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Abstract 

The nature of melodic similarity is interrogated through a survey of the different means by which the 

phenomenon has been studied, examination of methods for measuring melodic similarity, a Monte 

Carlo analysis of data from the experiment which formed the basis for the ‘ground truth’ used in the 

MIREX 2005 contest on melodic similarity, and examples of interest in the music of Mozart. Melodic 

similarity has been studied by a number of means, sometimes quite contrasting, which lead to 

important differences in the light of the finding that similarity is dependent on context. Models of 

melodic similarity based on reduction show that the existence of multiple possible reductions forms 

a natural basis for similarity to depend on interpretation. Examination of the MIREX 2005 data shows 

wide variations in subjects’ judgements of melodic similarity and some evidence that the perceived 

similarity between two melodies can be influenced by the presence of a third melody. Examples 

from Mozart suggest that he deliberately exploited the possibilities inherent in recognising similarity 

through different interpretations. It is therefore proposed that similarity be thought of not as a 

distinct and definite function of two melodies but as something created in the minds of those who 

hear the melodies.  

 

1. What is melodic similarity? 

A common theme of music-computing research in the last couple of decades has been measurement 

of melodic similarity. Much of this research has been in the context of query systems, with the aim 

of finding a way of organising and searching a database of music so as to retrieve melodies similar to 

a given query (Hu, Dannenberg & Lewis, 2002; Pardo, Shifrin & Birmingham, 2004). The idea has 

been used also as a basis for segmentation (Ahlbäck, 2007) and for music analysis (Adiloglu, Noll & 

Obermayer, 2006). The objective of this article is not to seek better measurement of melodic 

similarity, but rather to interrogate its essential nature and ask whether seeking a definitive measure 

of similarity is a reasonable research goal. One strand of this interrogation is to ask whether or not 

‘melodic similarity’ is a single phenomenon. If it is not, there can be no single measure of similarity. 

Another strand questions whether the perception of similarity is dependent on interpretation and 

therefore, to some extent, is a creative act on the part of the perceiver. If it is, then it will be 

impossible to discover an accurate measure of similarity which is a function of two melodies alone. 

Section 2 of the article surveys the many different empirical bases used in studies of similarity and 

questions whether these all show evidence of the same phenomenon. Section 3 discusses some 

mechanisms used in the measurement of similarity and again questions whether these can really 

measure the same thing. Section 4 examines the rich set of data used to form the ‘ground truth’ for 

the MIREX 2005 ‘symbolic melodic similarity’ competition with the objective of querying whether 
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the similarity judgements made by subjects in that experiment can be modelled as functions of pairs 

of melodies. Section 5 examines some cases of similarity in music by Mozart, pointing out how 

Mozart exploits the possibilities inherent in alternative interpretations. In Section 6 I attempt to 

draw some conclusions from the equivocal evidence arising from earlier sections. It is safe to 

conclude that melodic similarity is a complex phenomenon which is affected by context, but it is not 

possible to reach a definitive conclusion on the degree to which similarity can be measured. A 

conclusion consistent with the data is that the perception of similarity is indeed creative, but 

humans are sufficiently creative to invent a similarity metric when the context requires it, and this 

can be subject to modelling. 

1.1 Similarity and measurement 

It is useful first to clarify some fundamental issues about measurement. The simple observation that 

some melodies are similar while others are different, and that the similarity can be greater or lesser, 

suggests that similarity can be represented by a number. Similarity is limited at one extreme (when 

similarity becomes sameness) but not obviously limited at the other, so it is natural to think of 

similarity like distance, representable by a non-negative number. The fundamental question is 

whether or not we can hope to define a function δ(a, b) which yields this number representing the 

dissimilarity between two melodies a and b. 

The most useful measurements have the four properties of a metric: non-negativity, self-identity, 

symmetry, and triangle inequality (Armstrong, 1983, p.38). The first two properties seem self-

evident for melodic similarity. With respect to symmetry, however, factors which have been 

demonstrated to cause asymmetry in other domains, such as salience and prototypicality (Tversky, 

1977), are likely to be important in melodic similarity also. It has been demonstrated that 

manipulating subjects’ familiarity with colours induces asymmetries in their judgements of 

similarities between those colours (Polk et al., 2002). The familiarity of melodies varies enormously, 

so we should assume that it will also lead to asymmetry in melodic similarity: an unfamiliar melody is 

likely to be judged as more similar to a familiar one than is the familiar melody to the unfamiliar one. 

The literature on melodic similarity does not include discussion of such asymmetry, though, and the 

published models do not account for it. 

The property most commonly questioned is triangle inequality, and the common grounds for this are 

that melody a might be similar to melody b by virtue of property or component x, while melody b 

might be similar to melody c by virtue of a different property or component y. In such a situation 

there is no reason to expect the dissimilarity between a and c to be limited. Despite such easily 

imagined counter-examples, those who use systems of measurement with the property of triangle 

inequality have not reported failure to match human judgements of melodic similarity on the 

grounds that those judgements do not exhibit triangle inequality. Indeed it is not uncommon to 

adapt a measure precisely so that it has the property of triangle inequality (for example the 

development of Proportional Transportation Distance (Giannopoulos & Veltkamp, 2002) from Earth 

Mover’s Distance) with the objective of facilitating the organisation and searching of a database. 

(Meanwhile, others have taken the alternative path of investigating means for organising and 

searching databases without the need of triangle inequality (Typke & Walczak-Typke, 2008).) 
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2. Empirical bases 

Most studies have grounded their work on some kind of empirical basis, some raw ‘truth’ that 

certain melodies are similar and others are not. When we look at the detail, however, we find that 

very different paradigms have been used, firstly in the source of that ‘truth’ and secondly in the kind 

of relationship tested between melodies. 

2.1 Experimental paradigms 

Many studies ask experimental subjects, often experts, to judge the similarity between pairs of 

melodies or extracts of melodies on a rating scale (Eerola et al., 2001; Eerola & Bregman, 2007; 

Müllensiefen & Frieler, 2004; Müllensiefen & Frieler, 2007; Schmuckler, 2010). This has the 

advantage of directly generating measures of difference which will almost certainly have the first 

three properties of a metric. A rating of 0 or below is not an option; subjects are not asked to 

compare a melody to itself; and the set-up usually discourages asymmetric judgements. There is no 

guarantee, however, of triangle inequality. One objection to experimental procedures like this is that 

they are not realistic: musicians are rarely (if ever) in a situation when they have to match the 

similarity between melodies to a number. Such direct rating was avoided in another study which also 

used expert judgement but subjects were asked to rank a set of melodies by their similarity to a 

reference melody rather than to simply compare pairs of melodies (Typke et al., 2005; Typke, 

Wiering & Veltkamp, 2007). (This study is examined in more detail below.) A measure of difference 

can be derived from the relative positions of melodies in the rankings, but this measure can only be 

relative, unlike the potentially absolute measure derived from direct rating of similarity. I say only 

‘potentially’ because in practice the ratings will depend also on the set of melodies presented to the 

rating subjects. In other domains, Tversky (1977) demonstrated how the similarity between a pair of 

objects can be influenced by the presence of other objects for comparison. We should expect this 

effect to apply in the case of melodies also, and it is likely to be stronger in the case of the ranking 

paradigm because a larger set of melodies is continuously present. Another paradigm which avoids 

an artificial direct rating of similarity is to present subjects with three melodies and ask them to 

indicate the pair which are most alike the pair which are least alike (Allan, Müllensiefen & Wiggins, 

2007; Novello, McKinney & Kohlrausch, 2011). This approach is the one which places the least 

burden on experimental subjects, and it appears to have been successful for non-expert subjects, 

unlike the paradigms mentioned above. On the other hand, deriving measurements from these 

observations requires a method such as multi-dimensional scaling, and a large quantity of 

observations. 

Other studies have avoided direct judgment of similarity, whether by experts or naive listeners. 

Some have depended on categorisation of melodies either from existing musicological studies 

(Müllensiefen & Frieler, 2007; Volk et al., 2008) or on the basis of geographical origin (Juhasz, 2006). 

In these cases a useful measurement cannot be derived from the empirical data, since distances 

between melodies are all either 0 or 1 according to whether or not the melodies belong to the same 

category. However, the data can still be used to verify a computational model on the grounds that 

the computed distance for melodies within a category should be less than the distance between 

melodies from different categories.  

Yet other studies have attempted to judge similarity on the basis of some real musical activity. 

Studies aimed at producing measurements for use in query-by-humming systems have been based 
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on asking subjects to sing a known melody (Hu, Dannenberg & Lewis, 2002; Pardo, Shifrin & 

Birmingham, 2004). The subjects make mistakes, so the resulting melody is not the same as the 

original, but it is assumed to be more similar to the original than to other melodies. Subjects can also 

be asked to deliberately vary a melody (Bernabeu et al., 2011), and once again the variations are 

assumed to be more similar to the original than to other melodies.  

2.2 Similarity and cognition 

Do all these paradigms study the same thing? There are other musical phenomena whose underlying 

models are robust under different experimental paradigms (models of tonal perception via pitch-

frequency profiles are one example (Krumhansl, 1990)), and these suggest stable underlying 

cognitive functions. I am not aware of evidence that judgements of melodic similarity are consistent 

across different paradigms. Indeed, there is clear evidence for what one might expect from other 

aspects of human behaviour: that judgements of melodic similarity are dependent on context. 

Müllensiefen and Frieler have demonstrated that a different model is required to account for 

similarity judgements which use the same paradigm but in which the set of melodies to be 

compared is different (2007). 

In fact, the contexts in these various experiments have been very different. The nature of melodic 

materials has varied widely, and crucially the instructions and information given to the subjects have 

also varied. Sometimes subjects have been given no further instruction than to rate the similarity 

between two melodies. On other occasions they have been given guidance such as to imagine that 

the comparison melody is a student’s attempt to reproduce a teacher’s melody and to think of the 

similarity rating as a mark (Müllensiefen & Frieler, 2007). (Note that in this case the similarity 

judgement can no longer be assumed to be symmetric.) Sometimes subjects’ attention has been 

drawn to particular aspects of the melody, for example by being told in advance that the experiment 

was concerned with contour (Schmuckler, 2010). 

The differences in paradigm also introduce significant issues. If data is derived from real musical 

behaviours which do not involve explicit similarity judgements, we can only assume that similarity is 

a governing factor; if data is not derived from real musical behaviours we cannot be certain that it 

has any real musical relevance. Even in the cases based on explicit expert judgements of similarity, 

there are important differences. As stated above, we cannot be certain that judgement of melodic 

similarity has the property of triangle inequality. Even if it does not, subjects can give answers with 

confidence when asked to rate the similarity between two melodies, or even to judge the most 

similar and least similar pairs in a triple. However, in a ranking task such as used in (Typke et al., 

2005) the subjects might be in a position of having to balance competing similarity judgements, 

depending on how they interpret the instructions. If they consider their task to be simply to ensure 

that the melody ranked x is no less similar to the reference than the melody ranked x + 1, no 

competing rankings can arise. If, however, they also believe that a ranking implies that the melody 

ranked x + 2 is less similar to the one ranked x than the one ranked x + 1, then in the absence of 

triangle inequality, a subject might find it impossible to find a ranking which meets both criteria: 

melodies a, b and c might have decreasing similarity to the reference, and so be ranked x, x + 1 and x 

+ 2, but c might be more similar to a than b, implying instead the ranking x, x + 2 and x + 1. 
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It is not safe, therefore, to assume that these studies investigate the same phenomenon of melodic 

similarity. Until there is evidence that data produced under these various paradigms is compatible it 

is probably safer to consider melodic similarity to be a family of possibly related phenomena. 

3. Bases for measuring similarity 

Writing about theories of similarity in general, Tversky noted that ‘theoretical analysis of similarity 

relations have been dominated by geometric models [which] represent objects as points in some 

coordinate space such that the observed dissimilarities between objects correspond to the metric 

distances between the respective points’ (1977, p.327). He proposed instead an analysis based on 

the representation of objects as sets of features, and gave the following formula for the similarity of 

objects based on their shared and distinctive features, where A and B are the feature sets of object a 

and b respectively (p.333): 

         
       

                      
 (1) 

He was able to explain various similarity phenomena on the basis of assumptions about the nature 

of the function f, the values of the coefficients α and β, and factors such as focus, salience and 

prototypicality. With a suitable representation of quantities in terms of possibly overlapping feature 

sets, the model can encompass ‘geometric’ analyses of similarity also. It also depends crucially, as 

Tversky acknowledged himself (p.331), on the interpretation of objects in terms of sets of features. 

In the following sections, I discuss how the same factors can be seen in methods of modelling 

melodic similarity: models based on quantitative difference or distinctive features; and a crucial role 

for interpretation. 

3.1 Models of similarity 

Many models of musical similarity start from the assumption that a melody is a sequence of pitches, 

and so similarity relationships between melodies can be expressed in terms of relations in pitch and 

time. Some are thoroughly geometrical, representing a melody as a set of points in a pitch-time 

space and then measuring the distance between points (see, for example, Hofmann-Engl, 2003), or 

some other mechanism for measuring difference (e.g., difference between curves fitted to the 

notes, Urbano et al., 2011). Sometimes these measures of difference are mediated also by an 

alignment of the notes of one melody with another through a mechanism such as Dynamic Time 

Warping. Alternatively the shifts in time which this implies are ‘measured’ together with changes in 

pitch through the editing operations required to transform one melodic sequence into another, such 

as in Levenshtein distance, or Earth Movers’ Distance (Typke, Wiering, Veltkamp, 2007). Alignment 

in time has its analogue in the pitch domain whereby some models use pitch class (chroma) instead 

of pitch to neutralise differences of octave, while others use intervals to concentrate ignore absolute 

pitch differences altogether. When dealing with audio rather than symbolic data, equivalent 

‘alignment’ in the pitch domain can be achieved by extracting ‘shift invariant’ features such as the 

power spectrum of the chromagram (Marolt, 2008). 

Other models start from the assumption that behind the sequence of pitches which makes up a 

melody is a musical structure, and melodic similarity is best modelled by similarities in these 

structures rather than by comparing melodies note-by-note. A melody is represented in a tree 
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structure, constructed through a process of reduction which progressively removes decorative notes 

until only the main outline of the melody is left. These models are worth describing here in more 

detail because they illustrate clearly the importance of interpretation, to be discussed below.  

Rizo (2010) and Bernabeu et al. (2009) derive the reduction of a melody by selecting one of the 

notes occurring in each span based on a small number of rules. The spans are determined by the 

metre, so that, in 4/4 for example, there is a span for each bar, at the next level down two spans for 

the minims (half notes), then four spans for the crotchets (quarter notes), etc., halving each span at 

the level above. There are also higher-level spans which group bars into pairs, etc. The result is a tree 

structure in which each node corresponds to a specific time span, and the rhythm of the melody is 

completely defined by the tree structure. The reduction is built bottom-up by 

(a) always selecting a note in preference to a rest, 

(b) selecting a harmonic note in preference to a non-harmonic one, and 

(c) selecting the note at the head of the span if both are harmonic. 

A harmonic analysis of the melody must be generated before reduction, and this is currently done by 

hand. A measure of similarity based on the tree edit distance between the reductions of melodies 

was compared with edit distance on the melodic surfaces alone. The reduction-based similarity 

measure proved to perform better at distinguishing variations of a melody from unrelated melodies 

(Bernebau et al., 2009). 

The approach of Orio & Rodà (2009) is similar, in that it generates a tree based on the metrical 

structure, and notes are selected within each span partly on the basis of a harmonic analysis. The 

selection, however, is based on a more complex set of weights using the relation of the note to the 

underlying harmony (fifth, third or root), the function of that harmony, and the position in the 

metre. Furthermore, similarity between melodies is not based on the edit distance between trees. 

Melodies are segmented (using pre-existing segmentation schemes) and the segmentation 

propagated to higher levels of the tree. The resulting melodic segments, expressed as interval 

patterns, are placed in a directed acyclic graph (DAG) in which parent-child relations between 

segments copy those relations in the reductions. The difference between two segments is then 

measured by the minimum path length between the segments in the DAG, and the difference 

between two melodies is the average difference between their component segments. This method 

was not tested against other measures of melodic similarity. 

The reductions produced by my own system (Marsden, 2010a, 2010b) are intended to more closely 

mimic the reductions of Schenkerian analysis (Schenker, 1935). Furthermore, they are based not just 

on melodies but on a full musical texture (generally extracts from piano pieces). The reduction 

process is therefore considerably more complex than those outlined above. In particular, the 

reduction tree does not necessarily follow the metrical structure (as indeed it does not in many 

Schenkerian analyses), and no prior harmonic analysis is necessary (though specification of the key 

and metre is). While early results matched actual analyses to a promising degree (2010b), an 

attempt to use the same system of reduction for demonstrating the similarity underlying themes 

and variations produced less promising results (2010a). Matching themes and variations via 

reductions proved no better than matching on the basis of the surfaces alone. 
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A final class of model is based on neither sequences of pitches nor on structures, but on more 

abstract features of a melody. A common paradigm is to extract features from a melody through 

some analytical process, and then on the basis of a set of empirical data to determine, through a 

technique such as machine learning or statistical analysis, which features in which combination 

provide the best model of similarity. Bohak & Marolt (2009), for example, found the following five 

features to be useful in distinguishing folk-song variants: melodic expectancy, entropy, phenomenal 

accent synchrony, ‘melodiousness’ (based on prime factorisation of frequency ratios), and melodic 

originality. This is a surprising result, because the features are quite different from the measures of 

distances in pitch and time used in geometric models or the comparisons of structure used in 

reduction-based models. The features do not need to be necessarily melodic ones (‘entropy’ for 

example, is not a specifically melodic feature), so it is easy for this type of model to move away from 

melodic similarity per se to more general musical similarity. Novello, McKinney & Kohlrausch (2011), 

for example, in a statistical analysis based on similarity judgements between audio clips of popular 

music, found three significant dimensions which they described as vocal-non vocal, slow-fast, and 

synthetic-acoustic. 

We find, therefore, a continuum of melodic-similarity models, from those based on distances in time 

and pitch, through those based on progressively abstracted features such as pitch class, the power 

spectrum of the chromagram, and structural reductions, to models based on sets of derived 

features. As with empirical studies of melodic similarity, models show a multiplicity of different 

bases and different kinds. If these even deal with related phenomena, let alone the same 

phenomenon, a significant task of meta-modelling will be required to reach a unified understanding 

of melodic similarity. 

3.2 The importance of interpretation 

The role of interpretation in similarity is particularly clear in the case of models based on reduction. 

The reduction systems of Rizo and colleagues and of Orio & Rodà each produce a single definitive 

reduction of a melody, but they will not always produce the same reduction for a given melody. 

While my system can produce a single reduction, one important finding is that a very large number 

of reductions is possible on the basis of the ‘rules’ inferred from writings on Schenkerian analysis 

alone (Marsden, 2010b). Indeed, music analysts commonly recognise that alternative analyses of the 

same piece of music are possible and valid. If multiple reductions are possible, how should a 

similarity-measurement procedure based on reduction select which reduction to use? From the 

perspective of Tversky’s feature-set model, a melody will be represented by a different set of 

features according to different ways of reducing it. We should therefore expect the similarity 

between two melodies to vary according to different reductions. The structure of one melody is 

likely to prime certain structural interpretations of another, so we should expect the presence of one 

melody to influence the reduction of another, and a lack of triangle inequality to follow as a natural 

consequence. There are likely to be sets of melodies a, b, c such that a and b can be reduced to 

appear similar, and b and c also be reduced to appear similar, reducing b in a different way, but no 

reduction of a and c makes them appear similar. This is likely to be true of any model of similarity 

which depends on interpretation. 
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4. Modelling the MIREX similarity data 

The experiment by Typke et al. (2005, 2007) is one of the most extensive and thorough in the 

literature. Several aspects of the experiment’s design reflect the objective of establishing a set of 

‘ground truth’ data for the MIREX 2005 melodic similarity information-retrieval software 

competition (Downie, 2008). All the musical materials were drawn from RISM A/II (a catalogue giving 

the initial melodies of pieces in a large number of music manuscripts dating from 1600 onwards) and 

so were extracts from genuine pieces of music. Eleven items were selected to be ‘queries’ against 

which other melodies (‘candidates’) were to be compared for similarity. For each query, between 45 

and 70 candidates were selected and presented to subjects, in music notation, who were asked to 

rank the candidates according to their similarity to the query. Subjects were not required to rank all 

candidates. There were a total of 34 subjects, all with some degree of musical training, but not all 

subjects ranked candidates for all queries. Each query was ranked by at least 25 subjects. The 

essential raw data, therefore, was a distribution of ranks for each candidate from 1 to a maximum 

(varying from 45 to 70), representing its similarity to the query. For the MIREX contest, the median 

rank was taken as an indication of the similarity of the candidate to the query. 

The results of this experiment (kindly made available by Rainer Typke) constitute an extremely rich 

source of data with respect to judgements of melodic similarity. To what degree does this data 

support the idea that similarity can be modelled as a function of two melodies? What is there about 

the data which supports instead the idea that similarity depends also on other factors, such as the 

other melodies presented to the subjects at the time? (Further detail on my analysis of this data set 

can be found in Marsden, 2012.) 

4.1 Distributional analysis of the MIREX data 

It is important at the outset to get clear the essential features of the data. The difference in the 

number of candidates ranked by each subject is striking (Figure 1). Clearly they had different ideas 

about how similar candidates needed to be in order to be included in the ranking. The deviation in 

the number of candidates ranked also varied enormously from one subject to another, though the 

figures do indicate that in the case of three or four subjects it is possible that they started by ranking 

almost all the candidates but then changed their strategy to rank only a few. 

Figure 1. Average number of candidates ranked by each subject, with error bars showing standard deviation.  
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While the rankings of candidates do allow clear differentiation in similarity to the query to be 

inferred (so fulfilling the objective of the experiment in providing ground-truth data for MIREX) the 

rankings also showed wide variation. Figure 2 shows graphs of the mean ranking and standard 

deviation for each candidate with respect to three of the eleven queries. (The patterns for the other 

queries are similar.) The candidates ranked most often (indicated by the larger sized dots) are 

generally ranked most similar (i.e., closer to 1) but the variation in ranking for each candidate is 

generally rather large. As shown on the graphs, the deviation is usually greater than would be 

expected from a random selection of rank from any value up to a maximum of 2 times the mean 

ranking for each candidate. In other words, for most candidates there is a long ‘tail’ of some subjects 

placing this candidate much later in the ranking than other subjects. The relationship between the 

number of times a candidate is included by a subject in a ranking and the mean rank of that 

candidate is confirmed in the graphs in Figure 3, which also suggest, by the pronounced ‘elbow’ in 

the first and third graph, the employment of two strategies by subjects: either to rank candidates up 

to a limit of judged similarity, or to rank almost all of the candidates (adopted by one subject in the 

case of the first query and by four in the third). 

Figure 2. Mean ranking of candidates against standard deviation for three queries. The size of dots indicates 

the number of times the candidate was included in the ranking. The diagonal dots indicate the relation 

between mean and standard deviation expected from an even (rectangular) random distribution. 

Figure 3. Mean ranking of candidates against number of times the candidate is included in a ranking for the 

same three queries as in Figure 2. 
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4.2 Monte Carlo modelling of the MIREX data 

The data were further analysed through a method of ‘Monte Carlo’ simulation. This is a mechanism 

for testing assumptions about the mechanisms underlying a set of data. A method is designed for 

simulating data which embodies those assumptions but (ideally) is otherwise random. After many 

simulations the random effects should disappear, and the distribution of the simulated data should 

arise solely from the assumptions. If the observed data are ‘typical’ within that distribution, then the 

assumptions can be considered to model the mechanisms underlying the observed data.  

In this analysis new sets of rankings were generated stochastically on the basis of the following three 

assumptions:  

1. For each query, each subject determined a priori how many candidates should be included 

in the ranking. 

2. For each candidate and each query, there is a fixed likelihood of being included in the 

ranking, relative to other candidates. 

3. For each candidate and each query, there is a fixed probability function for the position it 

will take in the ranking.  

The following procedure was used to simulate data. For each query, a number of rankings were 

simulated equal to the number of subjects who ranked candidates against that query. Each ranking 

was generated as follows: 

A. In order to select appropriate candidates for ranking, an initial ranking was made by 

assigning a number to each candidate and placing the candidates in ascending order 

according to the number assigned. The first n candidates were selected from this initial 

ranking, where n is the number selected by the subject whose ranking was to be simulated. 

The numbers used in this initial ranking were selected at random from one of two 

distributions: 

proportion: a uniform distribution between 1 and t / s, where s is the number of 

subjects who selected that candidate and t is the total number of subjects who were 

presented with the query, or 

gamma: a gamma distribution based on the mean and variance of the actual ranks 

for that candidate, augmented to ensure that all candidates had an equal-area 

distribution. This augmentation was made on the basis of the assumption that, if 

every subject had ranked all the candidates, the ranks for unranked candidates 

would have been distributed evenly throughout the unused ranks. 

B. The final ranking was made by once again assigning a number to the selected candidates and 

placing the candidates in ascending order according to the number assigned. Where more 

than one candidate was assigned the same number, they were ordered in the final ranking 

at random. The numbers used in this ranking were again selected at random from one of 

two distributions: 

distribution: the actual distribution of ranks for that candidate in the original data, 

or 

gamma: a gamma distribution based on the mean and variance of the actual ranks 

for that candidate (not augmented as described above). 
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A gamma distribution is the distribution for a random variable with range from 0 to infinity for a 

given mean and variance with maximum entropy. Any other distribution would have introduced 

other non-random factors into the model. Figure 4 illustrates the gamma distributions used in step B 

for the ten highest ranked candidates for the first query illustrated in Figures 2 and 3. (All these 

candidates occupy the bottom left corner of the first graph in Figure 2.) Note that the gamma 

distributions used in steps A and B were not identical. As explained above, those used in A took into 

account the non-inclusion of candidates in some rankings so as to form a better basis for selecting 

which candidates to rank. Simulation was also tested using the same gamma distributions for step A 

as in step B, but this produced rather poor results in terms of the test of fit described below. This 

suggests that ranking involved two kinds of decision for the subjects: whether or not to include a 

candidate in the ranking, and where to place it in the ranking. 

The two points of choice in the procedure outlined above combine to make four methods of 

simulation constituting four models. The ‘proportion-distribution’ model used the first distribution in 

each of steps A and B, the ‘gamma-distribution’ used the first distribution in step A and the second 

in step B, and so on. For each model, the fit with the data was tested in a manner which can be 

related to tests of statistical significance. In a standard test of significance, one determines the 

expected distribution of values under the assumption of the null hypothesis.  If the distribution has 

only a small area ‘beyond’ the observed value, i.e. the likelihood of values at least as extreme as the 

observed value—the p-value—is small, then we can conclude that the null hypothesis is likely to be 

false. In Monte Carlo simulation one determines the distribution of values expected under the test 

assumptions (not the null hypothesis) by generating a large number values stochastically. The 

assumptions are supported if the observed value falls in the middle of the distribution, i.e. values at 

least as extreme as the observed value have a high likelihood. ‘At least as extreme’ means greater 

than or equal to the observed value if that value is above the mean or less than or equal to if it is 

below. A perfect fit between model and data would result in a p-value of at least 0.5.  

It is not immediately obvious what the test statistic should be for fit with the data in this case, so a 

number of test statistics were used, as follows: 

a. mean rank: the overall mean rank, 

0 

1 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Figure 4. Gamma distributions for simulating rankings of the ten highest ranked for the first query illustrated in 

Figures 2 and 3. The weight of lines corresponds to the number of times the candidate was included in a 

ranking. 
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b. mean variance: the overall mean variance of rank for each candidate, 

c. mean rank distribution: the overall mean of the difference in distribution of ranks for each 

candidate and the average simulated distribution for that candidate, as measured by the 

sum of squares of difference, 

d. times ranked mean p: the mean p of the number of times each candidate is ranked, 

e. ranking mean p: the mean p for the mean rank of each candidate, and 

f. rank distribution mean p: the mean p for the difference in distribution of rankings for each 

candidate and the average simulated distribution for that candidate. 

For each of the four models, each of these test statistics was determined for each of the eleven 

queries on the basis of 10,000 sets of simulated data. The average for all eleven queries for each 

model is reported in Table 1. As can be seen from the table, the fit was far from perfect. For the first 

of the eleven queries, for example, the mean rank for all candidates was 18.724. In the 

corresponding data generated stochastically by the ‘proportion-distribution’ model, the mean rank 

was 18.894, and only 34% of the sets of generated rankings had an average ranking of 18.724 or less, 

giving a p-value of 0.34. The p-values for other queries were mostly lower than this, resulting in the 

overall average of 0.191 reported in the table. 

The fit with respect to the test statistics a-c, which measure the fit with respect to overall averages, 

is particularly poor, indicating that factors other than the three assumptions outlined above had an 

influence on ranking. These measures of fit with respect to overall averages are more likely to show 

the cumulative effect of small but systematic deviations between the model and the data, and 

indeed the other three values, which instead measure the mean fit for each candidate and query, 

show a moderate degree of fitting to the actual data. While the best fit is achieved by the first 

model, which makes most use of the detail of the actual data (using the number of times each 

candidate is ranked as a basis for selection, and the actual ranking profiles as a basis for ranking) the 

fit for the models which make use of gamma distributions is not markedly worse. The ‘proportion-

gamma’ model, for example, fits the data moderately well on the basis of just three values for each 

candidate compared to about 30-70 values for the ‘proportion-distribution’ model. These three 

values are the likelihood of the candidate being included in the ranking, the mean rank, and the 

variance in rank. These constitute two kinds of measures of similarity and a measure of uncertainty. 

Model a. mean 
ranking 

b. mean 
variance 

c. mean rank 
distribution 

d. times  
ranked  
mean p 

e. ranking 
mean p 

f. rank 
distribution 

mean p 

proportion-
distribution 

0.191 0.202 0.020 0.487 0.345 0.322 

proportion-
gamma 

0.196 0.173 0.052 0.486 0.336 0.295 

gamma-
distribution 

0.165 0.130 0.079 0.402 0.337 0.286 

gamma-
gamma 

0.174 0.113 0.092 0.402 0.332 0.276 

Table 1. Fit of stochastic models to actual data according to six criteria. A value of at least 0.5 would indicate a 

perfect fit. 
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4.3 Evidence for similarity between candidates to be ranked 

In placing candidates in a ranking rather than simply judging the similarity between two or three 

melodies, as required in most of the experimental paradigms referred to in Section 2.1 above, it is 

possible that subjects might have been influenced by perceived similarity between the candidates to 

be ranked as well as by their perceived similarity to the query. Three kinds of ways in which one 

candidate might influence the ranking of another were tested using the same Monte Carlo method 

as above, but in this case a lack of fit between simulated data and the actual data was evidence in 

support of the hypothesis. One is seeking evidence for an effect not captured by the assumptions 

embodied in the models. The three values tested for lack of fit were: 

a. the number of times two candidates were both included in a ranking, testing whether the 

inclusion of one candidate would influence the inclusion of another, 

b. the difference in rank between two candidates compared to the difference in mean rank for 

those candidates, testing for an influence which placed candidates closer together or further 

apart in the ranking than implied by their respective similarity to the query, and 

c. the mean rank for a candidate when a second candidate is included in the ranking compared 

to the mean rank when the second candidate was not included, testing for an influence 

which causes a candidate to appear more or less similar to the query depending on the 

presence of another candidate. 

The procedure was as follows. As before 10,000 sets of simulated data were generated using each of 

the four models. For each pair of candidates, the values of the first, fifth, ninety-fifth and ninety-

ninth percentile for each of the test statistics in the distribution of the simulated data were 

determined, in other words, the values which would be matched or exceeded with only 1% or 5% 

likelihood. Then the values of test statistics a-c in the actual data were compared to these for the 

same candidates and the percentage of pairs for which the value was lower than the fifth or higher 

than the ninety-fifth percentile entered in the column of Table 2 headed ‘p < 0.05’ for that statistic, 

and the percentage of pairs for which the value was lower than the first percentile or higher than 

the ninety-ninth entered in the column headed ‘p < 0.01’. For the null hypothesis that the 

assumptions model the data to be rejected, and for us to conclude that there is an effect of one 

candidate on the ranking of another, the values under ‘p < 0.05’ should be above 5% and those 

under ‘p < 0.01’ above 1%. In other words, extreme values which are rare in the simulated data 

should be more common in the actual data. 

The results shown in Table 2 are somewhat equivocal. The values for statistic a, the percentage of 

extreme values in the actual data for candidates being included together in the ranking, is lower 

than would be expected rather than higher, meaning that the null hypothesis cannot be rejected. 

Probably this is a result of the fact that this value is expressed in small integers, and so a large 

number of simulated cases will be equal to the actual values rather than greater or less. Extreme 

values for the other two statistics, however, are about two to three times as common as expected 

from the model. In other words, candidates are ranked significantly closer or further apart than 

would be expected from their difference to the query alone more often in the actual ranking data 

than in the simulated data, and candidates are ranked significantly higher or lower when another 

candidate is included in the ranking compared to when it is not more often also. This suggests that in 
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the actual experiment there was an effect between candidates as well as between the candidate and 

the query, and that similarity therefore cannot be modelled simply as a function of two melodies. 

The data reported in Table 2 should themselves be subject to a test of significance. Is the difference 

between, for example, the observed 12.88% and the expected 5% significant in the context of the 

simulated data? The significance of these figures was tested by counting for each set of simulated 

rankings for a query, the number of pairs of candidates with an ‘extreme’ value for the test statistics 

b and c, where ‘extreme’ is defined as before as below the fifth or above the ninety-fifth percentile 

at the p < 0.05 level and below the first or above the ninety-ninth at the p < 0.01 level. The 

proportion of simulated sets of data with a number of such pairs greater than or equal to the 

number of such pairs in the actual data could then be determined, to yield a measure of the 

likelihood of observing the actual data under the null hypothesis. (It was necessary to run the 

simulation twice, i.e., 20,000 times, to achieve this: once to determine the percentile values and 

once to count the number of pairs exceeding these. Because of the high computational load, this 

was only done for the ‘proportion-gamma’ model.) The results (reported in Marsden, 2012) showed 

that, when averaged across all eleven queries, an effect could be observed only at significance levels 

ranging from p < 0.09 to p < 0.18, which would not normally be regarded as a sufficiently low level to 

reject the null hypothesis. However, the significance level varied widely from one query to another, 

ranging from p < 0.005 to p < 0.49. For only one query was the p-value less than 0.05 for both test 

statistics at both levels for the definition of ‘extreme’. 

4.4 Conclusions from the MIREX data 

The fact that the simulation fits the data moderately well and the weak evidence for inter-candidate 

effects suggests that melodic similarity, at least as understood by the subjects in this experiment, is 

indeed a function of two melodies. The high degree of variance in ranking, however, shows that 

either this function differs widely from one individual to another, that it is highly non-deterministic, 

Model a. times pairs ranked b. difference in mean 
ranking – difference in 

actual ranking 

c. mean difference in rank 
dependent on inclusion of 

other candidate 

p < 0.05 p < 0.01 p < 0.05 p < 0.01 p < 0.05 p < 0.01 

proportion-
distribution 

1.06% 0.36% 12.88% 2.98% 10.31% 3.57% 

proportion-
gamma 

1.09% 0.30% 13.09% 2.75% 10.91% 4.03% 

gamma-
distribution 

1.75% 0.18% 12.33% 2.59% 9.64% 3.61% 

gamma-
gamma 

1.74% 0.18% 12.47% 2.58% 10.54% 4.29% 

Table 2. Proportion of pairs of candidates with extreme values for the number of times both candidates are 

included in a ranking, for the difference between the difference in mean ranks of the candidates and the mean 

difference in the actual ranks, and for the difference between the mean rank for the first candidate when the 

second is included in the ranking and the mean rank when the second is not included in the ranking. A value is 

considered ‘extreme’ if it is greater (or less) than 5% of the corresponding simulated data (p < 0.05), and 

greater (or less) than 1% (p < 0.01). 
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or that it is influenced by other as yet unidentified factors. The analysis above suggests that the 

influence of one candidate on the similarity of another to the query might be one of these factors, 

but this cannot be concluded with any confidence from this data. It seems that even a data set as 

rich as this one is not sufficiently large for drawing complex conclusions. 

5. Examples of similarity and variation 

The conclusions of Tversky (1977) and my argument in Section 3.2 emphasise the importance of 

interpretation in the recognition of similarity. Some styles of composition, in particular the writing of 

variations and the use of recurrent motives, depend on the listener recognising similarity, and so it 

seems entirely plausible that a listener will seek similarity in what he or she hears, and so interpret 

what is heard precisely in such a way as to maximise the perception of similarity. Here I outline two 

interesting examples from the music of Mozart where similarity is crucially related to alternative 

interpretations. 

5.1 Example 1: Mozart K. 465 

Figure 5 shows extracts from the first violin part of Mozart’s string quartet in C major, K. 465 

(“Dissonance”). (For more detailed discussion see (Marsden, 1989).) The allegro begins with the 

theme shown as a. This is immediately repeated a tone higher (not shown) and then, with a slight 

modification, as a'. The last note of a' begins a new motive b which appears to contrast with a 

(descending instead of rising; made up largely of shorter notes; containing a large leap instead of 

mostly steps). This is repeated at b' (reinforcing the identity of the motive) and then in rhythmic 

transformation some bars later at b'' (where the recognition of similarity is aided by using exactly 

the same pitches). Several bars later the figure identified as b''' is heard, whose similarity to b'' is 

aided by the equivalent durations of the second note (though in the case of b''' it is decorated with a 

trill). Finally, beginning on the same pitch as b''' and ending with the same pair of pitches, a figure is 

heard which is also clearly similar to a by inversion. (Indeed, to help make this clear, the intervening 

music has presented several other versions of a without inversion.) This figure is easily recognised as 

similar to both a and (with the aid of the intermediate transformations) b. 

Is it true, then, that a is similar to b, despite the fact that at first the motives seemed to be 

contrasted? If it is, then we must reduce a in different ways to find maximum similarity in each case. 

To find maximum similarity between a and a', we must reduce a by removing the appoggiatura on 

the last note, which implies that the remaining notes are passing notes from C to F. To find 

maximum similarity between a and b, on the other hand, the first step must be to reduce out the 

quavers in a and regard the appoggiatura (neighbour note) as prior. It was my contention in the 

original analysis (Marsden, 1987) that Mozart intended this play with our sense of the difference and 

similarity between these motives as a way of capturing the listener’s interest. 

Figure 5. Extracts from Mozart’s string quartet in C major, K. 465, first movement. 
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5.2 Example 2: Mozart K. 464 

Reduction is not the only aspect of music which is open to alternative interpretations. The same is 

true of segmentation. The second phrase from the opening of the theme from the third movement 

of Mozart’s string quartet in A major, K. 464 is ambiguous in its segmentation, as illustrated in Figure 

6. The articulation (indicated by the slurs) suggests a segmentation into four units each one bar long, 

as shown in segmentation a. Similarities and contrasts in the melodic material, on the other hand, 

suggests segmentation b, which puts the first two bars into a single unit on account of the repeated 

melodic pattern. Rhythmic proximity dictates that segments rarely end with short notes, and the 

rhythm of this phrase suggests the segmentation c, where the last two bars are grouped together 

because of the run of short notes in the penultimate bar. Segmentation d follows from the contrast 

in dynamics introduced by the sforzando on the crotchet E and is supported by the division of the 

phrase into two halves of equal length. Pitch proximity suggests segmentation e, which places a 

break between units at the only interval larger than a third.  

Figure 6. Alternative segmentations of the second phrase of the theme of the third movement of Mozart’s 

string quartet in A major, K. 464. 

Figure 7. Different segmentations found in variations in Mozart’s K. 464 of the theme from Figure 6. 
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Each one of these segmentations, and one other which divides the four bars into 3+1, can be found 

in the subsequent variations, as shown in Figure 7. Once again, Mozart seems to be deliberately 

exploiting multiple ways of interpreting the same music in order to provoke different perceptions of 

similarity. 

6. Similarity and creativity 

Each of the perspectives on melodic similarity in Sections 2-5 shows only questionable evidence for 

similarity as a distinct and objective function of a pair of melodies. The variety of ways in which the 

idea of melodic similarity has been used and tested in the literature suggests that it is perhaps not a 

single phenomenon. In at least one particular manner of measurement, using reduction, similarity 

depends crucially on an analysis of melodic structure which is susceptible to multiple interpretations. 

The analysis of the MIREX data gives the strongest support for similarity as a function of two 

melodies, but even here that is seen to be problematic. The examples from Mozart imply that for 

listeners his music is an invitation to interpret melodies in varied ways to find similarities. The 

subjects in the MIREX experiment were effectively explicitly invited to find similarity between the 

query and the candidate melodies. Similarity involves interpretation, and interpretation is always a 

creative act. When musicians say two melodies are similar, the arguments above suggest that the 

musicians have created that similarity as much as recognising it. 

Others have argued that it is impossible to find a single measure of melodic similarity for all 

situations (e.g., Müllensiefen & Frieler, 2007). The arguments above suggest that it is impossible for 

any situation. The best one can hope for is a measure which will usefully approximate human 

judgements of similarity in a particular situation, and the analysis of the MIREX data suggests that 

we should expect quite a large degree of error. To me, this suggests that research to fine-tune 

models of similarity to a particular set of data is unlikely to be productive. Instead, we need to 

achieve a better understanding of the various factors which contribute to perceptions of melodic 

similarity, with the aim of modelling the variety of judgements of similarity in different situations 

and among different individuals. 

Above all, I think it is important to recognise that melodic similarity is not a simple or even an 

objective phenomenon. It depends on musical culture, on the circumstances of comparison, and on 

the individual interpretation of the observer. Since music is a creative art, we will understand it 

better by acknowledging the creative aspects of its phenomena also. 
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