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Abstract—Human motion capture techniques (MOCAP) are
widely applied in many areas such as computer vision, computer
animation, digital effect and virtual reality. Even with profession-
al MOCAP system, the acquired motion data still always contains
noise and outliers, which highlights the need for the essential
motion refinement methods. In recent years, many approaches for
motion refinement have been developed, including signal process-
ing based methods, sparse coding based methods and low-rank
matrix completion based methods. However, motion refinement
is still a challenging task due to the complexity and diversity of
human motion. In this paper, we propose a data-driven-based
human motion refinement approach by exploiting the structural
sparsity and spatio-temporal information embedded in motion
data. First of all, a human partial model is applied to replace the
entire pose model for a better feature representation to exploit the
abundant local body posture. Then, a dictionary learning which
is for special task of motion refinement is designed and applied in
parallel. Meanwhile, the objective function is derived by taking
the statistical and locality property of motion data into account.
Compared with several state-of-art motion refine methods, the
experimental result demonstrates that our approach outperforms
the competitors.
Keywords: Motion Capture Data, Motion Refinement

Human motion capture (MOCAP) data is now widely used

in many areas such as computer animation, digital effect, gam-

ing, physical training, virtual reality and medical rehabilitation.

For the film industry, the high quality motion data have been

applied to generate the character animation, facial animation

and special digital effects in the recent fantastic films e.g.

Avatar, The Avengers, Transformers, Captain America, and

Warcraft. The great success demonstrates the importance of

MOCAP techniques and data.

These MOCAP data based approaches require high quality

raw data as input. Currently, the most popular commercial

MOCAP systems are optical-based, such as Vicon 1 and

Motion Analysis 2. However, even with these professional

systems, the acquired raw data still suffers from missing

marker problems. For example, the markers may become

invisible when they are occluded by other body parts or

objects, which could lead to missing data problem. A piece

1http://www.motionanalysis.com/
2http://www.vicon.com/

Fig. 1: Examples of MOCAP equipments: (1) optical based

(upper left), (2) wearable sensors (upper right) and (3) depth

sensors (bottom)

of recorded motion by Motion Analysis MOCAP system is

shown in Fig 2, where the blanks on the time line denote the

occurring of missing marker problem. The process of capturing

human motion is usually both expensive and time consuming.

Hence, it is essential to refine the captured raw motion data to

meet the quality requirement rather than tedious reshooting. In

practice, some post-processing tools for cleaning motion data,

e.g. filling missing value and removing noise, are provided in

the commercial MOCAP systems. However, such tools usually

require user to correct the outliers and noise of recorded

motion sequence frame-by-frame, which could lead error-

prone, tedious and time consuming. In addition, the most often
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Fig. 2: Examples of MOCAP result recorded by Motion Analysis System

used refinement methods used in these commercial MOCAP

systems are linear/spline interpolation, which is only effective

for simple motion e.g. walking and running. The refinement

may fail while dealing with the complex motion. Moreover, the

spatio-temporal patterns have been ignored by those methods,

which could cause distortion and unrealistic in refinement

result. Additionally, the fast developing low-cost depth sensors

(e.g. Microsoft Kinect, Google Project Tango), which are

able to acquire a depth stream with acceptable accuracy, can

provide new opportunities for accessible motion capture. The

motion data derived from the depth stream contains even more

noise than the result from current MOCAP system. Although

many work have been done on this topic [1]–[3], improving

the quality of motion data is still a long uphill journey.

To refine the imperfect motion, a lot of methods have

been developed in the literature. The rising of novel motion

capture systems and technologies brings explosive growth of

motion data in recent years. The data-driven based motion

processing methods have attracted many attentions [4]–[8],

and achieved many successes for motion denoising. However,

in the existing work for filling missing markers, such as

Lou et.al. [4] and Xiao et.al. [9], the spatial temporal and

kinematic information of human motion haven’t been well

exploited while training the motion dictionaries. The artifact

e.g. dithering could occur in the recovered motion sequence.

Therefore, in order to overcome these problems, we propose a

novel motion refinement method deriving from sparse coding

and dictionary learning in this paper, which focus on solving

missing marker problem. The major contributions of our work

are

• taking the distribution information of missing marker

in motion data into account for deriving the dictionary

learning.

• selecting a compact correlated subset of motion bases for

the clean motion reconstruction.

• exploiting the spatial-temporal information while learning

the motion dictionary to achieve stable and realistic result.

• taking the smooth constraint into account for the motion

recovery for ensuring the smooth result. A smooth graph

constraint on the sparse representation coefficients matrix

is employed in our objective function

I. RELATED WORK

The purpose of human motion refinement is to remove the

noise and fill the missing value while preserving the embedded

spatio-temporal patterns of motion. Due to the complexity and

diversity of MOCAP data, motion refinement is a challenging

task, where much effort has been expended on this topic.

Generally, the existing approaches of MOCAP data refinement

could be divided into three categories: signal processing meth-

ods, data-driven methods and matrix completion methods.

A. Signal processing methods

In early studies, the classical signal denoising methods such

as Gaussian low-pass filter, wavelet transformation, discrete

cosine transform (DCT) and Fourier transform have been

applied to denoise the motion data [10]. For instance, Hsieh

and Kuo have proposed a B-spline wavelet-based method to

remove the impulsive noise of body motion data [10]. Another

way is to apply linear time-invariant filters (LTI) to refine the

noisy motion data [11], [12]. As an improvement, the dynamic

system-based methods (DSB) such as Kalman filter and linear

dynamic system (LDS) are employed for motion refinement

[13], [14]

Dimension reduction (DR) methods have also been applied

to motion signal for refinement [15]–[17]. For example, prin-

ciple component analysis (PCA) can be used to eliminate non-

informative components of the motion data by accounting

the variance of motion data on some orthogonal directions

[15]. Independent component analysis (ICA) is another good

choice to reveal the independent latent factors that contribute

to generating different kinds of motion [18]. Inspired by the

great success of manifold learning on computer vision areas

[19], such kind of methods have also been applied to motion



Fig. 3: Partial model for CMU motion data. The markers 1, 2, 7, and 14 are the root, the right and left femur markers, and

the upper neck marker, respectively., which are used for local coordinate translation. For the grouping operation, with a given

S frames sequences and size M window, it will generate N = S −M + 1 overlapping clips.

denoising [16] which could also be regarded as a special kind

of DR method.

Signal processing methods usually do not require much

computational cost and are effective while dealing with simple

and short-term motion. However,this kind of methods process

each joint degree of freedom (DOF) independently, where

the underlying structure correlation between human joints

are usually ignored. Hence, the of refining result of signal

processing methods on complex motion may be notS sufficient

to satisfy the quality requirement .

B. Data-driven methods

The rising of novel motion capture systems and technologies

brings explosive growth of motion data in recent years, which

facilitate the development of data-driven based methods. [4]–

[6], [8], [9], [20]. For example, Lou and Chai [4] have

proposed an example based approach to learn a series of

spatial-temporal filter bases from pre-captured motion data

and use them along with robust statistics techniques to fill

in the missing values of motion capture data. In Xiao et al’s

work [6], [9], they have formulated the predicting missing

marker problem as finding spare representation of imperfect

pose. They succussed in introducing �1 sparse representation

to solve predicting missing marker of motion data. Hou et

al. [20] have provided a method to recover corrupted motion

capture data through trajectory-based sparse representation.

The performance of data-driven methods is heavily rely on

the training data selection. In addition, many existing data

driven methods didn’t consider kinematic characteristics and

smooth property of human motion in their dictionary learning

and pose reconstruction process, which could cause artifact

in the recovery result. Additionally, data-driven methods often

meet out-of-sample problem, where they are unable to handle

the new coming motion sequence when there are no similar

motion in the training dataset.

C. Matrix completion methods

Another typical motion refinement method is matrix com-

pletion based, which formulates the human motion refinement

into a low-rank matrix optimization task [21]–[25]. Lait et

al. [21] have noticed the low-rank property of motion matrix

has not been exploited explicitly. They reformulate the human

motion refinement into a low-rank matrix optimization where

singular value thresholding (SVT) is applied to solve the

objective function. After that, Feng et al. [22] have proposed a

motion data refinement via a matrix completion method using

both the low-rank structure and temporal stability properties

of the motion data. Liu et al. [23] have presented a MOCAP

data denoising approach via filtered subspace clustering and

low rank matrix approximation. Recently, Burke and Lasenby

[26] have tried to combine the smoothing and low-rank matrix

completion by projecting markers into a lower dimensional

space learned from the motion sequence, performing Kalman

smoothing in this space using and then returning to the original

space, using correlated markers to reduce the average error in

each marker position estimate.

Matrix completion methods do not require the pre-training,

which means that there is no out-of-sample problem. This is

the biggest advantage of such kind of methods. However, the

matrix completion method may fail when many data entries

are badly corrupted,e.g. large amount of missing markers.

Arguably, the human motion refinement is still an difficult

problem due to the diversity and complexity of motion data.

Inspired by the great success of data driven based methods in

computer vision and computer graphic area, we aim to propose

a novel human motion refinement method based on sparse

representation to overcome the existing the missing marker

filling issue.

II. METHODOLOGY

A. Data preprocessing

1) Normalization and Coordinate translation: MOCAP da-

ta is usually recorded under the real world global coordination.



Even visual-similar motion could have dramatically numerical

diversity due to the pose translation and rotation. Therefore,

a local coordinate transformation would be applied to the

raw data which aims to remove the effect of pose translation

and rotation. In addition, we noticed that in various kinds

of motion, the torso is usually a rigid part. Hence, we will

translate each pose to the local coordinate representation

respect to the root marker, i.e. marker 1 for CMU motion data.

Then, the local pose frames will be rotated to ensure that the

rigid plane, which is consisting of 3 markers, i.e.markers 2

(right femur), 7 (left femur), and 14 (upper neck) for CMU

motion data, parallels to the XY plane.

2) Human partial model and grouping: Human motion data

intrinsically countains hierarchical spatial-temporal informa-

tion. In order to better exploit the spatial-temporal relation-

ship, many researches have applied the partial human model

while processing motion data [5], [6], [25], [27], [28] and

achieved expressive performance. Instead of using whole body

model [8], [9], We choose partial human model in this work

and divide the whole body into 5 parts [5], [6], which is

Torso(TO), Left Arm (LA), Right Arm (RA), Left Leg(LL) and
Right Arm(RL). On one hand, the partial model could facilitate

exploring the hierarchical spatial correlations among the joints.

On the other hand, it is helpful for improving the model’s

generalization ability.

In addition, we chooses using short clips of motion rather

than processing the refinement frame by frame, which aims

to obtain embedded spatialtemporal patterns and guarantee

smoothness for the result motion sequence.

Therefore, for a given motion sequence X =
{X1, X2, . . . , XS} contains S pose frames, the submatrix Xi

will be derived from X to represent each partial motion se-

quence, as Xi = {Xi
1, X

i
2, . . . , X

i
S} ∈ Rdi×S , i = 1, 2, . . . , 5.

With a M length window, it will then generate N = S−M+1
overlapping motion clips for each partial motion sequence

, that is X(M)ij = [X(j−1)×M+1, · · · , Xj×M ]. In each

clip, we reshape the M frames into one vector Y i
j , i.e.

Rdi×M → R(di)×1, di = M × di. Thus, we finally get the

groups of partial motion matrixes Y i = {Y i
1 , Y

i
2 , . . . , Y

i
N} ∈

Rdi×N , N = S −M + 1, i = 1, 2, . . . , 5.

B. Motion dictionary learning

Assume that Y i = [Y i
1 , Y

i
2 , · · · , Y i

N ] ∈ Rdi×N , i =
1, 2, · · · , 5. stand for the partial motion group set generated

from clean motion clips via the pre-processing operation

mentioned in section II-A. A conversation dictionary learning

is to solve the following problem to extract the most suitable

dictionary Di ∈ Rdi×Ki

for the sparse representation of

training partial motion group Y i.

min
W i,Di

‖Y i −DiW i‖2F
s.t.W i

j = [W i
1, . . . ,W

i
N ], ‖W i

j‖0 ≤ ts, 1 ≤ j ≤ N

Di = [Di
1, . . . , D

i
K ], ‖Di

m‖2 ≤ 1, 1 ≤ m ≤ Ki

(1)

In equation 1, W i is the sparse coefficient, ts is the target

sparsity, Di is the motion dictionary corresponding to the 5

kinds of human pa4rtial motion. Equation 1 is a non-convex

problem and could be solved by some existing methods,e.g.

K-SVD [29]. However, the equation 1 is a least square error

function which is not stable to the noise and missing value.

We will enhance the robustness of equation 1 for dealing with

motion data.

The acquired human motion data usually contains only a

few of missing markers after post processing. The distribution

information of missing markers in motion data will be taken

into account for deriving the dictionary learning to improve

the objective function. The missing markers are mainly caused

by the occlusion and usually last several continuous frames,

which are structural sparse. Let’s assume that the binary matrix

Ωi ∈ {0, 1}di×N , i = 1, 2, . . . S denotes the missing feature

(i.e. 1 for corresponding marker miss) of a given partial motion

clips Y i. Hence, the missing part could be denoted as Ωi ◦Y i

while the observable part is Ω
i ◦ Y i.

We relax �0 pseudo-norm in equation 1 to a �1 minimization.

The objective function is then reformulated and the idea dic-

tionary would provide the sparse representation via satisfying

argmin
Wi

‖Ωi ◦ Y i − Ω
i ◦DiW i‖2F + λ‖W i‖1

s.t.‖Ωi ◦ Y i − ΩiŶ i‖2F < σ

Di = [Di
1, . . . , D

i
K ], ‖Di

j‖2 ≤ 1, 1 ≤ m ≤ Ki

(2)

where Ŷ i = DiW i is the reconstructed result and the con-

straint ‖Ωi ◦Y i−ΩiŶ i‖2F aims to minimize the difference of

the invisible part between the clean motion and reconstructed

result.

Equation 2 is actually a nonconvex problem with respect

to Di and W i jointly, which is difficult to find the glob-

al minimum. However, equation 2 is convex with the two

variables separately. Hence, the variables Di and W i would

be optimized alternatively until the convergence is achieved.

Finally, five motion dictionaries Di, i = 1, · · · , 5 can be gotten

in the training phase via the proposed dictionary learning

algorithm.

C. Motion recovery

1) Trust Data Detection: As mentioned in the previous

paragraph, apart from the dictionaries D and parameter λ, our

approach also need to specify the missing marker Ω while

processing the motion data. Here, we employ a trust data

detection (TDD) method [22] to identify the missing data

entries.

Ω = TDD(X,φ)

s.t.Ω = [Ω1, . . . ,ΩS ] ∈ {0, 1} (3)

where X is the given noisy motion sequence, Ω is the

corresponding marker and φ is the threshold value which is

set as 6cm in this work. The detail of TDD implementation

is omitted due to paragraph limitation, which is available in

[22].



2) Objective function: For a given input imperfect motion

sequence, we will firstly take the operations mentioned in

section II-A to generate the five partial-group motion matrices,

which denoted as {Y i ∈ di × N, i = 1, 2, · · · , 5}. The

corresponding missing mark Ω would be detected via TDD

and also be translated to {Ω1, · · · ,Ω5} via similar operations.

In order to simplify the problem, the basis number Ki

for each partial motion dictionary is all set as K, that is

{Di ∈ di × K, i = 1, 2, · · · , 5}. With the pre-trained five

dictionary matrices {D1, · · · , D5}, the reconstructed result

groups {Y i, i = 1, 2, · · · , 5} could be calculated by solving a

�1 − norm minimization framework:

argmin
Wi

‖Ωi ◦ Y i − Ω
i ◦DiW i‖2F + λ‖W i‖1 (4)

Since the �1−norm penalty in equation 4 on the coefficient

W i is not able to promise the smoothness of reconstructed

result, a locality-constrained linear (LLC) coding method [30]

is used. Hence, we reformulate the objective function as

argmin
Wi

‖Ωi ◦ Y i − Ω
i ◦DiW i‖2F + λ‖Gi ◦W i‖2 (5)

where Gi ∈ RK×N is the locality adaptor that each column

gives the different freedom for each basis vector proportional

to its similarity to the input descriptor Y i
:,j , j = 1, 2, · · · , N .

Specifically,

Gi
:,j = exp(

dist(Ỹ i
:,j , D̃

i)

σ
)

Ỹ i = Ω
i ◦ Y i, D̃i = Ω

i ◦DiW i

(6)

where dist(Y i
:,j , D

i) = [dist(Y i
:,j , D

i
:,1), dist(Y

i
:,j , D

i
:,2), · · · ,

dist(Y i
:,j , D

i
:,K)]T , and dist(Y i

:,j , D
i
:,p) is the Euclidean dis-

tance between Y i
:,j and Di

:,p. Each column of Gi is normalized

to be between (0, 1]. Note that the LLC code in equation 5

is not sparse in the sense of �0 norm, but is sparse in the

sense that the solution only has few significant values [30]. In

practice, a threshold is applied to make those small coefficients

be zero.

Solving the �1 − norm problem like equation 4 usually

requires optimization procedures, e.g. Feature Sign algorithms

[31], which is time consuming. Unlike equation 4, the solution

of equation 5 can be derived analytically by:

W̃ i
:,j = (Ci

j + λ diag(Gi)) \ 1
W i

:,j = W̃ i
:,j/1

T W̃ i
:,j

(7)

where Ci
j = (D̃i − Ỹ i

:,j1
T )T (D̃i − Ỹ i

:,j1
T ) denotes the data

covariance matrix. Additionally,when the large size dictionary

Di ∈ Rdi×K is used, a fast approximated method could be

achieved by first performing a k-nearest neighbor (k < di <
K) search and then solving a small constrained least square

fitting problem, bearing computational complexity of O(K +
k2) [30].

Algorithm 1 Sparse based motion refinement

Input: motion dictionary matrix Di; the input imperfect mo-

tion sequence Xglobal; the length of moving window for

grouping M ; the regulation parameter λ; the threshold

value φ.

Output: the refined motion sequence X̂global

1: Trust data detection
generate the missing marker matric Ω via the TDD
method shown in equation 3

2: Pre-processing
The unperfect motion sequence Xglobal is translated into

the local coordinate representation Xlocal;generate par-

tial motion group {Y i, i = 1, 2, · · · , 5} with Xlocal

and given window size M ; generate the corresponding

{Ω1, · · · ,Ω5} via similar operations.

3: Motion refinement
With the trained motion dictionaries Di, calculate Gi

according Eq 6, solve Eq 5 via Eq 7 to get the sparse

representation W i and rebuild the refined Ŷ i.

4: Decompose groups and reconstruct the refined pose
decompose the partial groups Ŷ i and reconstruct the local

pose frames X̂i
local

5: Reconstruct motion sequence and translate back to
world coordinate
form the refined local motion sequence X̂local and trans-

late it back into world coordinate representation motion

sequence X̂global

Fig. 4: Results of filling missing value: Original (green),

Imperfact (yellow) and Refinement result (red)
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Fig. 5: The Comparisons of our method with other motion refining algorithms on four human motion sequences with missing

rate (a) 10%, (b) 20% and (c) 30%. The average RMSE values of each frame(cm/frame) are reported.
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Fig. 6: Motion refinement comparisons of different algorithms on four human motion sequences with different missing rates. (a)

running (missing rate, 10%), (b) boxing (missing rate,10%), (c) basketball (missing rate 10%), (d) dancing(missing rate 10%),

(e) running (missing rate, 20%), (f) boxing (missing rate,20%), (g) basketball (missing rate 20%), (h) dancing (missing rate

20%), (i) running (missing rate, 30%), (j) boxing (missing rate,30%),(k) basketball (missing rate 30%), (l) dancing (missing

rate 30%).

III. RESULTS AND DISCUSSION

A. Experimental setup

Four representative kinds of actions, i.e., run, dance, box-
ing and basketball, are chosen from CMU human motion

database3 to evaluate the performance of proposed method.

Two motion sequences from each category are randomly

selected as testing set while others are used for training. Most

3http://mocap.cs.cmu.edu/

of CMU motion data are very clear and would be directly used

as the training data for our method. For the testing data, we

synthesised the noise with missing ratio from 10% to 30% with

10% interval. The size of the moving window M for grouping

operation is tuned from {2, 4, 8, 16, 30}. The parameter λ is

tuned from {10−3, 10−2, 10−1, 1, 10} and finally set as 10.

Finally M is set as 30 and dictionary size K is set as 1024
due to the trade off between the effectiveness and efficiency.

Three methods are implemented as comparison: Dynammo
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Fig. 7: Experiment on 8 kinds of motion that not contained in the training data: walk, gymnastics, jump, punch, score, taichi,
varied and acrobatics.

[24], [32], a linear dynamic system(LDS) based method;

SRMMP [9], a sparse coding based method for predicting

missing markers; SVT [21], a matrix completion based method.

In order to make a fair comparison, the parameters for each

algorithm are tuned by cross validation.

Additionally, in order to further evaluate the proposed

model, we have also taken another experiment on 8 other

kinds of actions that not contained in the training data, which

are walk, gymnastics, jump, punch, score, taichi, varied and

acrobatics.

B. Experimental Results

Following the work [5], [6], [9], [32], [33], the Root Mean

Squared Error (RMSE) measurement is adopted to qualify the

refined results:

rmse(Xi, X̂i) =

√
1

ne
‖Xi − X̂i‖2 (8)

where Xi is the original pose frame and X̂i is the recovered

one, ne is the total number of missing markers in Xi. Due

to the limited space here, only one motion sequence of each

kind of motion is presented, the detail of the refined motion

is shown in the demo video.

As shown in Fig 5, our proposed method generally outper-

forms the competitors in most cases, especially for complex

motion. The LTI method Dynammo is only effective for the

simple motion, e.g. running, while it works not well for

the complex motion that contains heterogeneous behaviors.

Moreover, the detail result shown in Fig 6 has shown that the

recovered result of our proposed method is more stable than

the competitors. An example is also shown in the demo video.

C. Discussion

a) Computational complexity analysis.: The computa-

tional cost of the proposed method are mainly from two

steps operations: Learning dictionaries Di and the calculation

of sparse coefficient W i. As we know that the dictionary

learning just need to be implemented for once time. Hence,

the computational cost for refining a motion sequence mainly

comes from the sparse coefficient calculation, which is about

O(K + k2) (k nearest neighbor searching, k < di < K)

by using a fast LLC method [30]. In addition, the processing

of each partial motion groups is independent, which means

that both training and refining could be applied in parallel to

increase the time efficiency.
b) Denoising: In this paper, we just focus on solving the

missing marker problem. However, the realworld MOCAP data

may also contains the noise, e.g. Gaussian noise. To solve this

problem, we could follow the strategy in Xiao et al.’s work [6],

where the �2 denoising and missing filling could be combined

together. In other words, to refine a piece of imperfect motion

data sequence, the missing value will be filled, then the �2
normalization could be applied to remove the Gaussian noise.

c) Limitations and future work.: The first limitation of

our proposed method is that it needs clean motion for training.

Hence, both the distribution of missing marker and noise

should be considered for dictionary training in the future work

to handling the uncleaned training data. Besides, we need an

additional optimization step for an �2 normalization to deal

with common gaussian noise. Thus, a new refining objective

function will be designed to combine the noise filtering and

missing filling. Moreover, our method heavily depends on the

missing mask detection. The TDD method we used is based

on the assumption that the motion is smooth in the feature

space,which may not work well in some extreme cases.

IV. CONCLUSION

To sum up, human motion refinement is an essential step

for MOCAP data based applications. A locality sparse coding

based motion refinement method is proposed in this paper.

Both hierarchical characteristics and spatial temporal infor-

mation of motion data are considered while designing the

objective function. The LLC coding and grouping operation

ensure the smooth property of the recovered result. In addition,



the partial model makes our method more robust to the out-

of-sample problem. The experimental result shows that our

method outperforms the state-of-art method in most cases.
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