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Abstract The maternal segmentation coordinate gene bicoid plays a significant role during

Drosophila embryogenesis. The gradient of Bicoid, the protein encoded by this gene, determines

most aspects of head and thorax development. This paper seeks to explore the applicability of a

variety of signal processing techniques at extracting bicoid expression signal, and whether these

methods can outperform the current model. We evaluate the use of six different powerful and

widely-used models representing both parametric and nonparametric signal processing techniques

to determine the most efficient method for signal extraction in bicoid. The results are evaluated using

both real and simulated data. Our findings show that the Singular Spectrum Analysis technique

proposed in this paper outperforms the synthesis diffusion degradation model for filtering the noisy

protein profile of bicoid whilst the exponential smoothing technique was found to be the next best

alternative followed by the autoregressive integrated moving average.
Introduction

Morphogens are molecules which determine a cell’s destiny in

a concentration-dependent mode by governing the pattern of
tissue development and the position of various specialized cell
types within a tissue in the process of morphogenesis [1–3]. A
classic example of morphogens is bicoid (bcd), which is the first

known morphogen identified by Nsslein–Volhard in 1988 [1]
and encodes a homeobox transcription factor (in what follows,
the italic lower-case bcd represents either the gene or mRNA
and Bcd refers to protein). bcd is localised at the anterior

end of the egg during the oogenesis [2] and translation of bcd
begins after fertilization. Consequently, Bcd distributes along
the anterior-posterior (AP) axis of the egg, forming a concen-

tration gradient [2]. Such diffusion of Bcd by regulating the
production of the anterior structures determines the position
nces and
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Figure 1 A typical example of noisy Bicoid

Y-axis shows the fluorescence intensities obtained from the

attached fluorescence antibodies to the Bcd molecules and X-axis

shows the position along the embryo.
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and size of head and thorax of an adult fruit fly (http://
highered.mcgraw-hill.com).

Several computational models have been published for

Bcd gradient over the last three decades (see, for example,
[3]). However, as the Bcd profile achieved by fluorescence
antibodies technique is highly volatile, some proposed mod-

els, such as the simple synthesis diffusion degradation
(SDD) model, only exhibited limited performance [4,5].
They fail to clearly explain some characteristics of the Bcd

gradient, such as protein life time and length constant
[3,6–7]. Figure 1 shows a typical example of the Bcd gradient
along the egg length at cleavage cycle 14(3), effect of noise
(i.e., fluctuations visible in Figure 1) in this gradient can be

seen as the high volatile pattern. An initial look at the distri-
bution suggests Bcd follows an exponential trend. However,
owing to the high volatility seen in the series, the extraction

of this signal is not a simple task.
SDD, which was formulated before the identification of bcd

[4,8–11], is the most widely-accepted among the models used to

explain Bcd diffusion pattern. SDD ich. As a relatively simple
model, SDD follows an exponential curve [12]:

B ¼ Ae�x=k ð1Þ

where A is the amplitude, x is distance from the anterior
[13], and k is the length parameter obtained by fitting an
exponential model to the bcd intensity profile and computing

the position at which the concentration has dropped to
1=exp of the maximal value at the anterior (at x ¼ 0) [3].
However, this model is not fully consistent with all the

experimental observations. For example based on [4], if
Bcd molecules diffuse along the embryo with diffusion
constant D and Bcd lifetime of s, the concentration of

Bcd in this model follows:

@mðx; tÞ
@t

¼ D
@2

@x2
mðx; tÞ � s�1p mðx; tÞ þ Sðx; tÞ ð2Þ

where, x and t represent positions along the egg and time,
respectively, Sðx; tÞ is a source function describing the produc-
tion of Bcd molecules, mðx; tÞ is the formed concentration, and

sp represents protein lifetime [14]. Nevertheless, when using

this model the time needed for attaining the steady state con-
centration profile is much longer than the protein lifetime s,
whereas the length constant k is much smaller than the length

of the embryo. Moreover, pattern of Bcd expression estab-
lished by any model should be flexible to different time scales,
egg length, and embryos sizes [4,10].

Not only in developmental studies but also in all fields of
genetic studies, signal extraction and noise reduction are
regarded as important tasks since genetic data are often
characterized by the existence of considerable noise. Many

methods are utilized for signal extraction, such as machine
learning algorithms [15,16] and different background removal
techniques [17–19]. In this paper we evaluate the use of pow-

erful and popular signal processing techniques which include
both parametric and nonparametric methods to provide a
sound extraction of Bcd signal. Our aim is to examine

whether the selected signal processing models can provide a
more accurate signal extraction of Bcd in comparison to
SDD.
The selection of models representing both parametric and
nonparametric methods is important for several reasons.
Firstly, as seen below, the residuals following signal extraction

in Bcd are nonstationary. Secondly, parametric models rely on
the underlying assumptions of normality and stationarity, and
interestingly, SDD model is parametric. Thirdly, as noted in

[20], for the parametric methods, assuming stationarity for
the data, linearity of the model and normality of the residuals
can provide only an approximation of the true situation.
Therefore, a method that does not depend on these assumptions

could be very useful for modelling and extracting the signal
in Bcd data. Moreover, previous applications in solving signal
extraction problems were taken into account when selecting

models in this study. We use the SDD model as the overall
benchmark as it is the most widely accepted approach for
signal extraction in Bcd. We also consider the parametric

autoregressive integrated moving average (ARIMA) [21],
which has been applied for signal extraction in various fields
both historically and recently (see for example, [22–24]). In

addition, autoregressive fractionally integrated moving aver-
age (ARFIMA), which is mainly recognized as a parametric
method suitable for long memory processes where the decay
is slower than in an exponential process [24], is included for

comparison as well. Other parametric models considered are
state space models such as exponential smoothing (ETS), since
SDD in itself follows an exponential curve [12]. Singular spec-

trum analysis (SSA) technique (like neural networks, NN) is a
nonparametric signal processing model and does not rely on
any assumptions [25]. The SSA technique was initially evalu-

ated for gene expression [26] and has been previously applied
for signal extraction [2,6,7,26–30]. Therefore, the models used
in this paper include an optimized version of ARIMA [31], an
ARFIMA model [31], ETS [32], a feed forward NN model [32],

and SSA [33].
Gene expression can be traced either in time or space. The

data points used in this study represent the intensity levels for

the positions along the AP axis and are considered as a
sequenced series. Therefore, one-dimensional gene expression
data are used for signal extraction and the second spatial coor-

dinate (Dorsoventral DV axis) has not been considered in this
study. Moreover, it is important to note that this paper is not
aimed at showing any particular technique to be universally

best for modelling the Bcd signal. Instead we are mainly inter-
ested in showing how the selected signal processing techniques
compare and compete against each other, and the widely

http://highered.mcgraw-hill.com
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accepted SDD model. Any efforts at finding a universally opti-
mal model for this purpose would require more extensive
research which considers a wide range of filtering techniques

and that objective is beyond the mandate of this paper.
Methods

ARIMA

An optimized version of the ARIMA model is provided
through the forecast package in R, referred to as auto:arima,
and a detailed description of the algorithm can be found in

[32]. In brief, the number of differences is defined as d, which
may be determined using either a Kwiatkowski–Phillips–Sch
midt–Shin (KPSS) test, augmented dickey fuller test, or the

Phillips–Perron test. The algorithm then minimises the
Akaike information criterion (AIC) to determine the values
for the order of autoregressive terms p, and the order of the

moving average process q. The optimal model is chosen to
be the model, which represents the smallest AIC. The decision
on the inclusion or exclusion of the constant c is made depend-

ing on the value of d.
To expand on the above summary, we provide the follow-

ing modelling equations for ARIMA based on [33]. A non-
seasonal ARIMA model may be written as:

ð1� /1B� . . . /pB
pÞð1� BÞdyt

¼ cþ ð1þ /1Bþ . . .þ /qB
qÞet; ð3Þ

or

ð1� /1B� . . . /pB
pÞð1� BÞdðyt � ltd=d!Þ

¼ ð1þ /1Bþ . . .þ /qB
qÞet; ð4Þ

where l is the mean of ð1� BÞdðyt, c ¼ lð1� /1 � . . .� /pÞ
and B is the backshift operator. In the R software, the inclu-

sion of a constant in a non-stationary ARIMA model is equiv-
alent to inducing a polynomial trend of order d in the forecast
function. It should be noted that when d ¼ 0, l is the mean of
yt. The seasonal ARIMA model can be expressed as [32]:

UðBmÞ/ðBÞð1� BmÞDð1� BÞdyt ¼ cþHðBmÞhðBÞet; ð5Þ

where UðzÞ and HðzÞ are the polynomials of orders P and Q,
and et is white noise. There is an implied polynomial of order
dþD in the forecast function, if c–0. As mentioned

previously, to determine the values of p and q, the AIC of
the following form is minimised:

AIC ¼ �2logðLÞ þ 2ðpþ qþ PþQþ kÞ; ð6Þ

where k=1 if c–0 and 0 otherwise, and L represents the

maximum likelihood of the fitted model.
ARFIMA

The general form of an ARFIMA(p,d,q) model shares the

same form as an ARIMA process shown in equations (3).
However, in contrast to the ARIMA models, here d is allowed
to take the form of non-integer values. The ARFIMA model

used here is estimated automatically using the Hyndman and
Khandakar [31] algorithm explained above, and the Haslett
and Raftery [34] algorithm for estimating the parameters
including d. Moreover, this Hyndman and Khandakar [31]

ARFIMA algorithm combines the functions of fracdiff and
auto:arima to automatically select and estimate an ARFIMA
model. Initially, the fractional differencing parameter is

assumed to be an ARFIMA(2,d,0) model. Thereafter the data
are fractionally differenced using this estimated d and an
ARMA model is selected for the resulting series using

auto:arima. Finally, the full ARFIMA(p,d,q) model is re-
estimated using the fracdiff function.

ETS

The ETS technique overcomes a limitation found in earlier
ETS models that did not provide a method for easy calculation
of prediction intervals [35]. The ETS model from the forecast

package considers the error, trend, and seasonal components
along with over 30 possible options for choosing the best
ETS model via optimization of initial values and parameters

using the maximum likelihood estimator and selecting the best
model based on the AIC. A detailed description of ETS can be
found in [32].

NN

The NN model has been successfully used for gene expression
profiling, clustering and also gene identification [36–38]. NN

model is referred to as nnetar and provided through the
forecast package for R. A detailed description of the model
can be found in [32] along with an explanation on the under-

lying dynamics. In brief, the nnetar function trains 25 NNs
by adopting random starting values and then obtains the mean
of the resulting predictions to compute the forecasts. NN takes

the form

ŷt ¼ b̂0 þ
Xk
j¼1

b̂jwðxT
t :ĉjÞ; ð7Þ

where xt consists of p lags of yt and T denotes transpose. Then,
the function w has the logistic form:

wðx0t � ĉjÞ¼ 1þ exp �ĉj0þ
Xp
i¼1

ĉji �yt�1

 !" #�1
j¼ 1; . . . ;k: ð8Þ

This form of NN is referred to as one hidden layer feed for-
ward NN model and is the default version in the package.

However, we consider the use of multiple hidden layers in
order to select the best NN model for these types of data.
The nonlinearity arises through the lagged yt, entering in a

flexible way through the logistic functions of (8). The number
of logistic functions (k) included is known as the number of
hidden nodes.

The NN model in this paper is estimated using the auto-

matic forecasting model, nnetar which is provided through
the forecast package in R. For a detailed explanation on
how the nnetar model operated, see the ‘Package forecast’ doc-

umentation (http://cran.r-project.org/web/packages/fore-
cast/forecast.pdf). The parameters in the NN model are
selected based on a loss function embedded into learning

algorithm.

http://cran.r-project.org/web/packages/forecast/forecast.pdf
http://cran.r-project.org/web/packages/forecast/forecast.pdf
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SSA

SSA has been applied for extracting the signal of Bcd and
other segmentation genes [2,6,26,27]. The basic SSA method
consists of two complementary stages: decomposition and

reconstruction; of which each stage includes two separate
steps. At the first stage the Bcd is decomposed into the sum
of a small number of independent and interpretable compo-
nents such as a slowly varying trend and a structureless noise

[33], and at the second stage the noise-free Bcd is reconstructed
[39]. The SSA modelling process for Bcd is summarized below,
and in doing so we mainly follow [33].

The first step is concerned with mapping a one dimensional
time series YN ¼ ðy1; . . . ; yNÞ into the multi-dimensional series

X1; . . . ;XK with vectors Xi ¼ ðyi; . . . ; yiþL�1Þ
T 2 RL, where

K ¼ N� L+1. This process is referred to as embedding whilst
the vectors Xi are called L-lagged vectors. The single choice of

the embedding stage is the window length L, which is an integer
such that 2 6 L 6 N� 1. This step results in the trajectory
matrix X, which is also a Hankel matrix and takes the form:

X ¼ ½X1; . . . ;XK� ¼ ðxijÞL;Ki;j¼1.

Next we obtain the singular value decomposition (SVD) of
the trajectory matrix and represent it as a sum of rank-one

bi-orthogonal elementary matrices. The eigenvalues of XXT

are denoted by k1; . . . ; kL in decreasing order of magnitude

ðk1 P . . . kL P 0Þ and by U1; . . . ;UL the orthonormal system.
Set

d ¼ maxði; suchthat ki > 0Þ ¼ rank X:

If we denote Vi ¼ XTUi=
ffiffiffi
k
p

i, then the SVD of the trajectory
matrix can be written as:

X ¼ X1 þ � � � þ Xd; ð9Þ

where Xi ¼
ffiffiffi
k
p

iUiV
T
i (i ¼ 1; . . . ; d). The expansion (9) is

uniquely defined if all the eigenvalues have a multiplicity of
one. The process of splitting the elementary matrices Xi into

several groups and summing the matrices within each group
is called grouping and transfusing each resultant matrix
from grouping step to a less noisy series is called diagonal

averaging.
Note that usually the first eigenvalue corresponds to the

trend of a given dataset when using SSA. Thus we extract
the first eigenvalue alone and consider the remainder as noise,

and then perform diagonal averaging to transform the matrix
containing the first eigenvalue into a time series which will now
provide the extracted signal from Bcd and can therefore be

compared with the other models.
Table 1 Average loss functions and RRMSE for signal extraction usin

Model RMSE MAPE (%) MA

ARIMA 4.69 6.00 3.21

ARFIMA 5.34 5.80 3.42

ETS 3.74 4.40 2.50

NN 6.03 6.27 4.11

SSA 2.25 2.00 1.58

SDD 10.96 23.00 9.30

Note: RMSE, root mean squared error; MAPE, mean absolute percentag

squared error; ARIMA, autoregressive integrated moving average; AR

exponential smoothing; NN, neural network; SSA, singular spectrum anal
Details on which models are parametric or nonparametric
are presented in Table S1.

Results

Simulation results

A series of simulated data are used to evaluate the perfor-

mance of different techniques. We begin the simulation by con-
sidering an exponential curve drawn from the SDD model as
the benchmark. In order to obtain a noisy series similar to
the real one, random error e of a normal distribution with zero

mean and variance r2
e with different amplitudes were added to

different parts of the series [7]. This simulation is repeated 1000
times. Finally, by fitting the different mentioned models to the
noisy simulated Bcd series, the following metrics are calculated

in order to measure the accuracy of signal extraction. These
include the mean absolute error (MAE), mean absolute per-
centage error (MAPE), and the ratio of the root mean squared

error (RRMSE).

MAE ¼
XM
i¼1
jYi � Ŷij; ð10Þ

MAPE ¼ 1

N

XN
t¼1

100�
yTþh � yTþh;i

yTþh

����
����; ð11Þ

RRMSE ¼ RMSEðAlternateModelÞ
RMSEðSDDÞ

PN
i¼1ðŜl � SiÞ

2
� �1=2
PN

i¼1ð ~Sl � SiÞ
2

� �1=2
ð12Þ

where, Ŝl are the estimated values of si, obtained via an alter-

nate model and ~Sl are the estimated values of si obtained
through SDD and N is the series length. The alternate model
outperforms the SDD method if RRMSE < 1, and performs

worse than SDD if RRMSE > 1.
Table 1 reports the average RMSE values attained by each

model following 1000 iterations and some other descriptives

relating to the performance of each model. A significant reduc-
tion in the RMSE value is achieved by SSA, confirming that
these results are more accurate than those estimated by SDD

and other models. Based on the RRMSE criterion, the
parametric SDD model reports the worst performance in
comparison to the other models considered in this simulation.
SDD is outperformed by 66%, 58%, and 52% by the ETS,

ARIMA, and ARFIMA, respectively. Interestingly, the
g noisy simulated data

E RRMSE Minimum Maximum

0.42 3.00 7.70

0.48 3.54 10.19

0.34 1.89 6.51

0.55 4.02 11.29

0.20 1.07 3.87

N/A 10.92 11.27

e error; MAE, mean absolute error; RRMSE, ratio of the root mean

FIMA, autoregressive fractionally integrated moving average; ETS,

ysis; SDD, synthesis diffusion degradation.



Ghodsi Z et al / Bicoid Signal Extraction 187
nonparametric feed-forward NN model is the second worst
performer and outperforms the SDD model by 45%. It should
be noted that we have examined the use of multiple hidden

layers and selected a NN model with two hidden layers as
the most appropriate for these data based on the lowest
RMSE and MAE.

According to RRMSE, SSA provides the best signal extrac-
tion and is successful at outperforming the SDD model by
80%. The MAE and MAPE criteria also confirm that SSA is

the best model in comparison to SDD, ARIMA, ARFIMA,
ETS, and NN, whereas SDD is in fact the worst performer
in this case. The minimum and maximum columns clearly indi-
cate that there is less variation in the results reported by SSA

and accordingly we can confirm that SSA is the most stable
model in this case.

In order to verify the statistical significance of the simula-

tion results, we opted for the nonparametric two-sample
Wilcoxon test, which could indicate whether the RMSE values
attained from two given methods via simulation actually differ

in terms of the size. Our results showed a significant difference
between the RMSE values obtained via SDD and all other
models (P= 0.01), further confirming the validity of the results.

The superior performance portrayed by the SSA technique
could be explained by several factors. First, SSA model is a
specialised filtering technique with the ability of decomposing
a given time series and analysing the eigenvalues to accurately

identify and separate the noise from the signal. The appropri-
ateness of the separation between signal and noise obtained via
SSA was confirmed by the very small values of w-correlation,

indicting that the signal and its corresponding noise are almost
w-orthogonal [40]. Secondly, it is also interesting to note that
the minimum and maximum errors (Table 1) reported by
Figure 2 Signal extraction using various signal processing techniques

Black and red colours depict the noisy series and the extracted signal,
SSA over the 1000 simulations are significantly lower than
the minimums and maximums reported by the other models.
As a result, it is clear that the SSA technique is more reliable

and suitable for signal extraction in Bcd as the average
RMSE, MAPE and MAE values are significantly lower than
those reported by the other models over the 1000 iterations

(more detailed results of the simulation study are available
upon request).

Bicoid data

Next, we used the 17 series (http://urchin.spbcas.ru/flyex/) pre-
sented by Alexandrov et al. [26] as the real data for further

analysis. A complete explanation on the method and biological
characteristics of the 17 series can be found in [30,40,41].

The expression level of Bcd protein in each Drosophila
embryo was measured by using fluorescently-tagged antibod-

ies. Such quantification relies on the assumption that the
actual protein concentrations detected by the antibodies and
the fluorescence intensity are linearly related to the Bcd protein

concentration in the embryos. In this study nuclear intensities
were obtained from a rectangle of 50% of the DV height of the
embryo, centred on the AP axis. These data present the gene

expression of the AP coordinate between 20% and 80% egg
length, which can be considered as a sequenced series.
Similar to [26], we set to extract the signal from one-
dimensional gene expression data, hence, the second spatial

coordinate (DV axis) has not been considered.
First we seek to extract the signal in the actual data using

various signal processing techniques. The examples of the out-

put from these efforts for embryo hz29 can be found in
Figure 2. It is evident that in comparison to the other models,
and SDD model

respectively. SDD, synthesis diffusion degradation.

http://urchin.spbcas.ru/flyex/
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the SSA method provides a relatively smooth signal line. In
addition, SDD provides a smooth line as opposed to
ARIMA, ARFIMA, and NN models. However, SDD signal

appears to be least accurate based on the RMSE, MAE, and
MAPE criterions. Overall, the results from the application to
real data appear to be consistent with the simulation findings

based on data shown in Figure 2.
A close look at Figure 2 suggests that the SDD signal line is

the smoothest one out of the evaluated options. However,

SDD signal extraction is also the worst fit, as it fails to accu-
rately model the signal amidst the fluctuations, although it
appears to have filtered these fluctuations out. The feed-
forward NN model with two hidden layers has difficulties in

filtering the fluctuations to accurately capture the signal in
Bcd. Similar issues exist to various extents for ARIMA and
ARFIMA models (ARFIMA being relatively worse than

ARIMA). In contrast, ETS and SSA are the most effective
ones. Yet, scrutinization of the ETS signal extraction graph
revealed that ETS line loses its smoothness to some extent at

the middle stages, whereas SSA model is able to provide a
smooth signal line right throughout. Therefore, based on the
smoothness of the extracted signal, we conclude that SSA does

indeed capture the signal in Bcd relatively better than the other
methods tested.

Figure 3 shows the residuals from each model following
signal extraction. The residuals for the Bcd data following

signal extraction are nonstationary. To verify this observa-
tion, we examined each of the residuals using the augmented
Dickey–Fuller (ADF) test for unit roots. Our results showed
Figure 3 Residuals following Bicoid signal extrac
that the residuals are in fact nonstationary (P = 0.01).
Interestingly, the parametric models of ARIMA and
ARFIMA are able to provide a relatively sound signal

extraction for Bcd, although the data are nonstationary.
ARIMA algorithm used in this paper automatically considers
taking the number of differences until the series becomes sta-

tionary, whereas for ARFIMA model, we evaluated a log
transformation, which worsened the signal extraction.
However, residuals from SDD model do not appear to be

white noise but have a clear signal. Accordingly, we tested
the residuals from the parametric models for white noise
using the Ljung–Box test and indicated that SDD residuals
are not white noise (P = 0.01). This further explains the

comparatively mediocre performance shown by SDD when
applied to real data.

Finally, we evaluate the correlation between the signal and

noise extracted from each model based on Pearson, Kendall
and Spearman correlation coefficients in order to analyze the
noise separation capabilities. A correlation coefficient close

to zero means that signal and noise do not have a correlation
and hence are well seperable. The correlations for all 17 data-
sets are reported in Table 2. It is evident that all models tested

have attained a satisfactory level of separation between noise
and signal with SSA providing correlations below 0.10 in 15
out of the 17 cases. Moreover the correlations reported by
SSA tend to be smaller (with the exception of a few cases).

These results further support the relatively sound performance
of SSA in extracting the Bcd signal. The filtering capabilities
displayed by SSA are indeed advantageous for signal extraction.
tion using various signal processing techniques



Table 2 Correlation values between Bcd signal and noise in 17 different embryos

Embryo Test ARIMA ARFIMA ETS NN SSA SDD

ac2 Pearson �0.1026 �0.0716 �0.145 0.047 �0.035 0.057

Kendall �0.125 �0.087 �0.065 0.001 0.011 0.176

Spearman �0.146 �0.104 �0.077 0.005 0.03 0.187

ad36 Pearson �0.225 �0.147 �0.025 0.041 0.051 �0.124
Kendall �0.161 �0.144 �0.054 0.019 �0.078 �0.452
Spearman �0.207 �0.193 �0.08 0.022 �0.106 �0.51

as15 Pearson �0.129 �0.125 �0.125 0.03 0.057 0.161

Kendall �0.088 �0.086 0.018 0.012 �0.006 0.387

Spearman �0.114 �0.11 0.032 0.024 0.007 0.438

as18 Pearson �0.129 �0.125 �0.041 0.03 0.057 0.161

Kendall �0.088 �0.086 0.018 0.012 �0.006 0.387

Spearman �0.114 �0.11 0.032 0.024 0.007 0.438

as19 Pearson �0.157 �0.13 0.015 0.037 0.034 0.065

Kendall �0.12 �0.099 �0.018 0 �0.054 0.16

Spearman �0.181 �0.151 �0.024 0.003 �0.079 0.203

as22 Pearson �0.148 �0.124 �0.069 0.338 �0.03 0.085

Kendall �0.029 0.008 0.126 0.252 0.093 0.235

Spearman �0.03 0.018 0.168 0.388 0.14 0.252

as27 Pearson �0.175 �0.183 �0.053 0.003 0.015 0.195

Kendall �0.105 �0.073 0.03 0.014 �0.006 0.439

Spearman �0.139 �0.101 0.042 0.025 0.015 0.473

cb22 Pearson �0.204 �0.198 �0.025 0.003 0 0.076

Kendall �0.069 �0.083 0.014 0.011 0.011 0.159

Spearman �0.086 �0.111 0.031 0.023 0.035 0.163

cb23 Pearson �0.156 �0.092 �0.041 0.026 0.028 0.06

Kendall �0.082 �0.037 0.051 0.011 0.039 0.157

Spearman �0.12 �0.057 0.065 0.01 0.053 0.199

hx8 Pearson �0.156 �0.092 �0.041 0.026 0.028 0.06

Kendall �0.082 �0.037 0.051 0.011 0.039 0.157

Spearman �0.12 �0.057 0.065 0.01 0.053 0.199

hz19 Pearson �0.186 �0.206 �0.008 0.001 0.038 �0.156
Kendall �0.092 �0.111 �0.014 0.009 �0.017 �0.335
Spearman �0.141 �0.168 �0.024 0.007 �0.019 �0.399

hz20 Pearson �0.152 �0.086 0.063 0.006 �0.005 0.071

Kendall 0.013 0.064 0.177 0.119 0.14 0.123

Spearman 0.02 0.091 0.244 0.162 0.195 0.133

hz29 Pearson �0.229 �0.188 0.191 �0.001 0.074 0.232

Kendall �0.062 �0.033 0.116 0.04 0.02 0.463

Spearman �0.09 �0.054 0.147 0.042 0.025 0.543

iz4 Pearson �0.202 �0.23 0.022 0.028 �0.003 0.105

Kendall �0.071 �0.006 0.108 0.034 0.073 0.21

Spearman �0.086 �0.01 0.16 0.052 0.119 0.212

iz13 Pearson �0.244 �0.039 �0.026 0.035 0.027 0.149

Kendall �0.137 �0.008 �0.029 0.008 �0.046 0.334

Spearman �0.178 0 �0.037 0.024 �0.051 0.387

iz15 Pearson �0.228 �0.172 0.075 0.029 0.043 0.149

Kendall �0.119 �0.115 0.049 0.02 �0.006 0.426

Spearman �0.17 �0.162 0.056 0.026 �0.013 0.523

ms19 Pearson �0.207 �0.201 0.102 0.028 0.017 0.154

Kendall �0.141 �0.106 0.069 �0.023 �0.049 0.348

Spearman �0.185 �0.142 0.096 �0.04 0.048 0.385

Note: The signals of 17 Bicoid (Bcd) series in Drosophila embryos were presented in [26] and correlation was calculated using R. ARIMA,

autoregressive integrated moving average; ARFIMA, autoregressive fractionally integrated moving average; ETS, exponential smoothing; NN,

neural network; SSA, singular spectrum analysis; SDD, synthesis diffusion degradation.
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Conclusion

Even though the extraction of Bcd signal appears to be simple,
in practice it is an arduous and complicated task as a result of

the nonstationary noise in Bcd. The feasibility of capturing the
signal of Bcd gene in Drosophila embryos suggests that the
SSA model may be of general use in evaluating other expres-
sional systems.
Extracting the Bcd degradation signal from the noisy data
is central to this study. We tested various models using both
simulated and real data to ensure the validity of the findings.

The obtained results illustrate SSA outperforms the SDD
model and other methods tested in this study for filtering noisy
Bcd. SSA is more flexible than the SDD for the Bcd

degradation modelling, whereas ETS was the next best
alternative followed by ARIMA. However, it should be noted
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that we used the simplest form of the SDD model. More
advanced models have been developed as the solution to sim-
ple SDD model (see for example [42]), which are expected to

give more reliable results in Bcd signal extraction.
Moreover, we tested both parametric and non-parametric

algorithms in this study, it is of note that non-parametric algo-

rithms are not explicitly better than parametric algorithms.
Their performance depends and varies on the nature of the data
in question. In the case of Bcd signal extraction, we find the non-

parametric SSAmodel outperforming the rest. Interestingly the
simple parametric model of ARIMA outperforms the non-
parametric NN algorithm. The poor performance of the NN
model can be attributed to its proneness to overfitting.

In conclusion, our results confirm that filtering is very
important for Bcd curve fitting and the SSA technique yields
a promising result for Bcd analysis. Also, in comparison to

other parametric and nonparametric methods evaluated in this
paper, using SSA for signal extraction gives the ability of using
both dimensions (AP and DV) which leads to a more reliable

result. It would be insightful to consider various other filtering
approaches, such as nonparametric linear filtering, wavelets,
and the NN models (as described in [43,44]) for trend extrac-

tion in Bcd in order to examine any differences in performance
in comparison not only to ETS and more advanced SDD mod-
els, but also to SSA, which has shown promising results.
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