechanism of
eliminating the effect of broken translation symmetry in
the bulk. There is also a strong argument in favor of the
simultaneous appearance of superfluidity and roughening
in the 1D interface. There is little doubt that deep in the
insulating phase the interface becomes smooth (T � 0),
since roughening costs finite potential energy that domi-
nates over the kinetic energy in this limit. In our simula-
tions, we see this as the effect of ‘‘freezing’’ of the
interface position at large enough p. [By its nature, a rough
interface experiences local fluctuations that gradually lead
to its global drift.] The zero-point roughening fluctuations
in the smooth phase are due to the specific solitons illus-
trated in Fig. 4. These solitons shift the position of the
interface in the x direction by one step. It is also seen that
they carry a topological charge associated with shifting, by
one lattice period, the checkerboard density wave along the
interface (y direction). These quasiparticles also carry a
particle charge 
1=2, since a single-particle hopping event
translates the soliton by two lattice spacings, see Fig. 4. In
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FIG. 3. Parameter $ for different data sets as a function of p.
The solid line is a linear fit. The errors are of the order of the
symbol size.
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FIG. 4 (color online). A sketch of the wall roughening mechanism due to spinons. (a) a ‘‘frozen’’ wall (the arrow shows a single-
particle hopping event, which generates the configuration (b), and the dashed lines are to facilitate the wall gazing); (b) a configuration,
featuring a pair of spinons; (c) with a single-particle hopping over one lattice site the spinon is shifted by two lattice periods, which
means that the spinon particle charge is 1=2.
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view of their fractional particle charge it is conventional to
call these solitons spinons [16]. It turns out that in the
insulating phase spinons are the lowest particle-charge
carrying elementary excitations.—The snapshots of the
world line configurations cross sections in planes perpen-
dicular to the � direction reveal structures identical to those
of Fig. 4. It is reasonable to assume then that the transition
from the insulating to superfluid phase is due to the pro-
liferation of spinons, in analogy to the superfluid transition
in a standard 1D checkerboard solid, which is also driven
by spinons. Hence, we arrive at a picture where both
superfluid and roughening transitions occur simulta-
neously, being driven by proliferation (condensation) of
one and the same quasiparticle mode.

In conclusion, we have demonstrated that an interface
layer in a normal solid may exhibit superfluidity in a wide
range of parameters. This result may be of direct relevance
to NCMI of solid 4He discovered by Kim and Chan [1],
supporting the interpretation in terms of the superfluidity
of microcrystallite interfaces. We have studied numerically
superfluid-insulator quantum phase transitions in particle-
hole symmetric interfaces in 2D and 3D models of the
lattice checkerboard solid. In 3D, the transition is in the
U�1� universality class implying that the interface is
smooth. In 2D, where the interface is a 1D Luttinger liquid,
we observe a Kosterlitz-Thouless type transition at the
Luttinger-liquid parameter g � 1=2, which implies that
the interface is rough on the superfluid side. We argue
that the 1D interface becomes smooth simultaneously
with becoming insulating, since the onset of superfluidity
and roughening are due to proliferation of the same quasi-
particles which (i) have particle charge 
1=2, (ii) represent
defects in the checkerboard order, and (iii) are kinks shift-
ing the interface in the perpendicular direction by one
lattice spacing.

We are grateful to Subir Sachdev for a discussion of the
results. The research was supported by the National
Science Foundation under Grant Nos. PHY-0426881
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