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Abstract

Segmentation in Drosophila melanogaster starts with a key mater-
nal input known as bicoid gene. The initial positional information pro-
vided by this gene induces the sequential activation of segmentation net-
work. Therefore, an accurate mathematical model describing the gene
expression profile of bicoid gene expects to provide essential insights into
the gene cross-regulations presented in that network. The significantly
stochastic, highly volatile and non-normal nature of the bicoid gene ex-
pression profile encouraged us to look for the best distribution function
describing this profile. We exploit the use of fifty-four different powerful
and widely-used distributions and conclude that FatigueLife(3P) fits the
data more accurately than the other distributions. The reliability and
validity of the results are evaluated via both simulation studies and em-
pirical evidence thereby adding more confidence and value to the findings
of this research.
Keywords: bicoid ; distribution; Drosophila melanogaster ; model ; seg-
mentation gene.

1 Introduction

Bicoid 1 is a homeodomain transcription factor which plays a crucial role in
patterning the head and thorax of Drosophila melanogaster during the embryo-
genesis stage [1,2]. It is widely accepted that embryos receiving different doses
of bcd have differently sized anterior structures and in the absence of this mor-
phogen, the anterior structures are replaced with the posterior regions [1–3].

Since the discovery of bcd in 1988, several models have been put forward to
formulate the gradient of this morphogen (see, for example, [4–6]). However,
as the experimentally achieved gradient is highly volatile, the proposed models
exhibited limited performance [7, 9]. For example using the synthesis diffusion
degradation (SDD) model as the most frequently applied one, the time needed
for attaining the steady state concentration profile is much longer than the
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protein lifetime and the length constant is much smaller than the length of the
embryo [8].

Therefore, the extensive studies on molecular and functional features of this
gradient have been continued and led to considerable improvements in different
branches of developmental studies including embryogenesis, regional specifica-
tion and metamorphosis [10].

Furthermore, finding a precise model for expression pattern of bcd also ex-
pects to give us a better understanding of an important developmental process
known as canalisation [11]. According to C.H. Weddington, an efficient way to
unveil the exact canalisation process is to study the interaction between genes
in a gene regulatory network [12]. Hence, to achieve a deeper understanding
of gene-gene interactions, segmentation network in Drosophila melanogaster
has been considered as a premier system for coupling experimental data and
computational models [7, 9, 13–15].

Such studies are aimed at finding quantitative models that illustrate a math-
ematical picture of the protein concentrations produced by segmentation genes
(among which bcd has a significant role as a valuable input to this network).

According to the hypotheses of these studies, if a model faithfully reproduces
the wild type gene expression patterns then it would be possible to use that
model to predict the genetic interactions of the segmentation network correctly.
However, as can be seen in Figure 1, due to the high volatility, heavy tail
and lack of normality of the data, even modelling the Bcd as the simplest
gene expression pattern of this network is not a simple task (The Bcd data
characteristic is further discussed in Section 2.
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Figure 1: A typical example of Bcd gene expression profile. Y-axis shows the fluo-
rescence intensities and X-axis shows the position along the Anterior-Posterior (A-P)
axis of the embryo.

It should also be noted that the expression of segmentation genes, especially
bcd, are significantly stochastic with randomness in transcription and transla-
tion [16]. This stochasticity makes the modelling of the segmentation network
considerably challenging. The stochasticity is both controlled and exploited by
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cells and, as such, must be included in models of genetic networks [17]. An effec-
tive way to grasp the function of a stochastic process is to drive the probability
distribution of the process of interest. Moreover, a major problem in system
biology is to determine which properties of the biochemical networks must be
modelled to make accurate, quantitative predictions. Estimating the parame-
ters of a distribution function can be a useful guide to find the characteristics
of a gene expression pattern which allow to develop more valid predictions if
included in a model.

Accordingly, this study seeks to evaluate the theoretical distribution of Bcd
gene expression profile and to introduce the best statistical distribution describ-
ing this gradient. We have examined fifity four probability distributions. To
validate the theoretical results, extensive simulation studies have been carried
out. Analysing the real data set have also been performed on all the cleavage
cycles in which Bcd is present in the embryo.

This development expects to open up the possibility of using statistical dis-
tribution to depict the characteristics of gene expression profiles and unveil the
interaction networks in a dynamic multivariate system.

The remainder of this paper is organised as follows. Section 2 describes the
data set applied in this study which is followed by a portrayal of the simulation
study procedure. Section 3 describes the analytical methods adopted in this
study. Section 4 summarises the empirical results and the paper concludes with
a concise summary in Section 5.

2 Bicoid Data

2.1 Real Data

The quantitative bcd gene expression data in wild-type Drosophila melanogaster
embryos was obtained from FlyEx database [18]. This dataset has been widely
used as a valuable source of information for studying the dynamics of segment
determination of early Drosophila development [13].

Data acquisition in this dataset is based on the confocal scanning microscopy
of fixed embryos immunostained for segmentation proteins. The applied anti-
body allows the visualisation of the Bcd proteins. In this study, the expression
profiles were extracted from the nuclear intensities of %10 longitudinal and are
unprocessed for any noise reduction methods. Similar to [8, 19, 20], we set to
work with one-dimensional gene expression data. Hence, the second spatial co-
ordinate (dorsoventral axis) has not been considered. In the achieved profiles,
higher intensities imply greater presence of the Bcd protein.

Since the segment determination starts from cleavage cycle 10 and lasts to
cleavage cycle 14A (when proteins synthesised from maternal transcripts begin
to appear up to the onset of gastrulation) the data has been categorised to five
main cycles of 10 to 14A. Additionally, as the cleavage cycle 14A is considerably
longer in time, to facilitate the analysis, temporal classes 1 to 8 have been
considered as the subgroups of this cleavage cycle. It should also be noted that
each class of data contains a different number of embryos.
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Since there is an undeniable variation in the pattern of Bcd in different
cleavage cycles, it is critical to investigate whether a single distribution function
can be of general use for Bcd profile or a different distribution should be defined
for each cleavage cycle.

Figure 2, illustrates the pattern of the Bcd profile for an individual embryo in
cleavage cycle 11 to cleavage cycle 14, time class 8. It is of note that to depict
the difference between the pattern of Bcd in different developmental cycles
more precisely, a filtering step has been applied and the signals of the gene
expression profiles extracted by Singular Spectrum Analysis (SSA) technique
were used.

Figure 2: The Bcd gradient along the embryo in different cleavage cycles and tem-
poral classes. Figure adapted from [21].

Table 1 presents the descriptive statistics of Bcd. As it can be seen, each cycle
has a different number of embryos, and the length of the profiles obtained from
each embryo is distinctive where a large series length indicates that a greater
number of nuclei was presenting the fluorescence intensity. In other words, Bcd
protein molecules were produced in a higher number of nuclei along the A-P
axis.

For each cycle, average of variance, series length, mean, skewnwss and kur-
tosis are presented separately. Due to the considerable variation present in the
data, median has been chosen as a measure of central tendency. The fourth
column shows the variation of each profile within a cycle. For example, in time
class 10, the minimum variance seen is 928.8, however, the maximum variance
for this cycle is more than 2000. Hence, we are dealing here with two kinds of
variation; within a cycle and between a cycle variation. The skweness was also
tested, and the results confirm that there is a statistically significant skewness
(at 5% level) indicating that almost all series have values towards the lower
end in the series.
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Cycles N Var. length Mean Med. Min. Max. Skew. Kurt.

10 7 Min 928.8 79.00 16.95 2.970 0 134.4 1.09 0.33
Med 1294 124.0 46.33 37.55 7.420 163.9 1.550 1.950
Max 2358 146.0 70.83 54.68 20.95 209.5 1.670 4.020

11 14 Min 693.5 238.0 34.41 21.39 3.67 152.91 1.190 0.300
Med 1780 288.5 46.30 26.92 6.160 185.8 1.460 1.120
Max 2999 308.0 77.07 63.64 20.96 223.2 1.860 2.980

12 31 Min 1160 394.0 35.15 17.63 1.570 147.20 0.66 -1.27
Med 2422 524.0 51.09 28.41 7.110 206.4 1.420 0.980
Max 5224 607.0 165.5 174.6 87.62 239.7 1.860 2.850

13 98 Min 412.6 738.0 21.97 13.05 0 131.0 0.660 -0.32
Med 1578 1276 42.08 26.21 4.740 197.8 1.810 2.701
Max 2795 1550 77.87 65.39 16.14 240.5 2.640 7.430

14(1) 58 Min 705.4 1085 24.07 12.00 0 143.7 1 -0.15
Med 2041 2257 43.25 24.73 4.110 223.67 1.890 2.880
Max 2968 2548 148.66 131.6 67.19 252.9 2.600 6.840

14(2) 30 Min 1344 2043 32.18 16.54 0 190.9 1.680 2.250
Med 1921 2315 42.93 25.16 4.430 225.6 1.690 3.400
Max 1887 2678 51.64 36.20 11.84 245.63 2.710 7.240

14(3) 38 Min 480.8 1642 17.62 6.460 0 147.0 0.680 -0.66
Med 1490 2280 40.30 23.19 6.070 216.02 2.18 4.48
Max 2654 2783 138.9 125.9 56.07 252.7 2.560 6.540

14(4) 28 Min 697.7 1741 33.49 16.39 0 170.8 1.390 1.110
Med 1578 2275 42.17 25.88 7 212.1 1.990 3.510
Max 2324 2520 55.33 42.64 13.91 234.6 2.250 5.110

14(5) 25 Min 439.6 1707 22.87 13.69 0 113.0 0.520 -0.90
Med 1195 2297 38.17 23.99 4.400 192.64 2.020 3.850
Max 2263 2453 154.0 137.7 71.08 236.60 2.270 5.450

14(6) 29 Min 84.37 1583 27.85 15.64 0 134.20 0.980 0.820
Med 1131 2266 39.26 25.81 7.620 194.3 1.920 3.300
Max 2057 2584 93.40 83.62 40.43 235.2 2.460 6.700

14(7) 15 Min 141.0 1535 17.48 12.70 0 81.58 0.670 0.090
Med 443.5 2109 40.00 34.94 8.140 133.6 1.670 2.110
Max 18060 2423 108.7 101.3 52.56 220.6 2.460 6.700

14(8) 12 Min 397.9 1245 26.05 14.79 2.170 133.6 0.630 -0.36
Med 636.2 1521 64.68 56.00 21.55 170.0 1.470 2.120
Max 818.0 2195 134.1 128.9 80.26 202.0 2.060 5.130

Table 1: Descriptive statistics of Bcd profile. N= Number of embryos studied per cycle
(or time class), Var.= Variance in each profile, Length= Length of data in each expression profile,
Mean=The average of intensity levels, Med.= Median of intensity levels, Min.= The minimum
value of intensity levels, Max.= The maximum value of intensity levels, Skew. =Skewness, and
Kurt.= Kurtosis.

Determining whether the data is symmetric, left-skewed, or right-skewed is
critical since a distribution which has the same shape as the profile under study
would be expected to be a better candidate to fit the data.

Figure 3 shows the histogram of Bcd profile. In plotting these histogram
only one dimension of the data (the achieved fluorescence intensities) for two
different individual embryos2 has been used. As it is apparent, Bcd profile is
asymmetric and notably right-skewed suggesting that it may be poorly char-
acterised by its mean and variance. Further on, all distributions with a tail on
the right side should fit more accurately to this profile.

2Histograms of cleavage cycles 10-13 and all time classes of cleavage cycle 14A are pre-
sented in Appendix 2.
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(a) Time Class 14(3) (b) Time Class 14(4)

Figure 3: The histogram of Bcd related to time class 14(3) and 14(4).

2.2 Simulated Data

To find the best distribution function explaining the features of Bcd expression
profile, relying on only the real data presents a number of challenges. Table
1, the second column, shows the number of embryos available in our data set
separately in each cleavage cycle. As can be seen, the number of embryos (
from each, one Bcd expression profile is obtained) varies greatly in different
cleavage cycles ranging between 7 in cleavage cycle 10 and 98 in cleavage cycle
13.

Furthermore, a close look at the real data suggests that the raw gene expres-
sion profile data is noisy and noise consisted of unknown structure. According
to real data, the noise level also varies considerably between the expression
profiles. Therefore, the appropriateness of a distribution should not only be
examined for different developmental classes but should also be tested for dif-
ferent levels of noise existing in the real data.

Thus, in this paper, a series of simulated data is used to evaluate and rank
the performance of different probability distribution functions.

To facilitate the study, three levels of noise including low, average and high
volatile (in what follows, respectively assigned as noise level 1, noise level 2 and
noise level 3) can be considered.

More importantly, as depicted in Figure 2, some of the expression profiles
possess an initial curve in their pattern, whereas this curve is not present in the
rest of the profiles. The initial curve attributes to the concentration of Bcd in
nuclei at the anterior position along the AP axis which shows that Bcd concen-
tration initially reaches a maximum value before decaying along the embryo.
detecting the initial curve in some of the embryos suggests that the mecha-
nism of gradient readout might be more complicated than reading a particular
concentration of the morphogen. Therefore, for all different considered noise
levels, the assessment conducted separately on the simulated profiles with and
without the initial curve.
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To start the simulation, an exponential curve drawn from the simple Synthe-
sis Diffusion Degradation (SDD) model which is a common model for analysing
the Bcd profile has been considered [1,22–24]. The concentration of Bcd in this
model follows:

B = Ae−
x
λ , (1)

where A is the amplitude, x is distance from the anterior, and λ is the length
parameter obtained by fitting an exponential model to the bcd intensity profile
and computing the position at which the concentration has dropped to 1/exp
of the maximal value at the anterior (at x = 0 ) [1, 22–24].

To obtain a noisy series as close as possible to the real one, random errors ε of
a normal distribution with zero mean and variance σ2

ε with different amplitudes
were added to various parts of this curve. This simulation was repeated 1, 000
times.

3 Empirical Results

3.1 Simulated Series

Finding the best distribution is defined as the procedure of selecting a statistical
distribution that in average fits best to Bcd profiles of all cycles and therefore
it is the most valid model to describe the data.

In total fifty–four distributions have been selected 3. After fitting the dis-
tributions, it is necessary to determine whether a given distribution provides a
reliable fit. Therefore, it is recommended to perform the goodness of fit tests
to determine how well the distribution fits each profile.

In addition, to ascertain the most accurate distribution, statistical moments
(mean, variance, etc.), tail probabilities and quantiles have also been calculated
for each distribution and for distribution families with different sets of defined
parameters. This process is performed for both simulated and real data.

The goodness of fit tests adopted here are among the most popular tests
including Anderson-Darling (AD), Kolmogorov-Smirnov (KS), and Chi-square
(χ2) tests. However, since the result provided by χ2 test was not consistent
with the AD and KS tests at different cleavage cycles, the outcome of this test
is not reported here.

AD test is the most widely accepted goodness of fit test, particularly for
skewed series and therefore, it is considered as the primary criterion for decision
making in this study [25,26]. It should be noted that in spite of having a same
principal in the application, the implementation of the KS and AD tests is
noticeably different [27].

The goodness of fit tests measure the distance between the actual data and
the fitted distribution. Hence, after fitting different models, the distribution
with the lowest statistic value will be rated as the best model and the rest of the
models will be ranked down according to their test statistics. This approach
enables us to easily compare the fitted models and determine the best fitted
distribution.

3A complete list of all distributions applied in this study can be found in Appendix 1.
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Tables 2 and 3 report the results of the simulation study respectively for
the profiles with and without the initial curve following 1000 iterations. After
each round of simulation, the distributions are ranked down based on their
test statistics. The three best-fitted distributions are then assigned to those
distributions which show the highest frequency in iteration and the lowest test
statistic. This procedure is repeated for all different noise levels. According to
the result shown in Table 2, FatigueLife(3P) distribution provides a good fit
confirming by both KS and AD goodness of fit tests and is also well performed
at all different noise levels.

Interestingly, with reference to the superior performance of FatigueLife(3P)
distribution the outcome related to the profiles with the initial curve is consis-
tent withTable 2, suggesting that FatigueLife(3P) is practical for both types of
profiles. Therefore, there is no need to consider a separate distribution to for-
mulate those series with the initial curve. However, the test statistics related
to the performance of each distribution are lower in table 2, indicating that
capturing a closer fit is more challenging in profiles with the initial curve.

Goodness of Fit Test

Noise
Level

Anderson-Darling Kolmogorov-Smirnov

Distribution Statistic Distribution Statistic

FatigueLife(3P) 1.55 FatigueLife(3P) 0.03
1 Log-Pearson3 2.99 JohnsonSB 0.04

Lognormal 3.50 Log-Pearson3 0.04
FatigueLife(3P) 1.64 FatigueLife(3P) 0.04

2 Lognormal 3.16 JohnsonSB 0.04
Log-Pearson3 2.70 Log-Pearson3 0.04
FatigueLife(3P) 1.36 FatigueLife(3P) 0.03

3 Log-Pearson3 2.21 Burr(4P) 0.06
Lognormal(3P) 2.65 Log-Pearson3 0.04

Table 2: The result of the simulated profiles without the initial curve.

Goodness of Fit Test

Noise
Level

Anderson-Darling Kolmogorov-Smirnov

Distribution Statistic Distribution Statistic

FatigueLife(3P) 2.68 FatigueLife(3P) 0.04
1 Log-Pearson3 3.58 Log-Pearson3 0.05

Lognormal 4.32 Dagum 0.05
FatigueLife(3P) 2.68 FatigueLife(3P) 0.05

2 Lognormal(3P) 3.93 Burr(4P) 0.05
Burr(4P) 3.57 Log-Pearson3 0.05
FatigueLife(3P) 2.08 FatigueLife(3P) 0.04

3 Log-Pearson3 2.82 Log-Pearson3 0.05
Lognormal(3P) 3.55 Burr(4P) 0.05

Table 3: The result of the simulated profiles with the initial curve.
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3.2 Bcd data

Next, to evaluate the reliability of the result obtained at the simulation step
and primarily to examine the performance of the FatigueLife(3P) distribution,
the analysis further conducted on the real data sets. Table 4 shows the outcome
of this effort. Overall, the result of the application to real data appears to be
consistent with the simulation findings and therefore confirms the validity of
the results. As it can be seen, FatigueLife(3P) appears among the top three
distributions for all cycles indicating the out-performance of this distribution.
Figure 4 depicts the probability density function of FatigueLife(3P) distribution
fitted to a Bcd profile of an embryo of time class 14(4).

Goodness of Fit Test

Cycle
Anderson-Darling Kolmogorov-Smirnov

Distribution Statistic Distribution Statistic

FatigueLife(3P) 0.42 FatigueLife(3P) 0.06
10 Pearson6 1.24 Burr 0.07

Burr 1.30 Lognormal 0.07
Pearson5 0.82 FatigueLife(3P) 0.05

11 FatigueLife(3P) 1.07 Burr 0.06
Lognormal(3P) 1.10 Lognormal 0.08
FatigueLife(3P) 2.93 Dagum(4P) 0.05

12 Inv.Gaussian(3P) 3.03 FatigueLife(3P) 0.06
Pearson5(3P) 3.43 Pearson5(3P) 0.06
Burr 8.38 Lognormal 0.32

13 FatigueLife 9.80 Pearson6 0.06
Pearson6 11.41 FatigueLife(3P) 0.06
Burr 13.86 Burr 0.05

14(1) Pearson6 20.82 FatigueLife(3P) 0.07
FatigueLife(3P) 26.78 Lognormal 0.08
FatigueLife(3P) 27.27 Pearson6 0.06

14(2) Lognormal 43.33 FatigueLife(3P) 0.08
Log-Logistic 46.34 Lognormal 0.09
Lognormal 17.30 Pearson6 0.06

14(3) FatigueLife(3P) 25.22 FatigueLife(3P) 0.08
Gen.Gamma(4P) 28.37 Lognormal 0.09
Pearson5(3P) 9.68 Log-Logistic(3P) 0.05

14(4) Pearson6 15.89 Lognormal(3P) 0.06
FatigueLife(3P) 19.78 FatigueLife(3P) 0.07
Burr 8.43 Burr(4P) 0.04

14(5) Pearson6 14.33 Log-Logistic(3P) 0.05
FatigueLife(3P) 25.71 FatigueLife(3P) 0.07
Burr 17.81 Frechet 0.06

14(6) FatigueLife(3P) 24.51 Pearson6 0.08
Lognormal 67.79 FatigueLife(3P) 0.08
Burr 7.08 Burr 0.04

14(7) Log-Logistic 17.32 Pearson6 0.05
FatigueLife(3P) 19.46 FatigueLife(3P) 0.06
Burr 3.32 Inv.Gaussian(3P) 0.06

14(8) FatigueLife(3P) 5.57 Gen.Gamma(4P) 0.06
Log-Logistic(3P) 7.75 FatigueLife(3P) 0.06

Table 4: A summary of the real data set distribution fitting result.
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Figure 4: An example of FatigueLife(3P) distribution fitted to a Bcd profile.

Bcd molecules synthesised from the maternal transcripts begin to appear
at cleavage cycle 10. Hence, the amount of these morphogens, in those areas
where they are concentrated is lower amount for the time classes 10-12 making
the length of the data and the expression level for those cycles considerably
less than the other cycles. Therefore, the consistency in superior performance
of the FatigueLife(3P) distribution in cycles 10-12 should be addressed as an
important feature of this distribution.

Table 5 reports the most frequent distributions throughout all cleavage cycles
in the real data. This result is reported separately for AD and KS test. From
this table, it is evident that according to AD test, after FatigueLife(3P), Burr
and Pearson are found to be the next best alternative distribution followed by
Lognormal. This order is more or less similar for the KS test where Lognormal
has the second rank after FatigueLife(3P).

Nevertheless, these distributions have attained a satisfactory level of fitness
to the data, the highest reported frequency for the alternative distribution is
much less than the frequency attributed to the FatigueLife(3P) highlighting the
fact that the second distribution does not constantly outperform in all cycles
and time classes. Moreover, the higher frequency for Pearson distribution was
attained by two members of this family. Type V which is a three-parameter
distribution represented by a curve and Type VI which is considered as a region
between Gamma and Type V.

Distribution AD test KS test

FatigueLife(3P) 11/12 12/12
Burr 7/12 5/12
Pearson 7/12 6/12
Lognormal 5/12 7/12

Table 5: The number of times that the best-performed distributions have been
recorded in the 12 different studied classes (cleavage cycle 10 to 14(8)).
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4 Conclusion

Bcd gradient provides Drosophila melanogaster embryonic tissues with posi-
tional information by inducing target genes at different concentration thresh-
olds. This gradient has been analysed quantitatively using different biophysical
models such as steady-state and nuclear trapping models which mainly rely on
production, diffusion and degradation, but no model has considered studying
all its characteristics by analysing the distribution function of the gradient [6].
Here, we discuss how existing data on Bcd gradient fit different distribution
functions and which function has the superior performance in explaining the
features of this gradient.

To that aim, we evaluated the performance of fifty-four different distribu-
tions in describing the gradient of the Bcd protein molecules in Drosophila
melanogaster embryos.

Having performed a comprehensive simulation study on all possible expres-
sion patterns with different levels of noise, our results suggest that FatigueLife
distribution with three parameters outperforms the other distributions.

Thereafter, by conducting the analysis on real data of 385 embryos from dif-
ferent cleavage cycles, the outcome found to be consistent with the simulation
study suggesting the superior performance of FatigueLife(3P) in comparison
with the other distributions. It is of note that among all the evaluated distri-
butions, FatigueLife(3P) is the only one consistently present at the three top
outperforming distributions and in nearly all the cleavage cycles.

Moreover, the features of the distribution function which is determined to
be the most reliable one for Bcd should be consistent with the nature of the
Bcd. For example, as the intensity values representing the number of protein
molecules cannot be negative, it is expected that a non-negative distribution
such as FatigueLife performs better in this study.

We suggest that knowing the parameters of the attained distribution func-
tion, such as the shape, scale and location parameter, would help to identify
and develop a better model of Bcd functioning as an initiator of segmentation
network. It is of note that the aim of this paper is not to introduce the univer-
sally best-fitted model for Bcd gradient but is to propose the idea of studying
the statistical distribution of gene expression profiles when analysing the gene-
gene interactions in a gene regulatory network. This study lay the necessary
groundwork for our ultimate goal of modelling a dynamic segmentation network
and an automated mutant recognition system. Therefore, regarding future re-
search, it would be insightful to investigate the parameters of FatigueLife(3P)
and to find the statistical distribution of the other members of this network.
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Appendix 1. Probability Distributions

List of the probability distributions evaluated in this study:

1. Beta

2. Burr (Burr Type 12, Singh-
Maddala)

3. Cauchy (Lorentz)

4. Chi-Squared

5. Dagum (Burr Type 3, Inverse
Burr)

6. Erlang

7. Error (Exponential Power)

8. Error Function

9. Exponential

10. F Distribution

11. Fatigue Life (Birnbaum-
Saunders)

12. Gamma

13. Hyperbolic Secant

14. Inverse Gaussian

15. Johnson SB

16. Johnson SU

17. Kumaraswamy

18. Laplace (Double Exponential)

19. Levy

20. Logistic

21. Log-Gamma

22. Log-Logistic

23. Log-Pearson III (LP3)

24. Lognormal

25. Nakagami (Nakagami-m)

26. Normal

27. Pareto (first kind)

28. Pareto (second kind) (Lomax)

29. Pearson Type 5 (Inverse
Gamma)

30. Pearson Type 6 (Beta Prime)

31. Pert

32. Power Function

33. Rayleigh

34. Reciprocal

35. Rice (Nakagami-n)

36. Student’s t

37. Triangular

38. Uniform

39. Weibull

40. Gumbel (Extreme Value Type I)

41. Frechet (Extreme Value Type II)

42. Generalized Extreme Value
(GEV)

43. Generalized Gamma

44. Generalized Pareto

45. Phased Bi-Exponential

46. Phased Bi-Weibull

47. Wakeby

48. Bernoulli

49. Binomial

50. Discrete Uniform

51. Geometric

52. Logarithmic

53. Negative Binomial

54. Poisson
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Appendix 2. The histogram of Bcd

Presented below are the histograms of cleavage cycles 10-13 and all time classes
of cleavage cycle 14A. It should be noted that each histogram is related to one
particular embryo which has been selected as a sample representing that cycle
or time class.

(a) Time Class 10 (b) Time Class 11

(c) Time Class 12 (d) Time Class 13

(e) Time Class 14(1) (f) Time Class 14(2)
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(g) Time Class 14(3) (h) Time Class 14(4)

(i) Time Class 14(5) (j) Time Class 14(6)

(k) Time Class 14(7) (l) Time Class 14(8)

Figure 5: The histogram of Bcd related to cleavage cycles 10-13 and all the
time class of cleavage cycle 14A.
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