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Abstract We have studied the resonance of a commercial quartz tuning fork immersed

in superfluid 4He, at temperatures between 5mK and 1K, and at pressures between

zero and 25 bar. The force-velocity curves for the tuning fork show a linear damping

force at low velocities. On increasing velocity we see a transition corresponding to the

appearance of extra drag due to quantized vortex lines in the superfluid. We loosely

call this extra contribution “turbulent drag”. The turbulent drag force, obtained after

subtracting a linear damping force, is independent of pressure and temperature below

1K, and is easily fitted by an empirical formula. The transition from linear damping

(laminar flow) occurs at a well-defined critical velocity that has the same value for the

pressures and temperatures that we have measured. Later experiments using the same

fork in a new cell revealed different behaviour, with the velocity stepping discontinu-

ously at the transition, somewhat similar to previous observations on vibrating wire

resonators and oscillating spheres. We compare and contrast the observed behaviour

of the superfluid drag and inertial forces with that measured for vibrating wires.

Keywords Superfluid · Turbulence · Critical velocity · Tuning fork

PACS 67.25.dk · 67.25.dg · 47.27.Cn

1 Introduction

There is much interest in the behaviour of vibrating objects immersed in the quan-

tum fluids 3He and 4He. The recent expansion in activity has been largely inspired by

developments in the study of turbulence, with several groups investigating oscillating

wires [1–12], grids [13–18], spheres [19–25] and quartz tuning forks [26–33]. Mechanical

probes give much information about the dynamics of superfluids and their excitations.

Measurements of the resonant frequency provide information on the inertial backflow

around the object, while the damping measures dissipation of the superfluid and/or
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normal fluid components. Vibrating objects are therefore very sensitive to the produc-

tion of quantised vortices in a superfluid. The complex evolution of a tangle of such

vortices has become commonly known as “quantum turbulence”. Vibrating objects are

also widely used as secondary thermometers by measuring damping due to the thermal

excitations [34–38].

Quantum turbulence, particulary in the low temperature limit, is conceptually

much simpler than classical turbulence, being composed of a tangle of similar quan-

tised vortices, moving in an ideal (inviscid and almost incompressible) fluid according

to their self-induced superfluid flow. The relative simplicity of quantum turbulence

also facilitates the development of theoretical models and computer simulations. Much

of the recent experimental work on quantum turbulence from vibrating structures has

been complimented by detailed numerical simulations [39–45] and theoretical work [46–

50]. Many of the recent developments can also be found in review articles such as [51,

52].

In superfluid 3He advances in experimental techniques have enabled studies of

the production and decay of turbulence by vibrating wires and grids [4,5,13–16]. In

superfluid 4He the turbulent damping of an oscillating grid has been probed [17,18], and

studies of spheres [19–22] and vibrating wires [1,2,6–11] show common features such as

hysteresis around the turbulent transition, likely related to the properties of remnant

vortices. Recent attention has been given to the production of quantum turbulence by

quartz tuning forks [28,31,33]. Here we concentrate on the transition to turbulence in

superfluid 4He at low temperatures using a commercially available quartz tuning fork.

We have investigated the properties of a tuning fork in superfluid 4He over the

whole range of pressure, from zero bar to the melting curve, and at temperatures from

1K down to ∼5mK, using a dilution refrigerator. We have measured the transition from

laminar to turbulent flow by measuring force-velocity curves at the resonant frequency

of the fork. At the lowest temperatures, where the 4He is virtually all superfluid, the

transition from linear damping in the laminar regime to non-linear turbulent damping

occurs at a well defined critical velocity. At higher temperatures the transition is less

clear, somewhat masked due to increased linear damping. Nevertheless, the turbulent

drag force is found to be independent of temperature below 1K. In further investi-

gations of the transition region at low temperatures, we find hysteresis and switching

behaviour similar to that observed for vibrating wires and spheres [1,2,6–11,19–22].

There are however some important differences which we discuss below.

2 Experimental

Our experimental cell is illustrated in figure 1(a). The quartz tuning fork shown in

figure 1(b) is commercially available [53] and made to operate close to 215 = 32768 Hz

in ambient conditions. Each of the two prongs has length L = 3340 µm, width W =

300 µm and thickness T = 450 µm. The distance between the prongs is 260 µm.

The cylindrical cell body is machined from Araldite epoxy resin. It contains silver

sinter heat exchangers, which are connected by a high conductivity silver wire to a

sinter pad in the mixing chamber of our dilution refrigerator. The cell is filled through

a narrow capillary which is heat sunk at the pot, the still and the cold plate. The 4He

is so-called “technical helium”, collected from a transport dewar. The cell is mounted

on the cryostat so that the prongs of the fork are horizontal, in an effort to prevent

problems with “dirt” falling onto the fork. We have removed only the top of the metal
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Fig. 1 Schematic of (a) the experimental cell and (b) quartz tuning fork. The fork is encased
by a metal can which is 3mm in diameter. The top of the can has been cut away to allow
the helium to enter. The fork dimensions were measured with a scanning electron microscope:
L = 3340 µm; T = 450 µm; W = 300 µm; D = 1160 µm; prong separation 260 µm.

packaging can in which the fork is supplied, and the original electrical leads are glued

through the end of the cell.

The mixing chamber temperature is monitored with a vibrating wire resonator in

the dilute phase below 50mK. Above 50mK a carbon resistance thermometer is used

to measure the refrigerator temperature. There is no thermometry in the cell itself.

Measurements were made while the fridge was held at a given temperature, and after

the cell had come into thermal equilibrium, as determined by when the response of

the fork had stabilized. This procedure was adequate for our purposes, since at higher

temperatures thermal gradients should not be significant, and at lower temperatures

the fork response is quite insensitive to temperature.

The fork is driven by applying an AC voltage to its electrodes. This exerts a driving

force on the prongs of the tuning fork due to the piezoelectric properties of quartz. As

the prongs move, an electric current is generated proportional to their velocity. Thus

we can infer the velocity response of the prongs as a function of the driving force by

measuring the current produced as a function of the applied voltage.

The driving voltage is produced by a waveform generator, with suitable attenuation

as required. The response current is measured using a calibrated custom-made current-

to-voltage converter [54] at the input of a lock-in amplifier. We have measured the

properties of the fork using a variety of techniques.
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A “frequency sweep” involves sweeping the frequency of the driving voltage, at

constant amplitude, and measuring the subsequent current. A dual channel phase sen-

sitive lock-in amplifier is used, and we record both components of the current, in-phase

and out-of-phase with the driving voltage. The two components are fitted to the ideal

Lorentzian lineshape, expected for a linear oscillator. The fit also includes a linear

background current, arising from the electrical properties of measurement circuit. The

frequency sweeps, in the linear response region, allow us to characterize the resonance

accurately, to fine-tune the phase offset of the lock-in amplifier, and to determine

the background current, the resonant frequency f0, the resonant height I0 and the

resonance frequency width ∆f2, measured at the half-height points of the in-phase

response.

To measure the force-velocity response of the fork, we use a “drive sweep”. Here,

we sweep the driving voltage at the resonance frequency and measure the resulting cur-

rent. We use a tracking routine to adjust the frequency of the driving voltage during

the drive sweep, in order to maintain resonance. The frequency is adjusted continu-

ously to minimise the out-of-phase current, a procedure which, in practice, very closely

corresponds to the maximum (in-phase) signal current, and hence to maximum power

dissipation. The out-of phase signal current is very sensitive to small changes in fre-

quency away from the resonant frequency, so this allows an accurate measurement of

any changes in the resonant frequency.

We relate the measured electrical properties of the fork to its mechanical properties

using the convention used by other groups, following [55] and as detailed in [26]. The

current I produced by the tuning fork motion is related to the velocity v of the tip of

the prongs via a fork constant a:

I = av. (1)

The fork constant also determines the relation between driving force F and applied

voltage V :

F =
aV

2
. (2)

This is evident from energy considerations. The product of force and in-phase velocity

is the power absorbed, which is equal to the product of applied voltage and the in-

phase current. The factor of two arises since the fork has two prongs which move in

anti-phase.

As discussed [26], we can determine a from the “height-times-width-over-drive” of

the Lorentzian resonance, since

I0∆f2

V0

=
a2

4πm
. (3)

Here, I0 is the (in-phase) current amplitude at resonance, V0 is the applied voltage

amplitude and m is the effective mass of a prong. The value of I0∆f2/V0 is most

readily obtained from a frequency sweep in the linear response regime at low drives.

The effective mass in vacuum, calculated for an ideal bending beam with a rectangular

cross section, is found to be 0.24267 times the actual mass of a prong [26,55], i.e.

m = 0.24267ρqLWT (4)

where ρq = 2659 kg/m3 is the density of quartz. The errors involved in this procedure

to determine the absolute velocity and force on each prong are unknown, but probably

on the scale of 10% or less. We note that in practice the fork constant will depend
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on the detailed geometry of the fork including its electrodes and so may differ slightly

from one fork to another. For our fork, we estimate the effective mass to be about

0.30 mg and the constant a to be about 12 µCm−1.

3 Drag and Inertial Coefficients

The force exerted on an object oscillating in a fluid flow can be expressed in terms

of two dimensionless coefficients. The drag coefficient CD describes the dissipative

component of the force while the inertial coefficient CM describes the non-dissipative

component. We can define the drag coefficient for the fork by the equation

F =
1

2
CDρAv2 (5)

where A = LW is the cross-sectional area of each prong perpendicular to the motion,

and ρ is the density of the helium. Here, and in the following, we define v to be the

velocity amplitude of the tip of the prongs and F to be the amplitude of the driving force

as inferred from equations 1 and 2 above. As discussed in [2], for cylinders oscillating

in classical fluids the similarly defined CD is of order unity for high velocity turbulent

flows, although it has some velocity dependence [56].

Using analogous arguments to those discussed for vibrating wire resonators [2], we

can define an inertial coefficient CM , as used in the Morison equation [57] for classical

fluids. The inertial force per unit length on a cylinder of diameter D can be written as

F =
1

4
πρD2CM

dv

dt
= δm

dv

dt
(6)

where ρ is the fluid density and δm is the effective mass per unit length of the fluid

back-flow around the cylinder. Since the resonant frequency of the oscillating object

is inversely proportional to the square-root of its effective mass, the shift δf due to

back-flow is
δf

f
= −

1

2

δm

m
= −

1

2

ρ

ρo
CM (7)

where f is the resonant frequency in vacuum and ρo is the density of the oscillator

material. We use equation 7 to define the inertia coefficient of our fork, with ρo = ρq ,

the density of quartz. For an ideal cylinder in pure potential flow, the inertial coefficient

is CM = 1. It is not clear what value we should expect for a tuning fork prong since

it has a rectangular cross-section, roughly-shaped corners, and a flow field modified by

the proximity of the other prong.

For cylinders oscillating in classical fluids and for vibrating wires in superfluid 4He

at low temperatures, CM falls below unity at higher velocities, as the flow becomes

turbulent [2].

4 Results and Discussion

4.1 Force-Velocity Curves at Low Temperatures

Figure 2 shows force-velocity curves at 5mK inferred from drive sweep measurements

as discussed above. At low velocities, below ∼50mm s−1, the damping force is very
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Fig. 2 The response of the tuning fork in superfluid 4He at the lowest temperature, for three
different pressures. The inferred velocity amplitude of the tip of the prong (peak velocity) is
plotted against the amplitude of the driving force for each prong. Inset shows the derived drag
coefficient, CD , plotted as a function of the peak velocity, see text.

nearly linear in velocity (equivalent to a Lorentzian resonance lineshape) and F/v

gives the damping coefficient which is proportional to the frequency width ∆f2 of the

resonance. At these very low temperatures there are virtually no thermal excitations

(i.e. no “normal fluid”) in the helium, and we believe that the damping corresponds to

the intrinsic damping of the fork itself, i.e. the same damping would be measured in

vacuum under equivalent conditions. This intrinsic damping gives a resonance width of

order 0.03 Hz (giving a “Q-value” of order 106) and is actually slightly drive-dependent,

leading to the very small deviation from linearity of the curves at low velocities.

As the drive force is increased, the response of the fork changes quite abruptly to

a more non-linear behaviour. We associate this with extra drag arising from quantised

vortex lines, so we will loosely refer to this as the “turbulent regime” to distinguish it

from the “laminar regime” without vortex lines at lower velocities. Similar behaviour

has been observed previously for forks [28,29,31,33], vibrating grids [17,18], vibrating

wire resonators [1,2,6–11] and oscillating spheres [19–22] in superfluid 4He.

Later measurements of the transition region showed that switching between the

two regimes and hysteresis may be observed; we discuss this further below. We also

note that, intermittently, apparently similar measurements are not so well-behaved,
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Fig. 3 The force-velocity curves of the same fork at various temperatures, all at 1 bar pressure.
The inset shows the same data but with the linear damping behavior subtracted, plotted on
a linear scale showing the turbulent drag contribution to the damping force as a function of
velocity, and focussing on velocities close to the turbulent transition, see text. (Note that the
50mK data was only measured up to 85mms−1.)

and we have observed large time-dependent anomalies in the linearly damped region.

We believe that some of this anomalous behaviour may be due to dirt, such as small

particles of hydrogen in the technical helium that we have used. However, there might

also be interesting affects associated with vortex lines pinned between the prongs of

the fork.

As revealed in Fig. 2, the force-velocity curves are virtually identical for all pres-

sures, indicating that the turbulent drag at low temperatures has very little, if any,

dependence on pressure. At first sight, this might seem surprising given that many

of the superfluid properties (governed by the superfluid transition temperature and

density) are quite pressure dependent. We note however that the circulation quantum

κ = h/m, which defines the circulation around quantum vortices, is independent of

pressure and temperature. Similar observations have been made using a vibrating grid

[17].

In the inset to Fig. 2 we show the corresponding drag coefficient CD, inferred from

equation 5, as a function of the peak prong velocity v. The results are broadly similar

to those obtained previously [28,29,31,33]. At low velocities the drag is dominated by

the intrinsic damping of the fork, giving a roughly CD ∝ v−1 variation, while at higher

velocities there is a sharp cross-over corresponding to the onset of extra drag from

quantised vortex lines. Although the data doesn’t extend to very high velocities, it is
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consistent with the drag coefficient approaching values of order unity. It is interesting to

note that the data appears to show a small pressure dependence when plotted in terms

of the drag coefficient. This is due to the pressure dependence of the helium density.

Thus, if one associates the lack of a pressure dependence with the pressure independent

circulation quantum κ, then this result would suggest that κ is more directly linked

to the turbulent drag force than the turbulent drag coefficient. However, since the

pressure dependence is small, further measurements are needed to confirm this.

Figure 3 shows the temperature dependence of the force-velocity response curves of

the fork from 5mK up to 1K at 1 bar pressure. At the lowest temperatures the near

linear damping at low velocities is temperature independent and dominated by intrinsic

damping as discussed above. At higher temperatures the damping is due to ballistic

phonon scattering, and at even higher temperatures (above 1 K) the damping would

eventually be described in terms of viscous damping from the normal fluid component

[33]. We can remove the effects of the intrinsic damping by simply subtracting a force,

proportional to velocity, to leave only the contribution from the vortices. Hence we find

a “turbulent drag force”

Fturb(v) = F (v) − γv, (8)

where γ is determined from F/v at low velocities. We can apply the same procedure at

higher temperatures also, thus removing both the intrinsic and thermal contributions

to the damping. The resultant data are plotted in the inset to figure 3. Evidently all

the curves collapse onto a single line. This clearly implies that the turbulent drag force

at low temperatures is temperature independent, and that it is independent of the

thermal damping force from ballistic phonons. This property was also suggested by

measurements reported in [33]. We further note that this contrasts with the behaviour

in a classical fluid, where the contributions from laminar and turbulent flows are not

additive [58].

In figure 4 the data of figure 3 are re-plotted to show the drag coefficient as a

function of the peak velocity. At higher velocities the drag coefficient appears to be

leveling towards a value of order unity. Unfortunately our measurements do not extend

to higher velocities since we did not want to risk destruction of the fork (at velocities

around 1-2m s−1 the prongs are being shaken so violently that they may break). The

inset to figure 4 shows the turbulent drag coefficient, derived from the turbulent drag

force defined by equation (8). For all the superfluid data, there is a clear transition to

turbulent drag at a critical velocity vc ≃ 63mm s−1. We note that the 500 mK data in

Figs. 3 and 4 appears to deviate slightly at higher velocities from the trend observed

at lower and higher temperatures. The reason for this is not known, but it may due

to thermal drift; we were unable to keep the fridge temperature very stable in this

temperature range.

We have fitted the data in Fig. 4 to an empirical expression given by

CD =
α

v
+ βH(v − vc)

(v2
− vc

2)

v2

(

( v
vc

− 1)
1

2

( v
vc

− 1)
1

2 + ǫ

)

, (9)

The first term corresponds to the linear intrinsic and thermal contributions to the

damping force, with a single temperature-dependent adjustable parameter α. The term

H(v− vc) is the Heaviside step function, which is zero when v is below vc and switches

to 1 at the onset of turbulence when v ≥ vc. The (v2
− vc

2) factor in the second term is

similar to that used by Schoepe [19] to describe oscillating sphere data, and ensures that

the turbulent drag increases smoothly from zero above vc. The parameter β determines
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Fig. 4 The derived drag coefficient CD for the tuning fork as a function of velocity. Solid
curves represent a fit to the data as described in the text (equation (9)). The inset shows
the turbulent contribution to the drag coefficient inferred from the same data, CT

D
, plotted

on a linear scale after subtraction of a term proportional to v−1 representing linear damping
from intrinsic properties of the fork and thermal excitations. (Note that the 50 mK was only
measured up to 85 mms−1.)

the limiting value of CD when v ≫ vc. The final part of the second term controls the

rate at which the turbulent drag develops from vc towards higher velocities, governed

by parameter ǫ. This functional form is purely empirical, and different from that chosen

by the authors of [33], who have a factor (v/vc − 1)2 in place of our (v/vc−1)
1

2 and use

a slightly more complicated expression involving an effective kinematic viscosity. We

developed our form independently, and justify this choice (as do the authors of [33]) as

giving the closest fit to our data. We are able to fit this expression to all our data at

temperatures 1K and below with the same values of vc, β and ǫ. These fits are shown

in figure 4. For all the curves we set β = 1, vc = 63mm s−1, and ǫ = 10. The only

parameter that separates the curves is the value of linear damping, α, that we obtain

from the linear part of CD at velocities below vc. As shown figure 4, the expression

fits our data very well, and significantly better than the more complicated expression

given in [33]. However, we should point out that without a well defined quantitative

model the value of having such an analytical expression is somewhat limited.
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4.2 Switching Behaviour and Hysteresis

In a later experiment, the same fork was placed, in the same orientation, in a new

experimental cell. The behaviour of the fork was found to be qualitatively and quan-

titatively different, as though it was now a different object. The linear damping had

increased so that Q-value at the lowest temperatures was reduced by a factor of ap-

proximately 2, and the critical velocity for the transition to turbulence was reduced

from 63 to 53mm s−1, making comparison with previous results problematic. We do

not know why the properties changed, but can speculate that the different behaviour

may be due to dirt on the tuning fork prongs. This irreproducibility of fork behaviour

may limit their use as reliable cryogenic tools at the lowest temperatures.

However, measurements in the new cell now revealed switching between the laminar

and turbulent regimes and hysteresis, allowing for comparison with similar observations

made previously with wire resonators [1,2,6–11] and oscillating spheres [19–22]. A

typical response curve, taken at 8mK and 1 bar pressure, is shown in figure 5. The

inset to figure 5 shows the corresponding drag coefficient as a function of the velocity.

As the driving force is increased, the velocity increases into a metastable laminar flow

state, before stepping down, switching into the turbulent flow state. As the drive is
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Fig. 6 The turbulent contribution to the drag coefficient as a function of peak velocity for
the tuning fork, compared with that for two vibrating wire resonators [2]. The inset shows a
close-up of the tuning fork data. The data were taken whilst decreasing the drive amplitude.

decreased again, the velocity decreases continuously back down towards the laminar

flow region, often (as in figure 5) showing a small step up in velocity as the laminar

regime is rejoined.

4.3 Comparison with Vibrating Wires

We can compare the observed behaviour of the fork directly with that measured for vi-

brating wires reported in [2]. In figure 6 we plot the turbulent contribution to the drag

coefficient as a function of peak velocity for our fork, together with the earlier data

for two vibrating wires of diameters 9 and 13 µm. The inset shows an expanded view

of the behaviour in the transition region. For each device, we show a down sweep, i.e.

the driving force is reducing during the sweep. This allow us to measure the turbulent

drag coefficient down to lower velocities since the transition to turbulence occurs at a

lower velocity on a down sweep. The similarities between wire and fork, as revealed in

figure 6, are quite remarkable:

(i) We observe a velocity, vonset, above which extra turbulent drag exists. For each

device, this is highly irreproducible from one sweep to the next. The up sweeps give

a higher and again irreproducible onset velocity. We also have strong evidence that
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the onset velocity is reduced in the presence of surrounding vorticity produced from a

neighbouring device [1]. Further measurements to better quantify this for the fork are

ongoing.

(ii) For each device, we can clearly define a critical velocity vc1 by extrapolating to

zero turbulent drag. This velocity is reproducible between sweeps and corresponds to

the minimum velocity needed to produce and sustain the vortex lines that create drag.

(iii) For each device, we can identify another reproducible critical velocity vc2 above

which the drag rises much more steeply.

(iv) Not only do we observe the same features, but the magnitudes of the three char-

acteristic velocities are very similar for the two wires and the fork. Furthermore, the

initial rise in the turbulent drag coefficient has a similar magnitude to that of the

two wire resonators. This is surprising given the large differences in the geometries of

the devices and their different resonant frequencies (we note that the vibrating wire

response was found to have a weak frequency dependence [2]). However, compared to

the fork, the turbulent drag on the vibrating wires appears to saturate at much lower

values and at much lower velocities.

4.4 The Superfluid Inertial Coefficient of a Tuning Fork

Figure 7 shows the resonant frequency of the fork as a function of velocity. The vacuum

data were taken at the base temperature of the dilution refrigerator before any helium

had been let into the cell. In this case the temperature of the fork is necessarily uncer-

tain, having cooled via its electrical leads that are thermally anchored to the mixing

chamber and to the cell body. As shown in the figure, there is a small decrease in

the resonant frequency, on the order of 0.15 Hz, dropping more quickly as the velocity

increases. The variation indicates that the effective mass and/or spring constant of the

fork must have some dependence on the amplitude of its motion.

When the fork is immersed in helium, its resonant frequency at low amplitude drops

below that in vacuum due to the added mass of fluid back-flow (corresponding to the

inertial coefficient of the fluid flow). The 500 mK data set of Fig. 7 is representative

of all the superfluid data, showing a further drop in frequency of about 0.2 Hz as the

velocity increases, roughly comparable with that of the fork in vacuum. We believe that

the variation is heavily dominated by the intrinsic properties of the fork. The frequency

changes shown in Fig. 7 are very similar in vacuum and in the superfluid. The small

differences are likely to be due to the differences in the surface cleanliness of the fork

and/or due the fact that the temperature of the fork for the vacuum measurements is

ill-defined owing to the lack of good thermal contact.

At 500 mK and 1 bar pressure the helium density is 146 kgm−3 and the resonant

frequency of the fork has dropped by 877 Hz below that in vacuum, giving CM = 0.98.

This is very close to 1, and is similar to values which were previously measured for

vibrating wire resonators [1].

The inset to the figure 7 shows an expanded view of the small changes in the

resonant frequency observed around the transition region. The data shown are for an

up sweep, in which the driving force is slowly incremented to higher values. The inset

shows the resonant frequency decreasing with increasing velocity in the laminar regime

(open symbols), the velocity then steps down and the frequency steps up a little as the

fork enters the turbulent regime (closed symbols). Despite the frequency increase as the
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Fig. 7 The resonant frequency of the fork as a function of peak velocity. Upper data show
the intrinsic response in vacuum with the dilution refrigerator at 5mK. Lower data show the
fork response in superfluid 4He at 500 mK and 1 bar pressure. The small steps on the vacuum
data are due to small phase changes or “relay clicks” as the function generator switches range.
This effect has been largely accounted for and removed in the 4He data. The inset shows a
close-up of the small frequency changes observed on sweeping up the fork driving force from
the laminar(open symbols) to the turbulent (closed symbols) regime. Note the velocity steps
down during the transition.

turbulent regime is entered, the resonant frequencies in the turbulent regime, at a given

velocity, are found to be very slightly lower than in the laminar regime. This behaviour

is the main qualitative difference between forks and vibrating wire resonators.

For the vibrating wires, the frequency is significantly higher in the turbulent regime

compared to the laminar regime. We can express this frequency shift as a change in

the inertial coefficient, CM . When a wire produces turbulence [2], the decrease of the

inertial coefficient δCM in the turbulent regime is found to have a magnitude very

similar to the turbulent drag coefficient, i.e. δCM ≃ CD. This is clearly not the case

for the fork. Since the frequency shift is negative in the turbulent state, the inertial

coefficient actually rises. Also the change is extremely small, at least a thousand times

smaller (and of opposite sign) than that observed with vibrating wires. For the wires

it is argued that vortex shedding leads to a reduction in backflow and hence reduced

inertial mass [2]. The fork operates at much higher frequency than the wires, and

one tentative explanation of the difference in behaviour is that vortices in the higher

frequency flow field are unable to respond on the timescale of the fork motion and are

therefore unable to affect the inertia of the superfluid backflow. This reasoning was

first suggested to explain the slight frequency dependence of the inertial coefficient

observed in vibrating wire measurements [2].
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5 Conclusions

We have measured the transition to turbulence of a resonating quartz tuning fork

immersed in superfluid 4He over a wide range of temperatures and pressures, concen-

trating on its behaviour in the low temperature, pure superfluid limit. We have shown

that the transition from laminar to turbulent flow is marked by the sudden appearance

of excess non-linear damping on the fork motion. The excess damping at low temper-

atures is insensitive to pressure. The drag coefficient that we infer from our data is

broadly consistent with that measured by other groups, and the turbulent drag fits

well to a simple empirical formula. We find that the turbulent drag is temperature

independent below 1K.

In a new experimental cell the behaviour of the same fork was found to have

changed. Now we observed metastability of the laminar regime, and consequent hys-

teresis and switching behaviour in the fork response. The behavior around the turbulent

transition is remarkably similar to that observed for vibrating wires. However there is

one major qualitative difference. For vibrating wires, the inertial coefficient decreases

substantially in the turbulent regime, while for the fork the inertial coefficient increases

but by a very small amount. Work is in progress to characterise more fully the switching

behaviour and its potential use to detect turbulence from other sources.
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33. M. Blaz̆ková, D. Schmoranzer, L. Skrbek and W. F. Vinen, Phys. Rev. B 79, 054522

(2009).
34. S.N. Fisher, A.M.Guénault, C.J.Kennedy and G.R.Pickett, Phys. Rev. Lett. 63, 2566

(1989).
35. S.N. Fisher, G.R. Pickett, and R.J.Watts-Tobin J. Low Temp. Phys. 83 225 (1991).
36. M.P.Enrico, S.N. Fisher and R.J.Watts-Tobin, J. Low Temp. Phys. 98, 81 (1995).
37. C.Bauerle, Y.M.Bunkov, S.N. Fisher and H. Godfrin, Phys. Rev. B. 57, 14381 (1998).
38. D.O. Clubb, O.V.L. Buu, R.M. Bowley, R. Nyman and J.R. Owers-Bradley, J. Low Temp.

Phys 136, 1 (2004).
39. M.Tsubota, T. Araki and S.K. Nemirovskii, Phys. Rev. B 62, 11 751 (2000).
40. D. Kivotides, J.C. Vassilicos, D.C. Samuels and C.F. Barenghi, Phys. Rev. Lett. 86, 3080

(2001).
41. T. Araki, M. Tsubota and S.K. Nemirovskii, Phys. Rev. Lett. 89, 145301 (2002).
42. W.F. Vinen, M. Tsubota and A. Mitani, Phys. Rev. Lett. 91, 135301 (2003).
43. M. Tsubota and M. Kobayashi, AIP Conference Proceedings 850, 219 (2006).
44. R. Hänninen. M. Tsubota and W.F. Vinen, Phys. Rev. B 75, 064502 (2007).
45. S. Fujiyama and M. Tsubota, Phys. Rev. B 79, 094513 (2009).
46. W.F. Vinen, Phys. Rev. B 71, 024513 (2005).
47. C.F. Barenghi and D.C. Samuels, Phys. Rev. Lett. 89, 155302 (2002).
48. W.F. Vinen, Phys. Rev. B. 71, 024513 (2005).
49. C.F. Barenghi, Y.A. Sergeev, and N. Suramlishvili, Phys. Rev. B 77, 104512 (2008).
50. P.E.Roche and C.F.Barenghi, Europhys. Lett. 81, 36002 (2008).
51. W.F. Vinen and J.J. Niemela, J. Low Temp. Phys. 128, 167 (2002).
52. “Quantum Turbulence”, Progress in Low Temperature Physics, Vol. 16, Elsevier B.V.,

editors M. Tsubota and W.P. Halperin, (2009).
53. Quartz Tuning Forks, part label “KDS5M”, from KDS America / Daishinku Corporation.
54. P. Skyba and S.M. Holt, private communication, and to be published.



16

55. K. Karrai, lecture notes (2000) at http://www.nano.physik.uni-
muenchen.de/publikationen/Preprints/p-00-03 Karrai.pdf

56. T. Sarpkaya, J. Fluid Mech. 165, 61 (1986).
57. J.R. Morison, M.P. O’Brien, J.W. Johnson and S.A. Schaaf, Trans American Inst. of

Mining and Metall. Eng. 189, 149 (1950).
58. C.H.K.Williamson, J. Fluid Mech. 155, 141 (1985).




