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How Incomputable is Finding Nash Equilibria?

Arno Pauly

(University of Cambridge, United Kingdom

Arno.Pauly@cl.cam.ac.uk)

Abstract: We investigate the Weihrauch-degree of several solution concepts from non-
cooperative game theory. While the consideration of Nash equilibria forms the core of
our work, also pure and correlated equilibria, as well as various concepts of iterated
strategy elimination, are dealt with. As a side result, the Weihrauch-degree of solving
systems of linear inequalities is settled.
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1 Introduction

The present paper can be understood in two different ways: From one point of

view, it contributes to the field of Algorithmic Game Theory by studying the

natural algorithmic problems arising from game theory in a framework for real

number computation. Alternatively, it classifies the ineffective content of Nash’s

Theorem asserting the existence of Nash equilibria in a meta-mathematical

framework.

While a natural mathematical formulation of game theory uses the real

numbers for payoffs and for probabilities constituting mixed strategies, clas-

sical models for algorithms require a restriction to countable sets. By imposing

certain restrictions and modifications to obtain countable problems, the complex-

ity of computing a Nash equilibrium for a normal form game was proven to be

PPAD-complete ([Papadimitriou (1994)], [Chen and Deng (2005)]). In

[Gilboa and Zemel (1989)] several decision problems regarding Nash equilibria

and correlated equilibria were compared, most of them turned out to be NP-hard

for Nash equilibria and to be in P for correlated equilibria. Finding pure equi-

libria in normal form games where they exist, can be done by a cubic algorithm.

However, there are several interesting hardness results for finding pure equilibria

in games ([Gottlob et al. (2005)], [Fabrikant et al. (2004)]), originating in other

representations or requiring additional properties.

Here we will use another approach: Instead of limiting the problem, we will

extend the theory of computation. While the TTE-framework [Weihrauch (2000)]

is perfectly capable of formulating the task of computing Nash equilibria from

normal form games, we will see that even the most trivial cases are discontin-

uous, and hence not computable. The relation of relative computability for the
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TTE-framework is Weihrauch-reducibility ([Pauly (2009c)]), which goes back to

[Weihrauch (1992b)]. So by classifying the Weihrauch-degree of finding Nash

equilibria, we identify the smallest extension to the notion of computability suf-

ficient to render finding Nash equilibria effective.

As proposed in [Brattka and Gherardi (2009a)], Weihrauch-reducibility of-

fers an excellent framework for meta-mathematical studies, similar to, but dis-

tinct from approaches such as reverse mathematics. In [Pauly (2010)] and

[Brattka and Gherardi (2009b)] it was demonstrated that the Weihrauch-degrees

form a bounded distributive lattice.

We will show that finding pure equilibria (where they exist) form the sim-

plest Weihrauch-degree of the studied solution concepts. Nash equilibria and

correlated equilibria share a strictly harder Weihrauch-degree, while all notions

of iterated strategy elimination induce a third degree, strictly harder than the

previous one. None of the problems becomes easier by restriction to zero-sum

games, in contrast to the classical scenario.

A previous version of the present paper appeared as [Pauly (2009b)], where

continuous reductions were used instead of computable ones, thereby yielding

weaker results.

2 Preliminaries

2.1 Game Theory

An n×m bi-matrix game is given by two n×m real valued matrices A and B.

Two players simultaneously pick an index, row player chooses an i ∈ {1, 2, . . . , n}
and column player chooses an j ∈ {1, 2, . . . ,m}. Row player gets Aij as a re-

ward, column player gets Bij . We consider several solution concepts defined as

equilibria, where no player has an incentive to change her strategy unilaterally.

Other types of solution concepts are briefly defined and explored in Subsection

5.2.

Definition 1. A pure equilibrium for a n ×m bi-matrix game (A,B) is a pair

(i, j) ∈ {1, . . . , n} × {1, . . . ,m} satisfying Aij ≥ Akj for all k ∈ {1, . . . , n} and

Bij ≥ Bil for all l ∈ {1, . . . ,m}.

As pure equilibria do not exist for all games, a more general notion is intro-

duced. If both players can randomize independently over their actions, one is led

to the definition of an m-mixed strategy as an m-dimensional real valued vector

s with non-negative coefficients and
m∑
j=1

sj = 1. The set of m-mixed strategies

will be denoted by Sm.
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Definition 2. A Nash equilibrium for an n×m bi-matrix game (A,B) is a pair

(x̂, ŷ) ∈ Sn × Sm satisfying x̂TAŷ ≥ xTAŷ for all x ∈ Sn and x̂TBŷ ≥ x̂TBy for

all y ∈ Sm.

If (x̂, ŷ) is a Nash equilibrium, again neither of the players can improve her

payoff by changing her mixed strategy unilaterally. A famous result by John

Nash ([Nash (1950)]) established that Nash equilibria in bi-matrix games always

exist. By identifying a pure strategy with the mixed strategy that puts weight 1

on it, pure equilibria can be considered as a special case of Nash equilibria. An

even more general solution concept can be obtained by allowing the individual

players’ randomization processes to be correlated ([Aumann (1974)]).

Definition 3. A correlated equilibrium for a n×m bi-matrix game (A,B) is a

real valued n×m matrix C with non-negative entries and
n∑

i=1

m∑
j=1

Cij = 1 so that

m∑
j=1

AijCij ≥
m∑
j=1

AljCij

holds for all i, l ∈ {1, 2, . . . , n} and

n∑
i=1

BijCij ≥
n∑

i=1

BikCij

holds for all j, k ∈ {1, 2, . . . ,m}.

Given a Nash equilibrium (x, y), a correlated equilibrium can be constructed

as Cij = xiyj, while each correlated equilibrium of this form can be obtained

from a Nash equilibrium, allowing us to consider Nash equilibria as special cases

of correlated equilibria. Thus, finding a correlated equilibrium cannot be harder

than finding a Nash equilibrium.

Another way of creating a potentially easier problem consists in a restriction

of the games used. A zero-sum game is a bi-matrix game of the form (A,−A).

2.2 Representing Games

In order to consider games as inputs to Type-2-Machines, they have to be coded

into infinite sequences. The choice of the countable alphabet used is irrelevant

for the theory, to simplify proofs we will use either {0, 1} or N, depending on

the context.

Definition 4. A representation of a set X is a surjective partial function δ :⊆
NN → X . A set together with a representation of it is called a represented space.
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Using representations, we can introduce realizers : a realizer will produce

a name of a solution given a name of an instance for the associated problem.

They also give a straightforward way to consider multi-valued functions, which is

necessary, as games can have multiple equilibria. While multi-valuedness will be

mentioned explicitly wherever it applies, all (multi-valued) functions are assumed

to be partial, as long as not stated otherwise.

Definition 5. Let f be a multi-valued function between two represented spaces

(X, δX) and (Y, δY ). Then we call a function F :⊆ NN → NN a realizer of f

(F � f), if δY (F (w)) ∈ f(δX(w)) holds for all w ∈ dom(f ◦ δX).

As games in normal form are pairs of real matrices, and (possible) equilibria

pairs of real vectors (or again real matrices), one can quickly derive suitable rep-

resentations by using product and coproduct representations [Weihrauch (2000)],

starting from any representation of the real numbers.

Definition 6. Given two represented spaces (X1, δ1) and (X2, δ2), define the

representation 〈δ1, δ2〉 of the setX1×X2 by 〈δ1, δ2〉(〈w1, w2〉) = (δ1(w1), δ2(w2)).

Here 〈w1, w2〉 denotes the usual pairing of sequences.

Definition 7. Given a family (Xi, δi)i∈N of represented spaces, we define the

coproduct representation
∐
i∈N

δi of the disjoint union
∐
i∈N

Xi by

[∐
i∈N

δi

]
(nw) =

(n, δn(w)).

The standard representation ρ of the real numbers is chosen for various rea-

sons; it is admissible and provides a convincing class of computable functions, in

contrast to some of the alternatives ([Weihrauch (2000)], [Weihrauch (1992a)]).

Additionally, as demonstrated in [Pauly (2009d)], the representation ρ is equiv-

alent to the representation naturally arising for the results of repeated physical

measurements. For defining ρ, we fix a bijection ν : N → Q with ν(0) = 0, so

that all the usual operations on Q are computable w.r.t. ν.

Definition 8. Let ρ(w) = x ∈ R hold for w ∈ NN, if |ν(w(i)) − x| ≤ 2−i holds

for all i ∈ N.

As all the representations used in the present paper are admissible, topolog-

ical properties carry over from sets of objects to sets of names of said objects.

We avoid constructing the needed representations explicitly, up to equivalence

it is clear which one is used.

2.3 Weihrauch-degrees

The present form of Weihrauch-reducibility was suggested in

[Brattka and Gherardi (2009b)], derived from a concept originally introduced in
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[Weihrauch (1992b)]. It is defined based on the sets of realizers of the involved

functions, and can be interpreted as relative computability.

Definition 9. Let f and g be multi-valued functions between represented spaces.

Define f ≤W g, if there are computable functions F ,G satisfying F◦〈id, r◦G〉 � f

for all r � g.

As demonstrated in [Pauly (2010)] (for suprema) and

[Brattka and Gherardi (2009b)] (for infima), ≤W induces a distributive lattice.

In the following, we introduce two basic operations on Weihrauch degrees, prod-

ucts and coproducts. The latter agree with suprema in the finite case. While

the definitions make use of representatives of the actual Weihrauch-degrees, we

assert that the resulting Weihrauch-degrees do not depend on the choice of the

representatives1.

Definition 10. Let f :⊆ (X1, αX) → (Y1, αY ) and g :⊆ (X2, βX) → (Y2, βY ) be

multi-valued functions between represented spaces. Define

〈f, g〉 :⊆ (X1 ×X2, 〈αX , βX〉) → (Y1 × Y2, 〈αY , βY 〉)

by (y1, y2) ∈ 〈f, g〉(x1, x2), if y1 ∈ f(x1) and y2 ∈ g(x2).

Definition 11. Let (fi :⊆ (Xi, αi) → (Yi, βi))i∈N be a countable family of multi-

valued functions between represented spaces. Define∐
i∈N

fi :⊆ (
∐
i∈N

Xi,
∐
i∈N

αi) → (
∐
i∈N

Yi,
∐
i∈N

βi)

by (i, y) ∈
( ∐

k∈N

fk

)
(j, x), if i = j and y ∈ fi(x).

The definitions of products can be extended to any finite arity. We will use

fn to denote the product of n copies of f . Restriction of the coproduct to finitely

many arguments yields f
∐

g ≤W 〈f, g〉, provided that the domains of f and g

contain computable points [Brattka et al. (2010)]. Of particular importance is

the ¯-operator introduced in [Pauly (2010), Subsection 6.1], as we will classify

the Weihrauch-degrees we are interested in in terms of the ¯-operator applied

to certain simple problems.

Definition 12. For a multi-valued function f , define f̄ by f̄ =
∐
n∈N

fn.

The ¯-operator is a closure-operator for Weihrauch-reducibility, as shown in

[Pauly (2010), Theorem 6.5]:

1 For products, this is the statement of [Brattka and Gherardi (2009b), Proposition
3.2].
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Theorem 13. satisfies the following properties:

1. f ≤W f

2. f ≤W g implies f ≤W g

3. f ≡W f

The same technique used to prove the 3. result above also yields the following

lemma, which will be relevant later:

Lemma14. Let fn be a family of multi-valued functions, so that there is a

computable function λ : N × N → N, so that the reduction 〈fn, fm〉 ≤W fλ(n,m)

holds uniformly for all n,m ∈ N. Then
∐
n∈N

fn ≡W

( ∐
n∈N

fn

)
.

The negative results regarding Weihrauch-reducibility appearing in the

present paper rely on continuity arguments. Since this makes them stronger

than negative results for computability, we introduce continuous Weihrauch-

reducibility:

Definition 15. Let f ,g be multi-valued functions between represented spaces.

Define f ≤c
W g, if there are continuous functions F , G satisfying F ◦〈id, r◦G〉 � f

for all r � g.

Moving from computable to continuous functions essentially is relativizing

with respect to an arbitrary classical oracle. We note that the results stated in

this subsection for Weihrauch-reducibility carry over to continuous Weihrauch-

reducibility. Obviously, Weihrauch-reducibility implies continuous Weihrauch-

reducibility, while the converse is false.

Finally, note that coproduct representations and coproducts of multi-valued

functions are closely linked. Especially, the dimension-independent versions of

the problems studied here are always the coproducts of the dimension-dependent

variant over all possible dimensions.

3 Single Player Games and Pure Equilibria

From the perspective of game theory, single player games are trivial: The acting

player chooses whatever action is best for her. As a discrete computation prob-

lem, this amounts to finding a maximum in a list of integers, a task that can be

solved in linear time or logarithmic space. As the problem posed over the reals

is discontinuous, we will study the problems 1Puren and 1Pure of finding pure

equilibria in single player games with n actions, and without fixed game sizes.

It shall be noted that single player games can be identified with n× 1 bi-matrix

games, justifying their inclusion.
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As every n × 1 bi-matrix game has a pure equilibrium, and Ci1 > 0 can

only hold in a correlated equilibrium C, if the entry Ai1 is maximal in A (and

thus (i, 1) is a pure equilibrium), finding pure, Nash and correlated equilibria is

equivalent for single player games, so the restriction to pure equilibria does not

invoke any loss of generality.

The Weihrauch-degrees of 1Puren for n ∈ N turn out to be equivalent

to another family of problems, MLPOn, introduced in [Weihrauch (1992b)] as

generalizations of the lesser limited principle of omniscience (LPO) studied in

constructive mathematics ([Bishop and Bridges (1985)]). For historical reasons,

we will denote MLPO2 by LLPO in some cases.

Definition 16. A function

f : {(p1, . . . , pn) ∈ (NN)n | ∃i ≤ n pi = 0N} → {1, 2, . . . , n}
is a realizer of MLPOn, if it fulfills pf(p1,...,pn) = 0N for all (p1, . . . , pn) ∈ dom(f).

Theorem 17. MLPOn ≡W 1Puren

Proof. First, we present a reduction from MLPOn to 1Puren. The n input

tapes (or the n projections from the product representation) for MLPOn can

individually be translated to the n relevant input tapes for 1Puren. As long as

0 is read, 0 will be printed. If any other number is read in the ith step for the

first time, print the number ν−1(−2−i−1) from now on. All tapes containing 0N

will be translated to a ρ-name of 0, and all other tapes to a ρ-name of some

negative number, so a pure equilibrium corresponds to a 0-entry.

For the other direction, all input values have to be compared. As long as no

contradiction for the assumption that the ith value is the largest one has been

found, 0 will be printed on the ith output tape. If contradiction is found, print

1. Then an output tape contains 0N, if and only if the corresponding input tape

contains a ρ-name of a maximal entry.

In the next step, we extend the scope of consideration to finding pure equi-

libria in arbitrary bi-matrix games. The relevant problems are Purenm, where

the size of the game is restricted to n × m, and the general case (i.e. the co-

product over all n,m ∈ N) denoted by Pure. For obtaining results, reducibility

to MLPOn shall be expressed by a covering property. It involves the notion of

co-r.e.-closed sets. For A ⊆ B ⊆ NN, we call A co-r.e.-closed in B, if there is

a computable function G with B ⊆ dom(G) and A = G−1({0N}) ∩ B. Other

characterizations of co-r.e.-closed sets can be found in [Weihrauch (2000)].

Lemma18. Let f : (X,α) → (Y, β) be a total multi-valued function between

represented spaces. Then f ≤W MLPOn holds, if and only if there is a covering

(Ai)i≤n of α−1(X), so that for each i ≤ n the set Ai is co-r.e.-closed in dom(α),

and f|α(Ai) has a computable realizer.
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Proof. Assume f ≤W MLPOn, so there are computable F , G with

F ◦ 〈id,M ◦G〉 � f for all M � MLPOn. Abbreviate Gi := pri ◦G, where pri is

the projection to the ith component. Consider G−1
i (0N)∩dom(α). As Gi is com-

putable, this set is co-r.e.-closed in dom(α). There is a realizer Mi � MLPOn, so

that for x ∈ G−1
i (0N)∩dom(α), Mi(G(x)) = i holds. Thus, if F ◦〈id,Mi ◦G〉 � f

is restricted to G−1
i (0N) ∩ dom(α), it is equal to F ◦ 〈id, i〉, and therefore it is

computable. As there is an i with Gi(x) = 0N for each x ∈ dom(α), dom(G) ⊇
dom(α) =

n⋃
i=1

G−1
i (0N) ∩ dom(α) holds, completing the first part of the proof.

For the other direction, let dAi witness that Ai is co-r.e.-closed in α−1(X).

Now consider the computable functionD : α−1(X) → ({0, 1}N)n defined through

D(x)(i) = dAi(x). Further, define a computable function F on the set
n⋃

i=1

Ai×{i}
through F (x, i) = Ri(x), where Ri is a computable realizer of f|α(Ai). Then

F ◦ 〈id,M ◦D〉 � f for each M � MLPOn.

Lemma 18 relativizes, that means that it remains true, if Weihrauch-

reducibility is replaced by continuous Weihrauch-reducibility, co-r.e.-closed is

replaced by closed and computable by continuous.

Theorem 19. Purenm ≤W MLPOn∗m.

Proof. Given an n ×m bi-matrix game (A,B), the condition for the pair (i, j)

to be a pure equilibrium is Aij ≥ Akj and Bij ≥ Bil for all k ≤ n, l ≤ m. This

implies that the set

P ij
nm = {(A,B) | (i, j) is an equilibrium of (A,B)} ⊆ Rn×m × Rn×m

is closed. As the condition can be effectively rejected, if false, the set

(ρn×m)−1(P ij
nm) is co-r.e.-closed (in dom(ρn×m))2. As the set of n×m bi-matrix

games which have some pure equilibrium is the union
⋃

i≤n,j≤m

P ij
nm, and the re-

striction of Purenm to any fixed set P ij
nm is trivially computable, an application

of Lemma 18 yields the claim.

Corollary 20. 1Pure ≡W Pure ≡W

∐
n∈N

MLPOn

Proof. The reductions given in the proofs of Theorems 17 and 19 are uniform in

the dimensions, and so are the trivial reductions involved.

The same reasoning used to establish the equivalence of finding pure strate-

gies in 1 player games and in 2 player games can directly be extended to any

finite number of players. While Nash and correlated equilibria have the same

Weihrauch-degree as pure equilibria in single player games, we will continue to

show that a higher Weihrauch-degree emerges in the two player case.

2 As dom(ρn×m) itself is co-r.e. closed in NN, the relativized formulation is not neces-
sary here. However, it is sufficient to invoke Lemma 18.
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4 Nash and Correlated Equilibria in Bi-matrix Games

We will now consider Nash and correlated equilibria in bi-matrix games. The

problems Corrnm and Nashnm are the fixed size versions, Corr and Nash the

general problems. Restriction to zero-sum games yields the problems ZCorrnm,

ZNashnm and the corresponding general problems. Straightforward reasoning

yields the reductions:

ZCorrnm ≤W Corrnm ≤W Nashnm , ZCorrnm ≤W ZNashnm ≤W Nashnm

4.1 The Weihrauch-degree of Robust Division

Similar to LLPO (or MLPOn) being representative of the kind of incomputabil-

ity we face when searching for pure equilibria, we will start with considering

division, which will turn out to be typical for correlated and Nash equilibria.

Computing a
b given two real numbers a, b �= 0 is possible, of course. However,

testing whether b �= 0 is not. A robust variant of division, which accepts division

by zero and returns an arbitrary value, is not computable anymore. Alterna-

tively, this problem can be phrased as finding a zero of a linear function that

admits at least one.

Definition 21. Given two real numbers x, y with 0 ≤ x ≤ y, rDiv returns x
y ,

if that number exists, and any real number z with 0 ≤ z ≤ 1 otherwise.

While robust division is only slightly incomputable, as it is reducible to decid-

ing whether a real number is 0 or not, the following theorem shows that robust

division introduces a new kind of incomputability not present in finding pure

equilibria. Before this, we present a technical detail used in the proof which also

is of independent interest.

Proposition22. The restriction rDiv′ of rDiv to those (x, y) additionally sat-

isfying x, y ≤ 1 is equivalent to rDiv.

Proof. Given a real number y, we can compute some natural upper bound k > 0,

and subsequently also x/k and y/k. If x, y are in the domain of rDiv, then

x/k, y/k are in the domain of rDiv′, and we have rDiv(x, y) = rDiv′(x/k, y/k).

Theorem 23. rDiv �c
W Pure.

Proof. The proof proceeds by reductio ad absurdum. To this end, we can assume

rDiv′ ≤c
W 1Pure, due to Corollary 20 and Proposition 22. This implies the

existence of continuous functions F , G, L so that for each E � 1Pure the

function dE defined through dE(u, v) = F (u, v, E(〈L(u, v), G(u, v)〉)) is a realizer

of rDiv′. Here L chooses the size of the game, G gives the game and F uses a

maximal value of the game to derive the result.
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We consider n = L(0N, 0N). As L is continuous, the set L−1({n}) is open and

closed in dom(L), so it contains an open neighbourhood of (0N, 0N). Especially

there is a k ∈ N with dom(L)∩(0kNN×0kNN) ⊆ L−1({n}). We note ρ(u)
ρ(v) = ρ(0ku)

ρ(0kv)

where ν(u(i)) = ν(u(i)) ∗ 2−k−1 and ν(v(i)) = ν(v(i)) ∗ 2−k−1. Thus we obtain

rDiv′ ≤c
W 1Puren.

According to the topological version of Lemma 18, rDiv′ ≤c
W 1Puren im-

plies the existence of n closed3 sets Ai so that for each i there is an fi � rDiv′

so that fi restricted to Ai is continuous. If there is an l with (0N, 0N) /∈ Al, then

there is a k ∈ N with (0kNN × 0kNN) ∩ Al = ∅, so with a repetition of the argu-

ment used above we can conclude rDiv′ ≤c
W 1Puren−1. Thus we can assume

(0N, 0N) ∈ Al for all l ≤ n.

For l ≤ n+ 1 we define a sequence (wl
k)k∈N of sequences through wl

k(i) = 0

for i ≤ k and ν(wl
k(i)) = (l2k)−1 for i > k. Furthermore, define the sequence

(vk)k∈N of sequences through vk(i) = 0 for i ≤ k and ν(vk(i)) = 2−k for i > k.

For each sequence (wl
k, vk) there must be an l′ so that Al′ contains an infinite

subsequence (wl
k, vk) of (wl

k, vk). As there are n + 1 sequences and n sets, the

pigeonhole principle ensures that there is a set Ai containing the sequences

(wl1
k , vk) and (wl2

k , vk).

Now observe lim
k→∞

(wl1
k , vk) = lim

k→∞
(wl2

k , vk) = (0N, 0N), but ρ(fi(w
l1
k , vk)) =

l−1
1 �= l−1

2 = ρ(fi(w
l2
k , vk)). Thus, the restriction of fi to Ai is not continuous in

(0N, 0N), yielding a contradiction to the assumption.

We will now use modifications of the game matching pennies as a gadget

to implement divisions in a game. For real numbers a, b, the game MP (a, b) is

specified via the following payoff matrices:

A =

(
a 0

0 b

)
, B = −A , MP (a, b) = (A,B)

Theorem 24. rDiv ≤W ZCorr22

Proof. Given a pair of ρ-names for real numbers a, b with 0 ≤ a ≤ b, a name

for the game MP (a, b − a) can be computed. Let C be correlated equilibrium

of MP (a, b − a). We claim c12 + c22 = a
b for b > 0. The 4 inequalities from the

definition of a correlated equilibrium are:

(1) a(c11 + c12) ≥ bc12 (2) bc22 ≥ a(c21 + c22)

(3) a(c12 + c22) ≥ bc22 (4) bc21 ≥ a(c11 + c21)

0 = a < b If a = 0, then (1) and (3) together with b > 0 state c12 = c22 = 0 = a
b .

3 To be precise, also the fact that (ρ2)−1(dom(rDiv)) is closed is relevant to obtain
that the sets Ai are closed in NN.
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0 < a < b

Combination of the inequalities (1) and (4) yields a(c21− c12) ≤ b(c21− c12),

together with a < b this implies c21 − c12 ≥ 0. Combination of (2) and (3)

yields a(c12 − c21) ≥ 0. Hence, since a > 0, the correlated equilibrium is

symmetric.

Then addition of (1) and (3) yields a ≥ b(c12 + c22), and addition of (2) and

(4) yields b(c12 + c22) ≥ a, hence the claim follows.

0 < a = b 4

Here, (2) and c21 ≥ 0 imply c21 = 0, in the same way (4) and c11 ≥ 0

imply c11 = 0. Thus, we have:

c12 + c22 = c11 + c12 + c21 + c22 = 1 =
a

b

In the case a = b = 0, 0 ≤ c12 + c22 ≤ 1 holds due to the normaliza-

tion requirement for correlated equilibria, hence c12 + c22 is a valid answer to

rDiv(0, 0).

Theorem 24 in conjunction with Theorem 23 implies ZCorr22 �c
W Pure, so

even the simplest case of finding mixed strategies is not reducible to finding pure

strategies. The problem rDiv itself does not capture the discontinuity of finding

Nash equilibria5, compelling us to move to suitable products, and eventually

rDiv.

4.2 Products of Games

The product of functions can be considered as computing all of them in parallel.

This allows us to specify exactly the Weihrauch-degree of problems solvable by

multiple robust divisions. For games, our notion of a product will be inspired

by the model of playing two independent games at once. This will allow us to

establish a link between products of functions and products of games. We will use

[ ] to denote a bijection between {1, 2, . . . , n}× {1, 2, . . . ,m} and {1, 2, . . . , nm}
for suitable n, m.

Definition 25. Given an n1 ×m1 bi-matrix game (A1, B1) and an n2 ×m2 bi-

matrix game (A2, B2), we define the (n1n2)× (m1m2) product game (A1, B1)×
(A2, B2) as (A,B) with A[i1,i2][j1,j2] = A1

i1j1 + A2
i2j2 and

B[i1,i2][j1,j2] = B1
i1j1

+B2
i2j2

.

4 The author is grateful to a referee for pointing out the necessity and details of this
case.

5 This claim could be shown using the Level introduced in [Hertling (1996)].
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The product of games nicely commutes with the notions from game theory

used in this paper, as will be established by the following theorems. A slight

exception holds for the zero-sum property: A zero-sum game can always be

expressed as the product of two constant-sum games which are not zero-sum.

However, as a constant-sum game can always be normalized to an equivalent

zero-sum game6, this is not problematic for our purposes.

For simplifying notation, in the following theorems and their proofs, (A,B)

always abbreviates (A1, B1)× (A2, B2).

Theorem 26. (A,B) is constant-sum, if and only if both (A1, B1) and (A2, B2)

are constant-sum.

Proof. Assume that (A1, B1) and (A2, B2) are constant-sum, that is Ak
ij+Bk

ij =

ck for k ∈ {1, 2} and all i, j. Then we have

A[i1,i2][j1,j2] +B[i1,i2][j1,j2] = A1
i1j1 +A2

i2j2 +B1
i1j1 +B2

i2j2 = c1 + c2

for all i1, i2, j1, j2, so (A,B) is also a constant-sum game.

For the other direction, we assume w.l.o.g. that (A1, B1) is not constant-sum,

so there are i1, j1, k1, l1 with A1
i1,j1

+B1
i1,j1

�= A1
k1,l1

+B1
k1,l1

. Then we have:

A[i1,1],[j1,1] +B[i1,1],[j1,1] = A1
i1,j1

+B1
i1,j1

+A2
1,1 +B2

1,1

�= A1
k1,l1

+B1
k1,l1

+A2
1,1 +B2

1,1 = A[k1,1],[l1,1] +B[k1,1],[l1,1]

Thus, the product (A,B) is not constant-sum.

Theorem 27. (ik, jk) is a pure equilibrium of (Ak, Bk) for both k ∈ {0, 1}, if
and only if ([i1, i2], [j1, j2]) is a pure equilibrium of (A,B).

Proof. The proof is done by contraposition. Assume w.l.o.g. that î1 is a better

response to j1 than i1, that is A
1
î1,j1

> A1
i1,j1 . Then we also have A[̂i1,i2],[j1,j2]

>

A[i1,i2],[j1,j2], so if (i1, j1) is not a pure equilibrium, then ([i1, i2], [j1, j2]) cannot

be one either.

If, on the other hand, [̂i1, î2] is a better response against [j1, j2] than [i1, i2],

then we have A1
î1,j1

+ A2
î2,j2

> A1
i1,j1

+ A2
i2,j2

. Obviously, this contradicts the

conjunction of A1
i1,j1

≥ A1
î1,j1

and A2
i2,j2

≥ A2
î2,j2

.

For our next result, observe that [ , ] : Sn × Sm → Sn∗m defined by

[x1, x2][i,j] = x1
ix

2
j is a computable bijection, the (also computable) inverse is

obtained via x1
i =

∑m
j=1[x

1, x2][i,j] and x2
j =

∑n
i=1[x

1, x2][i,j].

6 Given a game (A,B), one can compute the game (A′, B′) with A′
ij = Aij −A11 and

B′
ij = Bij−B11. Due to the linearity of all our solution concepts, (A,B) and (A′, B′)

have exactly the same pure, Nash and correlated equilibria. Furthermore, if (A,B)
was constant-sum, then (A′, B′) is zero-sum.
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Theorem 28. ([x1, x2], [y1, y2]) is a Nash equilibrium of (A,B), if and only if

(xk, yk) is a Nash equilibrium of (Ak, Bk) for both k ∈ {0, 1}.
Proof. Central to the proof is the following equality:

(n1n2)∑
i=1

(m1m2)∑
j=1

[x1, x2]iAi,j [y
1, y2]j

=
n1∑

i1=1

n2∑
i2=1

m1∑
j1=1

m2∑
j2=1

[x1, x2][i1,i2]A[i1,i2],[j1,j2][y
1, y2][j1,j2]

=
n1∑

i1=1

n2∑
i2=1

m1∑
j1=1

m2∑
j2=1

x1
i1x

2
i2(A

1
i1,j1 +A2

i2,j2)y
1
j1y

2
j2

=

[
n1∑

i1=1

m1∑
j1=1

x1
i1
A1

i1,j1
y1j1

(
n2∑

i2=1

x2
i2

)(
m2∑
j2=1

y2j2

)]

+

[
n2∑

i2=1

m2∑
j2=1

x2
i2A

2
i2,j2y

2
j2

(
n1∑

i1=1

x1
i1

)(
m1∑
j1=1

y1j1

)]

=

[
n1∑

i1=1

m1∑
j1=1

x1
i1A

1
i1,j1y

1
j1

]
+

[
n2∑

i2=1

m2∑
j2=1

x2
i2A

2
i2,j2y

2
j2

]

Using it, the structure of this proof is identical to that of Theorem 27. Assume

that x̂1 is a better response against y1 than x1, that is:

n1∑
i=1

m1∑
j=1

x̂1
iA

1
i,jy

1
j >

n1∑
i=1

m1∑
j=1

x1
iA

1
i,jy

1
j

Given any strategy profile (x2, y2) in the second game, we can add∑n2

i=1

∑m2

j=1 x
2
iA

2
i,jy

2
j , and apply the transformation above on both sides to ob-

tain:
n1n2∑
i=1

m1m2∑
j=1

[x̂1, x2]iAi,j [y
1, y2]j >

n1n2∑
i=1

m1m2∑
j=1

[x1, x2]iAi,j [y
1, y2]j

Thus, [x̂1, x2] is a better response against [y1, y2] than [x1, x2]. By repeating the

argument with the roles of the players exchanged, and then with the order of

the games exchanged, it is demonstrated that if either (x1, y1) or (x2, y2) is not

a Nash equilibrium of the respective game, then ([x1, x2], [y1, y2]) cannot be a

Nash equilibrium of the product game.

If, on the other hand, xk is a best response against yk for both k ∈ {0, 1},
i.e. provides greater-or-equal payoff than all alternatives x̂k, the respective in-

equalities can be added to yield:[
n1∑

i1=1

m1∑
j1=1

x1
i1
A1

i1,j1
y1j1

]
+

[
n2∑

i2=1

m2∑
j2=1

x2
i2
A2

i2,j2
y2j2

]

≥[
n1∑

i1=1

m1∑
j1=1

x̂1
i1
A1

i1,j1
y1j1

]
+

[
n2∑

i2=1

m2∑
j2=1

x̂2
i2
A2

i2,j2
y2j2

]
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Using again the equivalence transformation outline in the beginning of this

proof, this inequality can be brought into the form:

n1n2∑
i=1

m1m2∑
j=1

[x1, x2]iAi,j [y
1, y2]j ≥

n1n2∑
i=1

m1m2∑
j=1

[x̂1, x̂2]iAi,j [y
1, y2]j

The latter inequality is just the condition for [x1, x2] to be a best response

against [y1, y2]. By exchanging the roles of the player, the remaining implication

is shown.

In order to derive an analogous result for correlated equilibria, again a suit-

able homeomorphism is needed. Let Cn,m denote the set of real n×m-matrices

C with non-negative entries and
∑n

i=1

∑m
j=1 Cij = 1. Then a computable homeo-

morphism [ , ] : Cn1,m1 × Cn2,m2 → Cn1n2,m1m2 can be defined via

[C1, C2][i1,i2],[j1,j2] := C1
i1,j1

C2
i2,j2

. The existence and computability of the inverse

follows from C1
i1,j1 =

∑n2

i2=1

∑m2

j2=1[C
1, C2][i1,i2],[j1,j2] and

C2
i2,j2

=
∑n1

i1=1

∑m1

j1=1[C
1, C2][i1,i2],[j1,j2].

Theorem 29. If [C1, C2] is a correlated equilibrium of (A,B), then Ck is a

correlated equilibrium of (Ak, Bk) for both k ∈ {0, 1}.
Proof. Without limitation of generality, we assume that the first condition in

Definition 3 is violated in the first game, and show that this implies a violation

in the composed game. Hence, we start with:

m1∑
j1=1

A1
i1,j1C

1
i1,j1 <

m1∑
j1=1

A1
l1,j1C

1
i1,j1

for some i1, l1. Due to
∑n2

i2=1

∑m2

j2=1 C
2
i2,j2

= 1, this is equivalent to:

m1∑
j1=1

n2∑
i2=1

m2∑
j2=1

A1
i1,j1C

1
i1,j1C

2
i2,j2 <

m1∑
j1=1

n2∑
i2=1

m2∑
j2=1

A1
l1,j1C

1
i1,j1C

2
i2,j2

Using the definitions of A and [C1, C2], and adding identical terms to both sides

for any i2, we arrive at:∑m1

j1=1

∑n2

i2=1

∑m2

j2=1 A[i1,i2],[j1,j2][C
1, C2][i1,i2],[j1,j2]

<
∑m1

j1=1

∑n2

i2=1

∑m2

j2=1 A[l1,i2],[j1,j2][C
1, C2][i1,i2],[j1,j2]

As the inequality holds for the sum over all i2, there has to be some value î2, so
that the following holds:

m1∑

j1=1

m2∑

j2=1

A[i1 ,̂i2],[j1,j2]
[C1, C2][i1 ,̂i2],[j1,j2] <

m1∑

j1=1

m2∑

j2=1

A[l1,̂i2],[j1,j2]
[C1, C2][i1 ,̂i2],[j1,j2]

This is the desired contradiction.
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As the product game can be computed from the constituent games, we can use

the properties of the products of games to obtain the following results regarding

the problem of finding equilibria:

Theorem 30. Let Game ∈ {Pure,ZCorr,ZNash,Corr,Nash}. Then

〈Gamenm,Gamekl〉 ≤W Game(nk),(ml).

Corollary 31. Let Game ∈ {Pure,ZCorr,ZNash,Corr,Nash}. Then

Game ≡W Game.

Proof. This is a consequence of applying Lemma 14 to Theorem 30.

The present paper contains two results interpretable as counterparts to Theo-

rem 30, as they allow to reduce finding equilibria for a large game to finding equi-

libria in several smaller games; for mixed strategies, this will be a consequence

of the main result presented in Subsection 4.3, the corresponding statement for

pure strategies is given in the next theorem:

Theorem 32. MLPOn+1 ≤W LLPOn for n > 1.

Proof. Let � denote the quasi-ordering on NN defined by p � q, if 0M is a prefix

of q whenever it is a prefix of p for all M ∈ N. On its domain, MLPOn+1 is

the problem of picking an index of a maximal element from n+1 elements with

respect to �. Computing a maximum max�{p1, . . . , pn+1} is computable. The

order � is total, and the task of picking a true statement from p � q and q � p

is reducible to LLPO: As long as 0s are read from both input tapes, write 0s on

both output tapes. If the first 1 is encountered on an input tape, disregard the

rest of the input and write 1s on the corresponding output tape, and 0s on the

other.

Now the preliminaries are in place to describe the reduction from MLPOn+1

to LLPOn. Let p1, . . . , pn+1 denote the input of MLPOn+1. For each k with 1 ≤
k ≤ n, a copy of LLPO is used to pick a true statement out of max�{p1, . . . , pk} �
pk+1 and pk+1 � max�{p1, . . . , pk}.

Let K be the largest number, so that max�{p1, . . . , pK} � pK+1 was de-

termined to be true, and 0 if none of these statements was chosen by LLPOn.

We claim that pK+1 is a maximal element, hence K + 1 a correct solution to

MLPOn+1. Assume there was a l with pK+1 � pl, but pl � pK+1. The assump-

tion l ≤ K contradicts max�{p1, . . . , pK} � pK+1.

So K + 1 < l has to hold. With out limitation of generality, let l be the

smallest counterexample satisfying the constraints. pl � max�{p1, . . . , pl−1} has

to be true, otherwise l would have been picked in place of K. Due to minimality

of l, this implies pl � max�{p1, . . . , pK+1}. Together with max�{p1, . . . , pK} �
pK+1, we arrive at pl � pK+1, a contradiction. Due to exhaustion of alternatives,

pK+1 is maximal.
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Corollary 33. Pure ≡W LLPO.

Proof. Theorem 17 has LLPO ≤W Pure as a special case. LLPO ≤W Pure

follows by Theorem 13 (2). Considering Corollary 31 yields LLPO ≤W Pure.

For the other direction, start with Purenm ≤W MLPOn∗m due to Theorem

19. Theorem 32 then implies Purenm ≤W LLPOn∗m. As the reductions are

uniform, application of the coproduct on both sides yields Pure ≤W LLPO.

As we have identified LLPO (or MLPO2 or 1Pure2) as the basic building stone

in the Weihrauch-degree of finding pure strategies, the following theorem will

establish the missing link in the relationship between finding pure strategies and

multiple robust divisions:

Theorem 34. LLPO <W rDiv.

Proof. rDiv �W LLPO has already been proven. To see LLPO ≤W rDiv,

note that there is a computable function turning arbitrary sequences of natural

numbers into ρ-names, so that a sequence is mapped to a ρ-name of 0 if and only

if it is 0N. Thus we can assume that the input of LLPO is given as two ρ-names a,

b of real numbers, with at least one of them being 0. Consider rDiv(|a|, |a|+ |b|).
If this is not a ρ-name of 1, then a must be a ρ-name of 0. If the output is not

a ρ-name of 0, then b must be a ρ-name of 0.

To sum up the results established sofar, we have:

LLPO ≡W 1Pure ≡W Pure <W rDiv ≤W ZCorr

4.3 Problems Reducible to Robust Divisions

The goal of this subsection is to present a way of designing reductions to

rDiv, and, in particular, to present a reduction from Nash. This equivalently

can be considered as the task to design algorithms for a Type-2-Machine capable

of making a finite number of independent queries to an oracle for rDiv. Due to

Theorems 32, 34 also oracle calls to MLPOn are permitted.

We will start by providing a technical lemma similar to Lemma 18. Using

the lemma, we can prove that the Fourier-Motzkin-algorithm ([Keler (1996)])

for solving systems of linear inequalities can be executed using computable op-

erations and oracle calls to rDiv.

Lemma35. Let f : (X,α) → (Y, β) be a total multi-valued function between

represented spaces. Then f ≤W rDiv holds, if and only if there is a covering

(Ai)i≤n of α−1(X) with some n ∈ N, such that for each i ≤ n the set Ai is

co-r.e.-closed in α−1(X), and f|α(Ai) is Weihrauch-reducible to rDiv.
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Proof. One direction of the implication is trivial. For the other direction, assume

that there are computable functions Ri, Qi for each i ≤ n witnessing f|α(Ai) ≤W

rDiv. Let Q̂i be a computable extension of Qi to dom(α); such an extension

exists for co-r.e. closed sets. Further let D be the computable function defined for

the sets Ai as in the proof to Lemma 18. Define the functionQ = (D, Q̂1, . . . , Q̂n)

and R(x, i, y1, . . . , yn) = Ri(x, yi). Both Q and R are computable, and satisfy

R ◦ 〈idX , q̂ ◦ Q〉 � f for q̂ � 〈MLPOn,rDiv
n〉, so we have

f ≤W 〈MLPOn,rDiv
n〉 ≡W rDiv.

Definition 36. The problem BLinIneqnm asks for a vector v ∈ Rm, so that

Av ≤ b holds in addition to 0 ≤ v ≤ 1 (each inequality is to be considered

componentwise), given a matrix A ∈ Rn×m and a vector b ∈ Rn, provided that a

solution exists. For simplicity, we assume that Av ≤ b always contains 0 ≤ v ≤ 1.

The coproduct over all values of n, m is denoted by BLinIneq.

Theorem 37. BLinIneq ≤W rDiv.

Proof. 7 As BLinIneq is a coproduct, it suffices to prove BLinIneqnm ≤W

rDiv uniformly for all n,m ∈ N. We begin by describing our version of the

Fourier Motzkin algorithm, while pointing out all the non-computable parts.

Then it is demonstrated how using MLPOn and rDiv is sufficient to solve the

non-computable aspects of the algorithm.

We rewrite the given inequalities as ak1v1 ≤ bk −
m∑
i=2

akivi for ak1 ≥ 0 and

−bj+
m∑
i=2

ajivi ≤ −aj1v1 for aj1 ≤ 0, using sign tests8. From this we can obtain

a system of linear inequalities expressing consistency of partial solutions:

For each pair k, j with ak1 ≥ 0 and aj1 ≤ 0, the corresponding inequalities

can be multiplied by −aj1 respective ak1, and then contracted to:

ak1(−bj +

m∑
i=2

ajivi) ≤ −aj1(bk −
m∑
i=2

akivi)

In the second step we treat the variable v2 in the same way, that is we rewrite

the new inequalities as

(ak1aj2 + aj1ak2)v2 ≤ (ak1bj − aj1bk)−
m∑
i=3

(ak1aji − aj1aki)vi

for (ak1aj2 + aj1ak2) ≥ 0 and

−(ak1bj − aj1bk) +
m∑
i=3

(ak1aji − aj1aki)vi ≤ (ak1aj2 + aj1ak2)v2

7 Recently Vasco Brattka suggested to the author that results from
[Brattka et al. (2010)] might be employed to simplify this proof.

8 Mirroring the definition of LLPO, the sign of 0 shall be non-deterministically either
0 or 1.
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for (ak1aj2+aj1ak2) ≤ 0. Here we encounter additional sign-tests. As before, a

system of linear inequalities for the consistency of partial assignments to vi for

i > 2 is obtained.

This process is iterated (which includes more sign-tests), until vm is reached.

Hence, we have inequalities âkvm ≤ b̂k and ĉl ≤ d̂lvm with âk, d̂l ≥ 0. The values

âk, b̂k, ĉl, d̂l are all obtained as constant-free polynomial expressions with degree

m from the values aij and bj.

In order to pick a suitable value for vm, we assume we knew the order of

the values âk and d̂l. We want to assume 0 ≤ â1 ≤ d̂1 ≤ â2 ≤ d̂2 ≤ . . .. The

internal order in each sequence can be obtained by renumbering the elements. In

order to assure that âk’s and d̂l’s alternate, additional inequalities of the form

âkvm ≤ âk and 0 ≤ d̂lvm may be inserted. Additionally, we assume 0 ≤ b̂k ≤ âk
and 0 ≤ ĉl ≤ d̂l. As we require 0 ≤ vm ≤ 1, this is unproblematic and can be

ensured by replacing b̂k by max(0,min(âk, b̂k)) and ĉl by max(min(ĉl, d̂l), 0).

Now we iteratively pick values vτm satisfying the first 2τ inequalities each,

starting with v0m = 1 and continuing with:

vτm = max
(
rDiv(ĉτ , d̂τ ),min

(
rDiv(b̂τ , âτ ), v

τ−1
m

))

As long as âτ > 0, d̂τ > 0 holds, it can be easily verified that this assignment is

valid, provided that all the inequalities indeed have a common solution. Due to

the order imposed, âτ = 0 implies âσ = d̂σ = 0 for all σ < τ , hence any value

would be a valid assignment to the first 2τ − 2 inequalities; so the arbitrary

value returned by rDiv(b̂τ , âτ ) is unproblematic. The same argument works for

rDiv(ĉτ , d̂τ ).

In the standard Fourier Motzkin algorithm, the value obtained for vm would

now be inserted in the inequalities containing only vm−1 and vm, allowing to use

the same technique to determine a value for vm−1, by iterating, this solves the

initial system of linear inequalities. This way is not available for our purpose,

though, because the input in any call of rDiv must never depend on the result

of another call of rDiv.

Instead, sort all the inequalities containing only the variables vm−1 and vm in

order of increasing absolute value of the larger coefficient of a variable (ordering,

again). Consider the inequality avm−1 ≤ bvm + c with a, b ≥ 0. If a ≥ b, it can

be turned into a constraint for vm−1:

vm−1 ≤ rDiv(b, a)vm + sg(c)rDiv(min(a, |c|), a)

Here sg denotes the sign-operation. The cutoff for c is valid due to the restric-

tion 0 ≤ vm−1 ≤ 1. The variable vm does not appear inside rDiv, so all the

oracle calls can be processed. As before, the constraints for vm−1 are built up

to the final expression using appropriately nested max and min operators. The
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other assignment of signs for a and b are dealt with accordingly (sign-tests are

necessary).

However, in the case b ≥ a (sign-test for b−a), we cannot obtain a constraint

for vm−1, as division of b by a is no longer permitted. We, however, introduce

the inequality as another constraint to vm in form of:

rDiv(a, b)vm−1 − sg(c)rDiv(min(b, |c|), b) ≤ vm

The problematic aspect entailed by this is that now the expressions for vm−1

and vm depend on each other. To the extent that the values of the variables

are determined by the system of inequalities this is unproblematic, but the non-

determinism introduced by division by 0 has to be contained. For this, each

occurrence of vm in the constraints for vm−1 is replaced by a pointer to those

constraints for vm with smaller (ordering) denominators, and vice versa.

In both cases it is sufficient to insert the max-min-expression for the other

variable obtained from the constraints with smaller denominators, rather than

the final expression (which would lead to a circular definition anyway). If the

denominator in the inequality under consideration is 0, then the result of the

transformation is meaningless, and due to the nested max and min operators,

can be ignored anyway. If the denominator is positive, then all the influence of

arbitrary results of division by 0 on the other variable are taken into considera-

tion through this constraint. The non-arbitrary influence of the other inequalities

containing both variables is already included in the contracted set of inequalities

including only one variable.

When extending the procedure outlined above to three and more variables

(which includes more sign-tests and more ordering), two aspects have to be

considered. First, if a new constraint is obtained for a variable which has a

smaller denominator than a constraint from a previous computation where this

variable occurs, the corresponding pointer will include the new constraint as

well. Second, it is no longer safe to assume that |c/a| ≤ 1 for a > 0, where a is

the largest coefficient of a variable, and c is the additive term in the inequality. If

there are k+1 variables in the inequality, it is safe to assume |c/a| ≤ k, though,

as a larger value could not be balanced by the remaining terms. Thus, the call

rDiv(min(a, |c|), a) is replaced by k ∗ rDiv(min(a, |c/k|), a).
Once this procedure is completed, all the calls to rDiv can be evaluated, and

the results are then combined to yield the final values for the variables; which

by construction fulfill the initial set of inequalities, if these admit a solution.

It remains only to discuss the occurring problems:

Sign-test In all occurrences of this problem we need to know the sign of a

value that is obtained as a constant-free polynomial with degree bounded

by m applied to the original input values. For each input size there are only
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finitely many of these polynomial expressions. Provided that all other prob-

lems are resolved, for any vector of signs for these expressions, the restriction

of BLinIneqnm to those inputs inducing these signs (which is a closed set) is

reducible to rDiv. The corresponding name sets form a co-r.e.-closed cover

as in Lemma 35, which in turn implies the reducibility to rDiv.

Informally, the main algorithm is executed with all potential results for the

signs, which are obtained in parallel by an oracle call to LLPOk. In the end,

the signs are used to determine the run of the algorithm operating with

correct data.

Ordering The situation here is similar to the one for sign-tests: All involved

values are obtained as constant-free polynomials with degrees bounded by

m applied to the original input values, hence there is only a finite number

of potential orderings. Each fixed ordering induced a co-r.e.-closed subset of

the domain of BLinIneqnm, which all together satisfy the requirements of

Lemma 35.

Robust Division Obviously oracle calls to rDiv are the solution here.

As the problem BLinIneq is of considerable interest on its own, we shall

note that the converse statement to Theorem 37 is also true:

Theorem 38. rDiv ≤W BLinIneq.

Proof. We have to show rDivn ≤W BLinIneq uniformly for n ∈ N. Given n

pairs of reals (pi, qi), consider the system of linear equalities given by Aii = qi,

Aij = 0 for i �= j and bi = pi. The only solutions are given by vi =
pi

qi
for qi > 0,

and arbitrary values for those vj with qj = 0. By replacing every equality with

two inequalities, the needed reduction is found.

By adapting [von Stengel (2007), Algorithm 3.4] and applying Lemma 35 and

Theorem 37 we proceed to prove the main theorem of this subsection.

Theorem 39. Nash ≤W rDiv.

Proof. It suffices to show Nashnm ≤W rDiv uniformly in n,m ∈ N.
By the best response condition [von Stengel (2007), Proposition 3.1], a pair

of mixed strategies (x, y) is a Nash equilibrium of a game if each pure strategy

played with positive probability in x (in y) is a best response against y (against

x). This condition can be formalized by noting that the following set is the set

of games and their Nash equilibria with support in I, J :

ĜI,J =

{(A,B, x, y) ∈ Rn×m × Rn×m × Sn × Sm | ∀j, k ∈ J ∀l /∈ J

(xTB)j = (xTB)k ≥ (xTB)l ∧ yl = 0

∀i, p ∈ I ∀q /∈ I (Ay)i = (Ay)p ≥ (Ay)q ∧ xq = 0}
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The set of names of elements in ĜI,J is co-r.e.-closed, and so is the set of names

of the projection

GI,J = {(A,B) | ∃x, y ∈ Sn × Sm (A,B, x, y) ∈ ĜI,J}

since Sn×Sm is computably compact. Now consider Nashnm restricted to GI,J .

Given (A,B) ∈ GI,J , solving a system of linear inequalities is sufficient to obtain

(x, y) with (A,B, x, y) ∈ ĜI,J ; hence this restriction is reducible to BLinIneq,

and by Theorem 37 reducible to rDiv.

This establishes that the conditions of Lemma 35 are fulfilled. Its application

yields Nashnm ≤W rDiv.

Corollary 40. ZCorr ≡W Corr ≡W ZNash ≡W Nash ≡W rDiv.

The same technique applied in the proof of Theorem 37 could also be used

to show that Gaussian Elimination can be reduced to rDiv. This would show

that the reduction of Gaussian Elimination to the rank of a matrix given in

[Ziegler and Brattka (2004)] is strict, taking into consideration the results of

Subsection 5.1.

5 Additional Results

5.1 Placing Robust Division in the Weihrauch-hierarchy

We proceed to place rDiv (and subsequently rDiv) in the fragment of the

Weihrauch-hierarchy outlined in [Brattka and Gherardi (2009a), Figure 1]. This

will allow us to derive some interesting properties of Nash as consequences

of general results. One problem relevant for the comparison is BI , which has

an increasing sequence (ln)n∈N and a decreasing sequence (rm)m∈N of ratio-

nal numbers with limn→∞ ln ≤ limm→∞ rm as input, and real numbers x with

limn→∞ ln ≤ x ≤ limm→∞ rm as solutions. The other one is B−
I , the restriction

of BI to the sequences with limn→∞ ln < limm→∞ rm.

Theorem 41. rDiv ≤W BI .

Proof. The reduction from rDiv to BI is straightforward: While the machine

searches for some n ∈ N with 1
n ≤ y on input x, y, it prints (0, 1). If such a

lower bound is found, x
y can be computed, that is we can compute an increasing

sequence (li)i∈N ∈ Q and an decreasing sequence (ri)i∈N ∈ Q with lim
i→∞

li =
x
y =

lim
i→∞

ri. In this case, said sequences serve as input to BI .

Theorem 42. B−
I �c

W rDiv.
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Proof. The separation follows from considerations of the Level of the involved

problems. Following [Hertling (1996)], we introduce the following sets for a func-

tion F on Baire space:

L0(F ) = dom(F )

Lα+1(F ) = {x ∈ Lα(F ) | F|Lα(F ) is discontinuous in x}
Lγ(F ) =

⋂
α<γ

Lα(F ) for limit ordinals γ

The Level of a multi-valued function f between represented spaces is the small-

est ordinal α, so that there is a realizer F � f with Lα(F ) = ∅. As shown in

[Hertling (1996), Korollar 2.4.3], the Level is non-increasing under Weihrauch-

reducibility (this result was extended to multi-valued functions in [Pauly (2010)]),

including the case of non-existent Level.

The Level of rDiv is ω0, the smallest infinite ordinal, as can be verified by

straightforward calculation. The Level of B−
I does not exist, as every realizer

of B−
I is discontinuous in every point of its domain: Assume that the realizer

returns a ρ-name of x given the input (li)i∈N, (ri)i∈N. Either limi→∞ li < x

or x < limi→∞ ri holds, w.l.o.g. assume the former. Then there is a rational q

with limi→∞ li < q < x. For any K ∈ N, define the sequence rK by rKk = rk
for k ≤ K, and rKk = q otherwise. Each neighbourhood of (l, r) contains some

(l, rK), at which no value y with d(x, y) < d(x, q) is a valid solution.

Corollary 43. Every computable bi-matrix game has a computable Nash equi-

librium.

Proof. It is easy to verify that the existence of a computable solution for each

computable instance, i.e. non-uniform computability of the problem, is

downwards-preserved by Weihrauch-reducibility. The non-uniform computabil-

ity of BI was observed in [Brattka and Gherardi (2009a)]; the claim then follows

via Theorem 41.

Corollary 44. If the task of finding Nash equilibria is restricted to games with

a unique equilibrium, it becomes computable.

Proof. As shown in [Brattka and Gherardi (2009a)], BI is weakly computable (in

the sense of [Brattka and Gherardi (2009b)]), so by Theorem 41, rDiv is weakly

computable. A straightforward proof shows that rDiv, Nash and the restric-

tion of Nash to games with unique equilibria inherit the weak computability.

The latter is a single-valued function into a computable metric space, so due

to [Brattka and Gherardi (2009b), Corollary 8.8], weak computability already

implies computability here.
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There is a result closely related to the special case of the last corollary for

2× 2-games in Constructive Mathematics. In [Bridges (2004)] it is shown that if

a 2× 2-bimatrix game has at most one Nash equilibrium, then it constructively

has a Nash equilibrium.

5.2 Elimination of Dominated Strategies

A conceptually simpler (partial) solution concept for games is given by (iterated)

elimination of dominated strategies. Following [Kalai and Zemel (1988)], three

concepts of dominance9 in bi-matrix games are distinguished.

Definition 45.

– A strategy i weakly dominates a strategy j, if for all k Aik ≥ Ajk.

– A strategy i dominates a strategy j, if for all k Aik ≥ Ajk and there is a k0
satisfying Aik0 > Ajk0 .

– A strategy i strictly dominates a strategy j, if for all k Aik > Ajk.

Analogous definitions are assumed for column-player’s strategies. As remov-

ing a strategy can induce new dominations, it makes sense to define iterated

elimination, where dominated strategies are removed until no dominations re-

main. For more detailed definitions and the computational complexity of the

associated problems in the classical model, we refer to [Pauly (2009a)].

The basic building block we will use to classify the Weihrauch-degrees occur-

ring here is the problem LPO [Weihrauch (1992b)] defined as follows:

Definition 46. LPO is the problem of deciding whether a real number is 0 or

not.

Considering games where the second player has only one action available

already allows to state some basic results about the occurring kinds of incom-

putability. In this case, dominance and strict dominance coincide, and one round

of elimination is already sufficient to obtain a completely reduced subgame. Iter-

ated elimination of weakly dominated strategies simply requires to determine an

index corresponding to a maximal entry, so it turns out to be the same problem

as finding Nash or pure equilibria.

Elimination of (strictly) dominated strategies, however, means that instead

of returning an index of a maximal value, we have to return all indices corre-

sponding to maximal values. This problem is equivalent to LPOn, where n is the

9 Unfortunately, there does not seem to be a consensus in the literature how to name
the different concepts of dominance. The concept of dominance is sometimes referred
to as weak dominance, while our weak dominance sometimes is called very weak
dominance.
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size of the game, or, if any size is allowed, to LPO. Thus, in the special case of

just one action available for the second player, elimination of weakly dominated

strategies is strictly less incomputable as elimination of (strictly) dominated

strategies.

Given access to a LPO-oracle, one can ask whether any pair of payoff val-

ues is equal, or which one is bigger. With this information, it is clearly possible

to compute the remaining game after repeated elimination of (strictly) domi-

nated strategies. Therefore, considering any bi-matrix game does not increase

the Weihrauch-degree for dominance or strict dominance.

Extending iterated elimination of weakly dominated strategies to non-trivial

bi-matrix games, however, increases the incomputability, as can be demonstrated

by the following gadget:

Example 1. Given a real number x, let Ex be the following game:

A =

(
x 0

0 x

)
B = −A

Clearly, for x �= 0, Ex is a case of the game matching pennies, and already

completely reduced under elimination of weakly dominated strategies. For x = 0,

however, the reduced form of E0 is A = (0), B = (0).

With this example, we have a reduction from LPO to iterated elimination of

weakly dominated strategies. By using the product structure of games, one can

prove that also iterated elimination of weakly dominated strategies is equivalent

to LPO.

As we have demonstrated that the iterated elimination of (weakly/strictly)

dominated strategies is even less computable than finding Nash equilibria, none

of the three variants of dominance is suitable for e.g. pre-processing from this

point of view.
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