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Abstract

Many scientific fields consider accurate and reliable forecasting meth-
ods as important decision-making tools in the modern age amidst increas-
ing volatility and uncertainty. As such there exists an opportune demand
for theoretical developments which can result in more accurate forecasts.
Inspired by Colonial Theory, this paper seeks to bring about consider-
able improvements to the field of time series analysis and forecasting by
identifying certain core characteristics of Colonial Theory which are sub-
sequently exploited in introducing a novel approach for the grouping step
of subspace based methods. The proposed algorithm shows promising re-
sults in terms of improved performances in noise filtering and forecasting
of time series. The reliability and validity of the proposed algorithm is
evaluated and compared with popular forecasting models with the results
being thoroughly evaluated for statistical significance and thereby adding
more confidence and value to the findings of this research.
Keywords: Colonial theory, forecasting, nature inspired algorithm, sub-
space methods.

1 Introduction

As a great source of inspiration, nature holds the key to many questions we face
on a daily basis. Therefore, it is not entirely surprising that much of the novel
problem solving techniques were initially inspired by nature (see for example [1–
5]), even though credit is seldom given. In developing such intelligent solutions,
nature provides us with effective background knowledge which follows from the
profound observation and questioning of a natural phenomenon.

Quantum computing [1], genetic algorithms [2], neural networks [3], swarm
algorithms [4] and ant colony optimization algorithms [5] are among the most
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established nature inspired models which seek to imitate specific phenomenon
from nature in order to provide simple solutions to complex problems. Al-
though attempting to model natural phenomena has a long history, the recent
application of nature inspired algorithms like firefly algorithm [6], neuro fuzzy
technique [7] and genetic programming [8] in the area of soft computing and
also recent improvements in forecasting approaches [9, 10], has lead to more
accurate analysis and predictions, and thereby causing a noticeable growth of
interest in this field [11–18]. However, attempts at improving signal extrac-
tion and forecasting using bio–inspired algorithms is a relatively new area of
research. Moreover, it is noteworthy that in most of the nature inspired algo-
rithms, the natural phenomenon of interest is the strategy taken by biological
organisms after facing an environmental change which enables the organism to
exploit an ingenious solution to meet the new specific conditions.

Even though such biological solutions have been many times by organisms
over the evolution process, the most prominent one can be referred to as the
multicellularity phenomenon which describes how multicellular organisms arose
from a single cell and generated multi-celled organisms. Despite there being
various theories that may be able to explain this mechanism, Colonial Theory
(CT) has received most credit by developmental scientists [19]. Inspired by
CT and by identifying certain characteristics of this theory, in this paper we
seek to draw a line between nature and mathematics. The mathematical pro-
cedures which we specifically seek to link with nature consist of Singular Value
Decomposition (SVD) based methods and signal subspace (SS) methods which
form the basis of a general class of subspace-based noise reduction algorithms.
The superior performance of this class of algorithms in noise reduction and
forecasting has been proved by several studies [20–22].

In this context, the Singular Spectrum Analysis (SSA) technique, which is a
SVD and SS based method has been considered as a powerful nonparametric
tool [23]. In brief, the SSA technique begins by decomposing the original series
into the sum of a small number of independent components. Thereafter, the
selected components are used to reconstruct the less noisy series which can be
used for forecasting future data points. However, due to the nature of least
squares (LS) estimation method used in the current SSA procedure, the signal
and noise separation is not optimum and the reconstructed series continues to
hold some part of initial noise whilst the residual is not completely signal free.
This paper seeks to consider an alternative approach which is based on CT in
order to provide a more efficient outcome for the signal and noise separation
issue in SSA.

The exploitation of CT towards improving the SSA process is made possible
via our identification of a general similarity between CT and SSA. However, this
similarity was not visible in the Grouping step of the basic SSA process, and
therein lies our focus as we intend on defining a new approach to grouping in
SSA by imitating one of the steps followed in CT. It is expected that this novel
CT based approach to grouping will enable a more efficient separation of signal
from noise which in turn will enhance the signal extraction and forecasting
results.

The remainder of this paper is organized such that Section 2 presents an
outline of CT along with the steps underlying the SSA process in order to
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clearly illustrate similarities and discuss how the different steps of CT are fully
consistent with the procedure underlying SSA. Section 3 describes the newly
introduced approach for grouping in SSA. Section 4 provides the theoretical
presentation of the algorithm which is followed by several applications in Sec-
tion 5 and the paper concludes with a concise summary in Section 6.

2 Similarities between SSA and CT

This section focusses on providing a clear view on the similarities between SSA
and CT as portrayed in Figure 1. In what follows, the information contained in
Figure 1 is expanded upon as we present a detailed explanation of the linkages
between SSA and CT.

Figure 1: T
he linkage between CT and SSA.

The SSA method is made up of two complementary stages: Decomposition
and Reconstruction; each stage consists of two compatible steps. At the first
stage a group of small number of independent and interpretable components is
achieved by decomposing the main series [23], which is followed by the recon-
struction of a less noisy series at the second stage [24]. Thereafter, this noise
free series is used for forecasting future data points.

2.1 Stage 1: Decomposition

We begin with a one dimensional time series, YN = (y1, . . . , yN ) where N
is the length of the series. The SSA technique consists of two choices, the
window length L and the number of eigenvalues r [25]. In SSA the number of
components are related to the selection of the proper window length L which
should be defined such that it minimises the signal distortion and maximises the
residual noise level. However, we cannot impose a general rule in selecting L for
different time series with different structure. For example, in instances where
there is a periodic component with an integer period like a seasonal component,
to obtain a higher separability the tradition is to select L proportional to that
period [23].

Likewise, the starting point of CT is a single cell which evolves over time
and generates a multi-celled organism. Similar to SSA, there is also a limit on
the number of cell types and different kinds of organisms necessitate different
numbers of cell types. It is assumed that this number is determined by the
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balance between selective pressure and functional requirements, whilst variety
is favoured by selection, functional needs limit the number of cell types [26].

2.1.1 1st step: Embedding

Here we take the one dimensional time series YN , and map it in order to create a
multi-dimensional variable of X1, . . . , XK where Xi = (yi, . . . , yi+L−1)

′ ∈ RL.
It is clear that this can be viewed as the creation of the colony from the initial
single cell as we take YN and create multiple dimensions from the same series.
This step provides us with a trajectory matrix, X which is a Hankel matrix
that captures all information contained in YN .

X = (xij)
L,K
i,j=1 =


y1 y2 y3 . . . yK
y2 y3 y4 . . . yK+1

...
...

...
. . .

...
yL yL+1 yL+2 . . . yN

 . (1)

It should be noted that unlike the Symbiotic theory [27], which assumes
that the symbiosis of various species caused a multicellular organism, in CT it
is the symbiosis of many cells of the same species that forms a multicellular
organism. This point is interesting as it can be referred to as the first and main
difference between SSA and principal component analysis (PCA). In the latter,
the obtained matrix is achieved by considering different time series (multiple
cells) whilst in SSA we consider one time series (single cell).

Moreover, transferring a one dimensional time series into a trajectory matrix
will enable us to significantly reduce the computation time required for running
the algorithm, as it eliminates the need for running the algorithm over a wide
range of values for the hidden state dimension. Furthermore, by analysing the
eigenvalues with the aim of filtering the signal and noise, the signal to noise
ratio (SNR) will be optimised in the newly reconstructed time series. Likewise,
increasing in size is initially favoured by individual cells since multicellular or-
ganisms do not have the size limit which is mainly imposed by diffusion. As the
surface-to-volume ratio decreases in a given single cell, with increased size they
will experience difficulty in obtaining the required nutrients and transporting
the cellular waste products out the cell [26, 28].

2.1.2 2nd step: Singular Value Decomposition

SVD is a procedure which is performed on X and provides us with several eigen-
values or components. The components obtained via this step are identified as
trend, periodic, quasi-periodic component, or noise. In CT, X can represent
the entire colony of cells generated from the original single cell. By increasing
the interdependency level in a colony some of the cells specialize to do different
tasks and by obtaining ever more complexity level, cells form tissues and then
organs [26].
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2.2 Stage 2: Reconstruction

In SSA, this is the stage where we seek to analyze the eigenvalues extracted
via the SVD step to differentiate between noise and signal in a time series. In
CT this would correspond to identifying which of the specialised cells are able
to successfully carry out the reproductive task and which cells are responsible
for viability.

2.2.1 1st step: Grouping

Grouping is a very important step in SSA as the quality of the filtering achieved
via this technique depends on the successful analysis of eigenvalues and selection
of appropriate groups of them to rebuild the less noisy time series. In brief,
this step involves grouping together the eigenvalues with similar characteristics
i.e. signal and harmonic components whilst leaving out those corresponding to
noise. Likewise, the grouping step plays a significant role in CT as it determines
which of the specialised cells are successful in carrying out the reproduction task
and which of these fail along that way. Here it is imperative to note that in
spite of the general similarity between SSA and CT in the grouping step, there
is an important fundamental difference between the current version of SSA and
CT which is discussed in detail in Section 4.

2.2.2 2nd step: Diagonal Averaging

The diagonal averaging step in SSA transforms the matrix of grouped eigenval-
ues back into a Hankel matrix which can later be converted into a time series.
The resulting time series will be the less noisy, filtered time series correspond-
ing to the original one-dimensional time series that was applied to the SSA
process at the beginning. This step is important and similar to the final stage
of CT where a single multiple organism is formed after defining the productive
cells in order to compensate for the increased cost of reproduction imposed by
increasing the size of the colony size.

According to the role of a small variant in CT, adding a single cell will only
have a slight impact on the performance of a large organism [29] which means
after achieving the major functional specializations, there would presumably
be a decline in adding capabilities by increasing the number of cell lines [26].
Similarly, in a time series, after extracting different components related to the
trend, oscillation and noise, increasing the number of observations will give us
more components but all of these will be categorised in the previously defined
groups of components.

3 A New Approach for Grouping

It is widely accepted that the first grouping in nature happened when mul-
ticellular organisms arose from a single cell and generated a multi-celled or-
ganism [30]. At the very beginning of life there were only single cells. Today,
after millions of years, most animals, plants, fungi, and algae are made up of
multiple cells that work together as a single being [31].
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Presented in this section is a brief explanation on developing functional spe-
cialization and grouping the specialized cells of CT. Following this approach
which is called changes in the level of complexity [32], we describe a novel
approach for grouping in SSA.

In order to present a clearer view, as a model system, we consider Volvo-
calean green algae which are well suited for studying the transition as they
provide different ranges from unicells to multicellular organisms with the ex-
plicit specification between germ and soma cells. In Volvocalean green algae,
multicellular organisms are formed clonally from a single cell [33]. Here, we
mainly focus on one member of this lineage named V. carteri which exhibits a
range of development in different cell types [32].

In [34] a twelve-step program for the grouping step in V. carteri is considered.
In this process, motility and mitosis activity compete for the same cellular
machinery and cell destiny is determined finally by the location of microtubule
organizing centre. The activity of the microtubule organizing centre mainly
depends on its location in the cell and can serve either as a basal body which
is related to the flagellar synthesis and consequently cell motion or a mitotic
spindle which aids the segregation of the chromosomes during mitosis [35]. This
germsoma dichotomy is generated during the early embryogenesis and results
in specifying two cell types; the somatic cells which are non-reproductive and
only vegetative and the germ cell which performs the exclusively reproductive
task [34].

Here, as the germ cells execute the reproductive function and cell divisions
which are required to produce a new daughter colony we consider them as
those signal components which are later selected for series reconstruction. Dif-
ferentiating the somatic and germ cells in V. carteri is largely dependent on
the genetic differentiation which happens in somatic cells. During this process
regA which is a regulatory gene and encodes a transcriptional repressor begins
to express [36]. As a result, several nuclear genes which are responsible for
coding the chloroplast proteins are suppressed [37]. Consequently, these so-
matic cells will not go under the cell growth or division. Lacking the division
ability, they do not participate in the reproductive functions and offspring but
accomplish the survival task by flagellar action [34].

When comparing the grouping step between CT and SSA, two important
points must to be highlighted:

1. Following differentiation germ cells will not stay attached together. In
a colony, those cells underpinning reproductive functions may divide on
(a) the colony surface, (b) introgress or (c) in the interior of the colony
as shown in Figure 2 [35].

2. In each round of reproduction, germ cells will produce both future germ
cells and soma cells.
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Figure 2: Genetic variants produced differentiated cells in colonial flagellates
[35].

However, the current grouping stage of the SSA method is based on the least
squares (LS) estimator i.e., choosing the leading eigentriple which describes the
general tendency of the series [23]. Accordingly:

• Selecting the signal components follows a binary approach. In other
words, by estimating the signal rank r, the first r eigenvalues are always
selected as signal components and the rest is considered to be noise.

• The leading components of I1, . . . , Im are related only to signal, hence, it
is assumed that the reconstructed signal is not perturbed by noise.

Taking into consideration these points of comparison and our assumption
which states germs cell from CT are equal to signal components, we can con-
clude that following the LS estimator the first r selected eigenvalues will not
produce a clear signal because germ cells will produce both future germ cells
and soma cells. This statement makes sense when we take the noise perturba-
tion into account. Even in the leading components of I1, . . . , Im, we have to
exclude some eigenvalues with less information about the series, seek to find
the other related signal components which capture more information and use
all of them for reconstructing the series.

4 SSA–CT Algorithm

Presented below is a concise explanation of the SSA–CT algorithm which has
also been depicted in Figure 3. In this paper, we use root mean squared er-
ror (RMSE) criterion to determine the optimal choices of L and r (it is also
possible to use any other criteria to determine the error as explained below
in the algorithm). Accordingly, in each L we are looking for a combination
of eigenvalues r which provides the lowest RMSE, and this in turn represents
the optimal decomposition and reconstruction choices for the SSA model. The
automated SSA-CT code is able to perform this task by evaluating all possible
L and r choices for a given time series. 1

1The SSA-CT code used in this study is available upon request.
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Figure 3: SSA-CT flowchart which depicts different computational steps of this
algorithm.

1. Consider a real-valued nonzero time series YN = (y1, . . . , yN ) of length
N .

2. If the aim is signal extraction, consider the whole series and if the aim is

forecasting, divide the time series into two parts; 2
3

rd
of observations for

training the SSA-CT model and 1
3

rd
for testing the forecast accuracy.

3. Use the training data to construct the trajectory matrix X = (xij)
L,K
i,j=1 =

[X1, ..., XK ], where Xj = (yj , ..., yL+j−1)T and K = N −L+ 1. Initially,
we begin with L = 2 (2 ≤ L ≤ N

2 ) and in the process, evaluate all possible
values of L for YN .

4. Obtain the SVD of X by calculating XXT for which λ1, . . . , λL denotes
the eigenvalues in decreasing order (λ1 ≥ . . . λL ≥ 0) and by U1, . . . , UL

the corresponding eigenvectors. The output of this stage is X = X1 +
. . .+ XL where Xi =

√
λiUiV

T
i and Vi = XTUi/

√
λi.

5. Adapt a diagonal matrix containing the weights WK×K as follows:

ŜCT = U1(WCTΣ1)V
′

1 .

6. Choose the weight matrix WK×K .

WCT = diag ((1 ∨ 0), . . . , (1 ∨ 0)) .

7. Evaluate all possible combinations of WCT (step by step) for the selected
L and split the elementary matrices Xi (i = 1, . . . , L) into several groups
and sum the matrices within each group.
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8. Perform diagonal averaging to transform the matrix into a Hankel matrix
which can then be converted into a time series.

9. Find the RMSE value for each reconstructed series and report the L
and the selected combination of r attributed to the minimum RMSE as
optimal choices.

10. The output is a filtered series that can be used for forecasting.

The optimal choices of L and r can be used for forecasting via vector or
recurrent SSA (SSA-V,SSA-R) techniques. More detailed information of these
techniques can be found in [38].

5 Applications

Presented in this section is the application of the new algorithm in forecasting.
In order to evaluate the results we rely on the Ratio of the Root Mean Squared
Error (RRMSE) criterions which is a frequently used measure for the accuracy
of forecasted values.

RRMSE =
RMSE(SSA− CT )

RMSE(SSA)
=

(∑N
i=1(si − ŝi)

2
)1/2

(∑N
i=1(si − s̃i)2

)1/2 ,
where, ŝi are the estimated values of si obtained via SSA-CT and s̃i are the
estimated values of si obtained through basic SSA, and N is the series length.
If RRMSE < 1, then SSA-CT outperforms the SSA method. In contrast, when
RRMSE > 1 it would indicate that SSA-CT fails to outperform the basic SSA
model.

5.1 Forecasting

In this paper, several well known series are used to evaluate the performance
of the newly introduced idea for the grouping step in SSA (SSA-CT). These
include Death series, Petroleum series, Unemployment series and Industrial
Production series. The results are then examined in a forecasting scenario.

5.1.1 Death series

The Death series reports the monthly accidental deaths in the USA between
1973 and 1978. This time series has been previously used by many authors (see
for example, [39]). According to Table 1, the best SSA forecast for this series
is achieved by SSA–CT considering L = 14 and the following combinations of
r : 1, 2, 3, 5, 6, 7, 8, 10, 12, 14. It should also be noted that beside the least RMSE
which is related to L = 14, the best forecast for this series in each different L
(except L = 5 and 8) is achieved by considering a combination of eigenvalues
instead of selecting the signal components using the binary approach. Figure 4
shows the Death series along with the forecast of six data points achieved using
seven different forecasting methods. These include, two versions of the basic
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SSA technique; Vector SSA (SSA-V) and Recurrent SSA (SSA-R) and also
several well-known methods namely, an optimized version of the Autoregressive
Integrated Moving Average (ARIMA) [40], Exponential Smoothing (ETS) [41],
Holt-Winters (HW) [40] and the ARAR Algorithm [42].

Figure 4: Actual and forecasts for monthly accidental deaths in USA (June
1978 - June 1979).

Table 1: The RRMSE results for different L and r for Death series.

SSA-CT SSA RRMSE
L r r

3 1 1:2 0.618
4 1, 2, 4 1:2 0.997
5 1:2 1:2 1
6 1, 2, 5 1:2 0.988
7 1, 2, 7 1:2 0.993
8 1:6 1:6 1
9 1, 2, 3, 5, 7, 9 1:3 0.498

10 1, 2, 3, 6, 7 1:3 0.777
11 1, 2, 3, 5, 7, 10, 11 1:3 0.77
12 1, 3, 5, 11, 12 1:3 0.492
13 1, 2, 3, 6, 7, 12 1:2 0.557
14 1, 2, 3, 5, 6, 7, 8, 10, 14 1:10 0.329

Table 2 shows the forecasts obtained by the various models. According to
this table the forecasted values from the SSA–CT approach are very close to
the original data and is the best among the methods considered, for example,
the RMSE value from SSA–CT is 4 times less than the value of the RMSE
for ARIMA and 3 times less than that of SSA-R. All outcomes are tested for
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statistical significance using both the DM test and the KSPA test. This is
important, especially to ensure that the newly proposed SSA–CT algorithm is
able to provide significantly better results than the basic SSA-R and SSA-V
models as otherwise this exercise bears no fruit if the results are mere chance
occurrences. In the case of the Death series, except for in relation to the
forecasts obtained via ETS, there is sound evidence to conclude that SSA-CT
provides a significantly better forecast than ARIMA, HW, ARAR, SSA-V and
SSA-R techniques based on the DM and KSPA tests.

Table 2: Death series forecasts and RMSE for six observations via several
methods.

Actual ARIMA ETS HW ARAR SSA-V SSA-R SSA-CT
7798.00 8337.15 8257.85 7975.63 8167.81 8211.60 8184.49 7651.20
7406.00 7534.21 7496.61 7012.07 7195.76 7336.44 7374.76 7478.49
8363.00 8317.62 8293.41 7763.98 7982.03 8012.39 8009.97 8383.60
8460.00 8589.01 8513.28 8082.34 8283.53 8305.86 8489.40 8518.86
9217.00 9490.16 9418.72 8945.36 9144.07 9200.47 9333.71 9233.50
9316.00 9860.70 9898.85 9324.54 9464.87 9579.78 9664.46 9412.11
RMSE 340.86 318.26 356.38 253.21 255.74 261.68 81.85

RRMSE 0.24∗ 0.26 0.23∗,† 0.32† 0.32† 0.31∗,† N/A

Note: * indicates a statistically significant difference between the forecasts based on the
two-sided and one-sided KSPA tests in [43] at a p-value of 0.05. † indicates a statistically
significant difference between the forecasts based on the Diebold Mariano test in [44] at a

p-value of 0.10.

5.1.2 Petroleum series

Considered here is a monthly time series related to international petroleum
consumption in OECD countries from August 2007 - May 2013 and was ex-
tracted via the U.S. Energy Information Administration. Data up until May
2012 were used to train the models and the last 12 observations from June
2012 - May 2013 were set aside for forecasting. Table 3 reports the best RMSE
results achievable at each window length for this series when considering SSA–
CT and basic SSA approaches. The lowest RMSE is achieved when L = 12
and r uses the combinations of 1, 2, 4, 6, 7, 9 and interestingly it is only one
instances that the basic SSA approach of binary grouping enables the lowest
RMSE at a particular window length.
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Table 3: The optimal RMSE results for different L and r for the Petroleum
series.

L r RMSE
3 1,3 958.4
4 1,4 693.59
5 1,4,5 653.31
6 1,4,5,6 672.46
7 1,4,5,6 633.33
8 1,3,6,7 612.8
9 1,5,6,8 607.59
10 1:3 539.23
11 1,2,4,7,8,9,10 434.23
12 1,2,4,6,7,9 325.1

Table 4 presents the forecasts achieved by various methods for the last
twelve observations in the petroleum consumption series. The SSA–CT fore-
cast records a very low RMSE in relation to all other models whilst ARIMA
and SSA-R are seen providing the worst forecasts for this series. Once again,
all forecasts are evaluated for statistically significant differences using the DM
and KSPA tests as indicated at the bottom of this table. Accordingly there
is sufficient evidence to conclude that the SSA–CT forecasts are significantly
better than ARIMA, ETS and HW forecasts. However, there is no such evi-
dence in relation to ARAR, SSA-V and SSA-R in this case even though the
reported RMSE values differ greatly in relation to that of SSA–CT. This could
be a result of the low number of forecasts available for comparison and could
indicate the sensitiveness of both tests to sample sizes.

Accordingly, we take into consideration Figure 5 which plots the forecasts
from all models in relation to the actual data. This figure gives a clear indi-
cation of the accuracy associated with the SSA–CT forecast in relation to the
rest of the models and provides more confidence in the reported RMSE values.
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Table 4: Petroleum consumption series forecasts and RMSE for twelve obser-
vations via several methods.

Actual ARIMA ETS HW ARAR SSA-V SSA-R SSA-CT
1 46009.11 46280.52 46129.50 46570.59 45874.03 45482.35 45568.59 45984.45
2 45790.35 46597.05 46241.02 46359.95 45297.25 45839.38 46324.55 45568.38
3 46607.89 48000.75 46380.09 47113.64 46482.30 48536.40 49148.67 46533.51
4 45092.28 47409.37 46414.14 46371.06 45031.23 45889.26 46196.70 45418.91
5 46225.25 46533.94 46565.02 45401.51 45436.21 45991.01 45802.36 46041.64
6 46383.06 47144.63 46693.91 45989.31 45916.41 46950.66 46766.91 45777.45
7 45766.15 47499.15 47566.06 46606.12 45516.69 45363.41 45660.63 45656.44
8 45524.67 45559.74 46020.05 44753.90 44542.40 44807.37 45446.25 45104.66
9 46392.59 48240.58 47522.46 47214.36 46311.87 47186.14 48194.74 45833.27
10 44962.43 46343.67 46465.88 45759.52 44411.56 44947.74 45774.60 45199.25
11 45756.31 45273.49 45686.86 44766.40 44734.03 45676.37 45792.55 46116.82
12 45063.56 45969.44 44897.70 45095.67 45027.24 45493.44 45238.77 45199.11

RMSE 1227.80 879.55 761.34 540.42 736.49 1018.07 325.10

RRMSE 0.26∗,† 0.37† 0.43∗,† 0.60 0.44 0.32 N/A

Note: * indicates a statistically significant difference between the forecasts based on the
two-sided and one-sided KSPA tests in [43] at a p-value of 0.05. † indicates a statistically
significant difference between the forecasts based on the Diebold Mariano test in [44] at a

p-value of 0.10.

Figure 5: Petroleum consumption forecasts.

5.1.3 Unemployment series

The next application considers modelling the monthly U.S. Unemployment rate
from November 2006 - April 2013 which was extracted via the U.S. Department
of Labor. All data up until April 2012 is used for model training leaving aside
the last 12 monthly observations to evaluate forecast accuracy. Table 5 below
shows the lowest RMSE recorded by SSA–CT or basic SSA approaches for
different L. The minimum RMSE is achieved when L = 11 and r = 1, 2, 3, 4, 9
which is effectively following the proposed SSA–CT grouping.
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Table 5: The optimal RMSE results for different L and r for the U.S. Unem-
ployment series.

L r RMSE
3 1:2 0.74931
4 1:3 0.36501
5 1:3 0.33927
6 1:4 0.43986
7 1,2,3,5 0.76149
8 1,2,3,4,5,7 0.30995
9 1,2,3,7,8 0.37552
10 1,2,3,7,8,10 0.2213
11 1,2,3,4,9 0.10905
12 1,2,3,4,7,10,12 0.15469

Next, we consider generating forecasts following the decomposition and re-
construction of the U.S. Unemployment series along with the SSA–CT choices
and compare the forecasts with several other methods. The results are reported
in Table 6. On this occasion there are a high number of statistically significant
outcomes based on the DM and KSPA tests. As such, we are able to conclude
that SSA–CT forecasts for the U.S. Unemployment rate are significantly better
than those from ARIMA, ETS, ARAR, SSA-V and SSA-R models.

Figure 6 plots the forecasts from all models in relation to the actual val-
ues. Interestingly, even though the actual values appear to be almost linear
with a downward sloping trend, except for HW and SSA–CT models all other
techniques experience difficulties in accurately predicting this series. This ap-
plication and the success of SSA–CT on this occasion adds more value to the
results as it is evident that the series is difficult to predict regardless of its
simple structure.

Table 6: U.S. Unemployment series forecasts and RMSE for twelve observations
via several methods.

Actual ARIMA ETS HW ARAR SSA-V SSA-R SSA-CT
1 8.20 8.04 8.00 8.03 8.04 7.99 7.98 8.11
2 8.20 7.94 7.90 8.11 7.94 7.88 7.86 8.09
3 8.20 7.89 7.80 8.17 7.94 7.76 7.74 8.06
4 8.10 7.80 7.71 8.15 7.91 7.63 7.60 8.02
5 7.80 7.70 7.61 8.09 7.90 7.50 7.46 7.97
6 7.90 7.64 7.51 8.03 7.91 7.36 7.32 7.90
7 7.80 7.64 7.41 7.93 7.97 7.22 7.17 7.83
8 7.80 7.73 7.31 7.90 8.03 7.07 7.01 7.76
9 7.90 7.80 7.21 7.88 8.12 6.92 6.85 7.68
10 7.70 7.73 7.12 7.79 8.19 6.76 6.69 7.60
11 7.60 7.70 7.02 7.69 8.28 6.59 6.52 7.53
12 7.50 7.65 6.92 7.51 8.38 6.42 6.34 7.47

RMSE 0.189 0.457 0.124 0.387 0.698 0.749 0.109

RRMSE 0.58† 0.24∗,† 0.88 0.28∗,† 0.16∗,† 0.15∗,† N/A

Note: * indicates a statistically significant difference between the forecasts based on the
two-sided and one-sided KSPA tests in [43] at a p-value of 0.05. † indicates a statistically
significant difference between the forecasts based on the Diebold Mariano test in [44] at a

p-value of 0.10.
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Figure 6: Forecasts for the U.S. Unemployment rate series.

5.1.4 Industrial Production series

The final application to real data considers the monthly growth rate of the
U.S. Industrial Production index from March 2008 to December 2013. The
data was compiled via the OECD Main Economic Indicators database and
data up until December 2012 were used to train the models whilst observations
from January 2013 to December 2013 formed the test set. Table 7 reports the
minimum RMSE for each L when considering all possible combinations of r. In
this instance the lowest RMSE is attainable when L = 11 and r = 1, 3, 4, 5, 7, 9
as achieved via the SSA–CT approach.

Table 7: The optimal RMSE results for different L and r for the U.S. Industrial
Production series.

L r RMSE
3 1 0.30
4 1 0.29
5 1:3 0.3
6 1 0.31
7 1,5 0.31
8 1,3,7 0.34
9 1,3,6,7 0.32
10 1,3,4,5 0.34
11 1,3,4,5,7,9 0.23
12 1,3,4,5,6,7,9,10,11 0.30

Table 8 considers forecasting the last 12 observations of the U.S. Industrial
production series using various methods including the SSA–CT grouping as
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identified previously. The forecasts are once again tested for statistical signif-
icance using KSPA and DM tests. We find sound evidence to conclude that
SSA–CT provides significantly better forecasts for U.S. Industrial production
in comparison to ARIMA, HW, ARAR, SSA-V and SSA-R forecasts based on
the DM and KSPA tests. Figure 7 presents a graphical representation of the
forecasts from the various models.

Table 8: Forecast data and RMSE for twelve data points by several methods
for the U.S. Industrial Production series.

Actual ARIMA ETS HW ARAR SSA-V SSA-R SSA-CT
1 0.05 0.20 0.27 0.64 0.07 0.10 0.02 0.21
2 0.64 0.55 0.27 -0.01 0.18 0.07 -0.02 0.57
3 0.46 0.62 0.27 -0.31 0.59 0.04 -0.03 0.24
4 -0.18 0.42 0.27 0.41 0.07 0.02 -0.02 -0.10
5 0.11 0.45 0.27 0.08 0.12 -0.01 -0.03 0.33
6 0.19 0.67 0.27 -0.14 0.04 -0.03 -0.05 0.07
7 -0.16 0.38 0.27 0.38 0.22 -0.05 -0.06 -0.04
8 0.56 0.94 0.27 -0.45 0.07 -0.06 -0.07 0.27
9 0.72 0.71 0.27 0.29 0.01 -0.07 -0.08 0.19
10 0.10 0.82 0.27 0.07 -0.07 -0.08 -0.07 -0.04
11 0.56 0.48 0.27 0.80 0.08 -0.09 -0.06 0.45
12 0.18 0.80 0.27 0.11 0.00 -0.09 -0.05 0.49

RMSE 0.42 0.30 0.53 0.35 0.42 0.44 0.23

RRMSE 0.55∗,† 0.76 0.43∗,† 0.66† 0.55† 0.52† N/A

Note: * indicates a statistically significant difference between the forecasts based on the
two-sided and one-sided KSPA tests in [43] at a p-value of 0.05. † indicates a statistically
significant difference between the forecasts based on the Diebold Mariano test in [44] at a

p-value of 0.10.

Figure 7: Forecasts for the U.S. Industrial production series.
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6 Conclusion

This paper presents a novel approach for enhancing the accuracy of SSA-based
forecasts based on the foundations of CT. Initially we draw upon the general
similarity between CT and SSA, and then exploit these similarities, particularly
certain characteristics of CT in the grouping step which is the most important
step in the SSA procedure.

In brief, we suggest that relying on a binary approach of differentiating be-
tween signal and noise at the grouping step is not necessarily the best approach
as this assumes there is no useful information contained in the selected noise
components. Instead, based on CT we propose a different grouping approach
which considers analysing all eigenvalues and selecting those which have useful
information for grouping in SSA. The results achieved for several series have
shown that the new idea of grouping has the potential to enable us to obtain
a more efficient forecasts in comparison to the existing approach for grouping
in SSA which is based on LS.

Moreover, the results, when compared with other basic versions of SSA and
popular time series analysis and forecasting models further portray the supe-
riority of the new approach and provides sound evidence of its significantly
better performance in practice.
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