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Abstract: Extended objects are characterised with multiple measurements originated
from different locations of the object surface. This paper presents a novel Sequential
Monte Carlo (SMC) approach for extended object tracking in the presence of clutter.
The problem is formulated for general nonlinear problems. The main contribution of
this work is in the derivation of the likelihood function for nonlinear measurement
functions, with sets of measurements belonging to a bounded region. Simulation re-
sults are presented when the object is surrounded by a circular region. Accurate esti-
mation results are presented both for the object kinematic state and object extent.

1 Motivation

Extended object tracking is an important application where the interest is in finding esti-
mates of the centre of the area surrounding an object and the object extent/size. The ex-
tended object usually leads to multiple measurements. Different methods are proposed
in the literature for dealing with this problem. Most of the methods separate the pro-
blem of kinematic state estimation from the problem of parameter state estimation such
as in [KF09, Koc08]. The extent parameters are estimated separately from the states, for
instance with the random matrices approach [KF09, Koc08]. A comparison between the
approach with random matrices and the combined-set theoretic approach is presented
in [BFF+10]. An approach with SMC method for extended object tracking is proposed
in [VIG05]. Other related works are [SH07, SBH06, BH09a, BH09b, NKPH10].

In general the measurement uncertainty can belong to a hypercube or to another spatial
shape. In our approach, we consider the general case with a nonlinear measurement equa-
tion. The main contributions of the work is in the derived likelihood function based on a
parameterised shape and in the developed SMC filter for extended objects. Then we pro-
pagate this spatial measurement uncertainty through the Bayesian estimation framework.

In 2005, Gilholm and Salmond [GS05] developed a spatial distribution model for tracking
extended objects in clutter, where the number of observations from the target is assumed
to be Poisson distributed. Based on this approach Poisson likelihood models for group and
extended object tracking were developed [CG07].

The rest of this paper is organised as follows. Section 2 introduces the SMC framework
in the case of EOT. Section 3 gives the measurement likelihood in the presence of clutter.
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Performance evaluation scenario is shown in Section 4 and conclusions based on these
simulations are presented in Sections 5.

2 Extended Object Tracking Within the Sequential Monte Carlo Fra-
mework

This work considers the state estimation problem for extended objects with clutter noise.
Such objects usually give rise to a set of measurements. The system dynamics and sensor
can be described using the equations

xk = f(xk−1,ηk−1), (1)

zk = h(xk,wk), (2)

where xk =
(
XT
k ,Θ

T
k

)T
∈ Rnx , with (·)T being the transpose operator, is the unknown

system state vector at time step k, k = 1, 2, ...,K, where K is the maximum number
of time steps. The vector xk consists of the object kinematic state vector Xk and object
extent, characterised by the parameter vector Θk ∈ RnΘ ; f(.) and h(.) are respectively the
system and the measurement functions, nonlinear in general; zk ∈ Rnz is the measurement
vector and ηk = (ηTs,k ηTp,k)

T and wk are the system (kinematic state and parameters)
and measurement noises, respectively.

Within the SMC approach the system state pdf is approximated by randomly generated
samples and based on the sequence of measurements. According to the Bayes’ rule the
filtering pdf p(xk|z1:k) of the state vector xk given a sequence of sensor measurements
z1:k up to time k can be written as

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
, (3)

where p(zk|z1:k−1) is the normalising constant. The state predictive distribution is given
by the equation

p(xk|z1:k−1)=
∫
Rnx

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (4)

The evaluation of the right hand side of (3) involves integration which can be performed
by the PF approach [AMGC02] by approximating the posterior pdf p(xk|z1:k) with a set
of particles x(i)

0:k, i = 1, . . . , N and their corresponding weights w(i)
k . Then the posterior

density function can be written as follows

p(x0:k|z1:k) =
N∑
i=1

w
(i)
k δ(x0:k − x(i)

0:k), (5)

where δ(.) is the Dirac delta function, and the weights are normalised so that
∑
i w

(i)
k = 1.
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Each pair {x(i)
0:k, w

(i)
k } characterises the belief that the object is in state x(i)

0:k. An estimate
of the variable of interest is obtained by the weighted sum of particles. Two major stages
can be distinguished: prediction and update. During prediction, each particle is modified
according to the state model, including the addition of random noise in order to simulate
the effect of the noise on the state. In the update stage, each particle’s weight is re-evaluated
based on the new data. A resampling procedure introduces variety in the particles by eli-
minating those with small weights and replicating the particles with larger weights such
that the approximation in (5) still holds. The residual resampling algorithm is applied here.

3 Measurement Likelihood in the Presence of Clutter

In the context of extended object tracking, the prediction step is generally well studied for
various classes of interval and spatial representations of uncertainties. Ellipsoids, spheres
and polytope families can be easily propagated when the system dynamics and sensor
models are linear.

The update step with the likelihood calculation is less studied or often studied with a re-
striction to a particular class of a particular type of measurements. The aim of this paper is
to derive general likelihood calculation procedures based on Monte Carlo methods without
a restriction on the type of set of interest or the type of cluttered measurements available.
For that purpose, the main idea of this paper is to introduce a sampling step for regions
of interest in the extended object. This sampling aims to represents the probability of a
given point, in the state space, to be the origin of a measurement. This section describes
briefly the newly proposed method, details can be found in the references herein. As an
illustration, the case of an extended object with circular form is considered.

Without loss of generality, assume that there is only one static sensor described by its
state vector xs,k. Assume that at each measurement time k the extended object generates
a matrix Zk = {z1k, . . . ,zmk } ∈ Rnz×Mk of Mk = MT,k + MC,k measurement vec-
tors. The number of measurements MT,k originating from the visible border of the source
is considered Poisson-distributed random variable with mean value of λT , or MT,k ∼
Poisson(λT ). Similarly, the number of clutter measurements is MC,k ∼ Poisson(λC),
where λC is the mean value of the clutter measurements. The clutter measurements are
modeled according to [DM01]. All of the measurements are assumed to be conditionally
independent, i.e.

p(Zk|xk) =
Mk∏
j=1

p(zjk|xk). (6)

If at time step k − 1 the posterior pdf p(xk−1|zjk−1) is known, then one can express the
prior p(xk|zjk−1) via the Chapman-Kolmogorov equation:

p(xk|zjk−1) =
∫
Rnx

p(xk|xk−1)p(xk−1|zjk−1)dxk−1. (7)

The nearly constant velocity model [LJ03, BSL93, PMGA11] is used to model the motion
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of the centre of the region surrounding the extended target.

3.1 Observation Model

Range and bearing observations from a network of low cost sensors positioned along the
road are considered as measurements. The measurement vector is zjk = (rjk, β

j
k)
T , where

rjk is the range and βjk is the bearing of the measurement point j. The equation for the
measurements originating from the target has the form: zjk = h(xk) +w

j
k, where h is the

nonlinear function h(xk) =

(√
xj2k + yj2k , tan

−1 y
j
k

xj
k

)
, xjk and yjk denote the Cartesian

coordinates of the actual point of the source from where the measurement emanates in
the case of two dimensional space. The measurement noise wj

k is supposed to be Gaus-
sian, with a known covariance matrix R = diag(σ2

r , σ
2
β). The clutter measurements are

considered uniformly distributed within the visible area of the sensor.

3.2 Introduction of the Notion of the Visible Surface

The measurement likelihood p(zjk|xk) of the extended target can be represented with the
relation

p(zjk|xk) =
∫

Rnv

p(zjk|V k)p(V k|xk)dV k, (8)

where V k ∈ Rnv denotes a source of measurement in the state space. In practice, these
visible sources V k depend on the object position, nature and parameters xk, λT or scatter
characteristics λC and on the sensor state (e.g., the sensor position and angle of view).
The pdf p(V k|xk) represents the probability of a point in the state space to be a source of
measurement given the extended object xk. The surface of the target with state xk visible
from the sensor with state xs,k is denoted by Vk(xk,xs,k).
We assume that the sources of the true measurements at time step k, given the target state
and the sensor prior state are uniformly distributed along the region Vk(xk,xs,k), visible
from the sensor xs,k, i.e.

p(V k|xk) = p(V k|xk,xs,k) = UVk(xk,xs,k)(V k), (9)

where UVk(xk,xs,k)(·) represents the uniform pdf with the support Vk(xk,xs,k).
Inserting (9) into (8) gives

p(zj
k|xk) =

∫
Rnv

p(zj
k|V k)UVk(xk,xs,k)

(V k)dV k =
1

||Vk(xk,xs,k)||

∫
Vk(xk,xs,k)

p(zj
k|V k)dV k, (10)

where ||Vk(xk,xs,k)|| denotes some measure of the region Vk(xk,xs,k). That measure
could represents the length of a curve (a one-dimensional concept), the area of a surface
(a two-dimensional concept) or the volume of a solid (a three-dimensional topological
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Fig. 1: Notations and definitions in the context of an example with circular extent

manifold). Unfortunately that integral (10) is difficult to calculate. An particular example
of this integral for circular shaped extent is considered in [PMGA11].

Gating is applied to the spatial area of the measurement sources. The gating region is de-
fined by an angular field (β1 < β < β2) and minimum and maximum distance (d1 < d <
d2) around the predicted object center with respect to sensor position. An example of such
gating as well as some of the notations are shown for object with circular extent in Fig. 1

3.3 Parametrisation of the Visible Border

The calculation of the likelihood (8) can be performed using a Monte Carlo method in the
following way. After the prediction step, a set of weighted particles {(x(i)

k|k−1, w
(i)
k|k−1)}

N
i=1

is available (recall that each of the N particles can be seen as an extended object hypothe-
sis). First, the visible border Vk(x(i)

k|k−1,xs,k) is determined. Then for each particlex(i)
k|k−1

the likelihood function p(V k|x(i)
k|k−1, z

j
k) is defined from the support Vk(x(i)

k|k−1,xs,k),

taking into account the angular information of the measurement zjk. The measurements{
zjk

}M
j=1

are generated according toN (zjk, h(V
(i,`)
k ),R). Then samplingQ visible points

from each of Mk measurements gives us a total of S = QMk samples per particle
{V (i,`)

k }S`=1, for each particle i:

V
(i,j)
k ∼

(
r
(i,j)
v,k

θ
(i,j)
v,k

)
=

(
N (r

(i,j)
v,k ; r

(i)
k , σ̃2

r)

N (θ
(i,j)
v,k ; θ

(i,j)
k , σ̃ 2

θ )

)
, (10)

where σ̃r and σ̃θ are the standard deviations for the radius and angle, respectively, chosen
for generating the samples.
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Once the points {V (i,`)
k }S`=1 are available for each particle x(i)

k|k−1, we can approximate
the likelihood (see the equation (8)) according to

p(zj
k|x

(i)

k|k−1) =

∫
Rnx

p(zj
k|V k)p(V k|x(i)

k|k−1)dV k,=

M∑
`=1

p(zj
k|V

(i,`)
k )p(V

(i,`)
k |x(i)

k|k−1). (11)

The term p(zjk|V
(i,`)
k ) in (11) can be easily calculated in a classical way depending on the

problem (for example using a Gaussian likelihood). The term p(V
(i,`)
k |x(i)

k|k−1) depends

very much on the visible set Vk(x(i)
k|k−1,xs,k). It can be seen as

p(V
(i,`)
k |x(i)

k|k−1) = p(V
(i,`)
k ∈ Vk(x(i)

k|k−1,xs,k)). (12)

Here we will give an example for the calculation of the term p(V
(i,`)
k |x(i)

k|k−1) over a circle.

Let us denote with x(i,`)k and y(i,`)k the coordinates of V (i,`)
k , i.e. V (i,`)

k = (x
(i,`)
k , y

(i,`)
k )T .

For circular object the border Vk(x(i)
k|k−1,xs,k) can be given as

Vk(x
(i)

k|k−1,xs,k) = {(x(i)c,k|k−1 + r
(i)

k|k−1 cos(θ)y
(i)

c,k|k−1 + r
(i)

k|k−1 sin(θ)), θ ∈ [θ
(i)

1,k|k−1, θ
(i)

2,k|k−1]}.
(13)

A simple expression of p(V (i,`)
k |x(i)

k|k−1) can be

p(V
(i,`)
k |x(i)

k|k−1) = N (

√
(x

(i,`)
k − x(i)c,k)2 + (y

(i,`)
k − y(i)c,k)2, r

(i)
k|k−1, σ

2
v) (14)

where σv is the standard deviation for a Gaussian likelihood applied to the distance from
V

(i,`)
k to the center of the particle (x

(i)
c,k, y

(i)
c,k). Similarly to [GS05], in the presence of

clutter the likelihood function of the PF can be calculated from the following equation

P (Zk|x(i)
k ) =

Mk∏
j=1

(
1 +

λT
ρ
p(zjk|x

(i)
k|k−1)

)
, (15)

where ρ = λC/A is the uniform clutter density and A is the area visible from the sensor.

4 Performance Evaluation

An example, similar to the one presented in [PMGA11] is considered with added clutter
noise. Simulations are performed for 100 time steps each repeated for 500 iterations in the
case of tracking of object with circular extent and cluttered measurements consisting of
range and bearing. Scenarios with extended object particles from 80 to 500 are considered.
Please note that the actual number of samples is much higher and depends on the number
of measurements. For each of particles 5 Metropolis-Hastings proposals are generated. The
initial position of the object is biased by Gaussian random noise with standard deviation
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Fig. 2: RMSE of the position for number of particles varying from 80 to 500

of 10m for both coordinates. The initial extent is altered by Gaussian noise with standard
deviation of 5 m in radius, and the initial velocity is generated with added Gaussian noise
with standard deviation of 1.5 m/s for each of the coordinates.

The number of both the target and the clutter measurements generated in each step is
assumed to be Poisson distributed, i.e.MT,k ∼ Poisson(λT ), where λT = 5 andMC,k ∼
Poisson(λC), where λC = 13. For each measurement and each hypothesis one random
sample Q is generated according to (10). The radius of visibility of the sensor is assumed
to be 200 m, therefore ρ = 0.0001. The standard deviations for the bearing and for the
radius of these samples are respectively σβ = 3◦ and σr = 1m. The sensor line of sight
for simplicity is determined by the angles α1,k = 0 and α2,k = 2π.

The real measurements are assumed to originate from random locations of the visible
frontier of the extent where the angular position is uniformly distributed over the visible
arc and the range has additive random Gaussian noise with standard deviation of 2m. The
clutter measurements are uniformly distributed in the visible area of the sensor.

The change of the size of the extent in the space-state evolution model is generated by ad-
ding/substracting (corresponding to extension/shrinkage) the absolute value of a Gaussian
random variable with zero mean and standard deviation 2m. The actual target trajectory
is generated based on (1) with noise covariance equal to zero. The change of the size of
the extent when generating the extended object particles is modeled a random walk using
normally distributed random variable with zero mean and standard deviation 4m. The tra-
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Fig. 3: RMSE of the radius for number of particles varying from 80 to 500

jectory prediction in the filter is performed with standard deviation for the components
of the system dynamic noise σx = 1m/s2 and σy = 1m/s2, respectively. The results
from the simulations are presented in Figs. 2 - 5 and Table 1. The success rate refers to the
percentage of successfully tracked trajectories.

Table 1: Success rate

N particles Success rate, %
80 68.6

100 69.2
150 73.4
200 80.4
400 83.2
500 79.6
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Fig. 5: Clutter/real measurements plot from a single run
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5 Conclusions

This paper presents an approach for coping with clutter noise when tracking extended
objects. The simulation results show accurate performance results with more than 200
particles for the considered testing example.
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