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Abstract. We revisit the investigation of the computational content of
the Brouwer Fixed Point Theorem in [7], and answer the two open ques-
tions from that work. First, we show that the computational hardness
is independent of the dimension, as long as it is greater than 1 (in [7]
this was only established for dimension greater than 2). Second, we show
that restricting the Brouwer Fixed Point Theorem to L-Lipschitz func-
tions for any L > 1 also does not change the computational strength,
which together with prior results establishes a trichotomy for L > 1,
L = 1 and L < 1.

1 Introduction

In this paper we continue with the programme to classify the computational
content of mathematical theorems in the Weihrauch lattice (see [8, 4, 3, 18, 17, 5,
11, 13]). This lattice is induced by Weihrauch reducibility, which is a reducibility
for partial multi-valued functions f :⊆ X ⇒ Y on represented spaces X,Y .
Intuitively, f ≤W g reflects the fact that the function f can be realized with a
single application of the function g as an oracle. Hence, if two functions are
equivalent in the sense that they are mutually reducible to each other, then they
are equivalent as computational resources, as far as computability is concerned.

Many theorems in mathematics are actually of the logical form

(∀x ∈ X)(∃y ∈ Y ) P (x, y)

and such theorems can straightforwardly be represented by a multi-valued func-
tion f : X ⇒ Y with f(x) := {y ∈ Y : P (x, y)} (sometimes partial f are needed,

? ? ? The majority of this work was done while Le Roux was at the Department of Mathe-
matics, Technische Universität Darmstadt, Germany and Pauly was at the Computer
Laboratory, University of Cambridge, United Kingdom.

? This project has been supported by the National Research Foundation of South
Africa (NRF) and by the German Research Foundation (DFG) through the German-
South African project (DFG, 445 SUA-1 13/20/0)
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where the domain captures additional requirements that this input x has to
satisfy). In some sense the multi-valued function f directly reflects the compu-
tational task of the theorem to find some suitable y for any x. Hence, in a very
natural way the classification of a theorem can be achieved via a classification
of the corresponding multi-valued function that represents the theorem. In this
paper we attempt to classify the Brouwer Fixed Point Theorem.

Theorem 1 (Brouwer Fixed Point Theorem 1911). Every continuous func-
tion f : [0, 1]n → [0, 1]n has a fixed point x ∈ [0, 1]n.

The fact that Brouwer’s Fixed Point Theorem cannot be proved construc-
tively has been confirmed in many different ways; most relevant for us is the
counterexample in Russian constructive analysis by Orevkov [16], which was
transferred into computable analysis by Baigger [1].

Constructions similar to those used for the above counterexamples have been
utilized in order to prove that the Brouwer Fixed Point Theorem is equivalent to
Weak Kőnig’s Lemma in reverse mathematics [22, 21] and to analyze computabil-
ity properties of fixable sets [14], but a careful analysis of these reductions reveals
that none of them can be straightforwardly transferred into a uniform reduction
in the sense that we are seeking here. The results cited above essentially charac-
terize the complexity of fixed points themselves, whereas we want to characterize
the complexity of finding the fixed point, given the function. This requires full
uniformity.

In the Weihrauch lattice the Brouwer Fixed Point Theorem of dimension n is
represented by the multi-valued function BFTn : C([0, 1]n, [0, 1]n) ⇒ [0, 1]n that
maps any continuous function f : [0, 1]n → [0, 1]n to the set of its fixed points
BFTn(f) ⊆ [0, 1]n. The question now is where BFTn is located in the Weihrauch
lattice?

In order to approach this question, we introduce a choice principle CCn that
we call connected choice and which is just the closed choice operation restricted
to connected subsets. That is, in the sense discussed above, CCn is the multi-
valued function that represents the following mathematical statement: every
non-empty connected closed set A ⊆ [0, 1]n has a point x ∈ A. Since closed
sets are represented by negative information (i.e. by an enumeration of open
balls that exhaust the complement), the computational task of CCn consists in
finding a point in a closed set A ⊆ [0, 1]n that is promised to be non-empty and
connected and that is given by negative information.

One of our main results, presented in Section 3, is that the Brouwer Fixed
Point Theorem is equivalent to connected choice for each fixed dimension n, i.e.
BFTn≡W CCn. This result allows us to study the Brouwer Fixed Point Theorem
in terms of the function CCn that is easier to handle since it involves neither
function spaces nor fixed points. This is also another instance of the observation
that several important theorems are equivalent to certain choice principles (see
[3]) and many important classes of computable functions can be calibrated in
terms of choice (see [2]). For instance, closed choice on Cantor space C{0,1}N
and on the unit cube C[0,1]n are both easily seen to be equivalent to Weak
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Kőnig’s Lemma WKL, i.e. WKL≡W C{0,1}N ≡W C[0,1]n for any n ≥ 1. Studying
the Brouwer Fixed Point Theorem in the form of CCn now amounts to comparing
C[0,1]n with its restriction CCn.

Our second main result, given in Section 5, is that from dimension two on-
wards connected choice is equivalent to Weak Kőnig’s Lemma, i.e. CCn≡W C[0,1]

for n ≥ 2.
This refutes an earlier conjecture [7] by some of the authors that connected

choice in dimension two be computationally simpler than connected choice in
dimension three. We then also consider the restriction of Brouwer’s Fixed Point
theorem to Lipschitz functions in Section 4. In the following Section 2 we start
with a short summary of relevant definitions and results regarding the Weihrauch
lattice.

This extended abstract does not contain any proofs. Sections 1, 2 and 3 are
taken mostly from [7]. An extended version including the omitted proofs can be
found as [6].

2 The Weihrauch Lattice

In this section we briefly recall some basic results and definitions regarding the
Weihrauch lattice. The original definition of Weihrauch reducibility is due to
Weihrauch and has been studied for many years (see [23–25, 9]). Only recently
it has been noticed that a certain variant of this reducibility yields a lattice that
is very suitable for the classification of mathematical theorems (see [8, 4, 3, 18, 2,
17, 5, 10]). The basic reference for all notions from computable analysis is [26],
alternatively see [19].

The Weihrauch lattice is a lattice of multi-valued functions on represented
spaces. A representation δ of a set X is just a surjective partial map δ :⊆ NN →
X. In this situation we call (X, δ) a represented space. In general we use the
symbol “⊆” in order to indicate that a function is potentially partial. Using
represented spaces we can define the concept of a realizer. We denote the com-
position of two (multi-valued) functions f and g either by f ◦ g or by fg.

Definition 1 (Realizer). Let f :⊆ (X, δX) ⇒ (Y, δY ) be a multi-valued func-
tion on represented spaces. A function F :⊆ NN → NN is called a realizer of f ,
in symbols F ` f , if δY F (p) ∈ fδX(p) for all p ∈ dom(fδX).

Realizers allow us to transfer the notions of computability and continuity
and other notions available for Baire space to any represented space; a function
between represented spaces will be called computable if it has a computable
realizer, etc. Now we can define Weihrauch reducibility.

Definition 2 (Weihrauch reducibility). Let f, g be multi-valued functions
on represented spaces. Then f is said to be Weihrauch reducible to g, in sym-
bols f ≤W g, if there are computable functions K,H :⊆ NN → NN such that
K〈id, GH〉 ` f for all G ` g. Moreover, f is said to be strongly Weihrauch
reducible to g, in symbols f ≤sW g, if there are computable functions K,H such
that KGH ` f for all G ` g.
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Here 〈, 〉 denotes some standard pairing on Baire space. We note that the
relations ≤W, ≤sW and ` implicitly refer to the underlying representations,
which we mention explicitly only when necessary. It is known that these relations
only depend on the underlying equivalence classes of representations, but not on
the specific representatives (see Lemma 2.11 in [4]). We use ≡W and ≡sW to
denote the respective equivalences regarding ≤W and ≤sW, and by <W and
<sW we denote strict reducibility.

A particularly useful multi-valued function in the Weihrauch lattice is closed
choice (see [8, 4, 3, 2]) and it is known that many notions of computability can
be calibrated using the right version of choice. We will focus on closed choice
for computable metric spaces, which are separable metric spaces such that the
distance function is computable on the given dense subset. We assume that
computable metric spaces are represented via their Cauchy representation (see
[26] for details).

By A−(X) we denote the set of closed subsets of a metric space X, where the
index “−” indicates that we work with negative information. This information is
given by a representation ψ− : NN → A−(X), defined by ψ−(p) := X\

⋃∞
i=0Bp(i),

where Bn is some standard enumeration of the open balls of X with center in the
dense subset and rational radius. The computable points in A−(X) are called
co-c.e. closed sets. We now define closed choice for the case of computable metric
spaces.

Definition 3 (Closed Choice). Let X be a computable metric space. Then
the closed choice operation CX :⊆ A−(X) ⇒ X of this space is defined by
dom(CX) := {A ∈ A−(X) : A 6= ∅} and x ∈ CX(A) iff x ∈ A.

Intuitively, CX takes as input a non-empty closed set in negative representa-
tion (i.e. given by ψ−) and it produces an arbitrary point of this set as output.
For short we use the notation An := {A ∈ A−([0, 1]n) : A 6= ∅} for the space of
non-empty closed subsets with representation ψ− in the following.

3 Brouwer’s Fixed Point Theorem and Connected Choice

In this section we want to show that the Brouwer Fixed Point Theorem is com-
putably equivalent to connected choice for any fixed dimension. We first define
these two operations. By C(X,Y ) we denote the set of continuous functions
f : X → Y and for short we write Cn := C([0, 1]n, [0, 1]n).

Definition 4 (Brouwer Fixed Point Theorem). By BFTn : Cn ⇒ [0, 1]n we
denote the operation defined by BFTn(f) := {x ∈ [0, 1]n : f(x) = x} for n ∈ N.

We note that BFTn is well-defined, i.e. BFTn(f) is non-empty for all f , since
by the Brouwer Fixed Point Theorem every f ∈ Cn admits a fixed point x, i.e.
with f(x) = x. We now define connected choice.

Definition 5 (Connected choice). By CCn :⊆ An ⇒ [0, 1]n we denote the
operation defined by CCn(A) := A for all non-empty connected closed A ⊆ [0, 1]n

and n ∈ N. We call CCn connected choice (of dimension n).
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Hence, connected choice is just the restriction of closed choice C[0,1]n to con-
nected sets. We also use the following notation for the set of fixed points of a
function f ∈ Cn.

Definition 6 (Set of fixed points). By Fixn : Cn → An we denote the function
with Fixn(f) := {x ∈ [0, 1]n : f(x) = x}.

It is easy to see that Fixn is computable, since Fixn(f) := (f − id)−1{0} and
it is well-known that closed sets in An can also be represented as zero sets of
continuous functions (see [26]).

Definition 7 (Connectedness components). By Conn : An ⇒ An we de-
note the map with Conn(A) := {C : C is a connectedness component of A} for
every n ≥ 1.

Theorem 2 (Connectedness components). Conn≡sW WKL for n ≥ 1.

We note that the Brouwer Fixed Point Theorem can be decomposed to
BFTn = CCn ◦ Conn ◦ Fixn.

The main result of this section will be that the Brouwer Fixed Point Theorem
and connected choice are (strongly) equivalent for any fixed dimension n (see
Theorem 3 below).

The direction CCn≤sW BFTn can be seen as a uniformization of an earlier
construction of Baigger [1] that is in turn built on results of Orevkov [16]. This
part of the construction was explained in some detail by Potgieter in [20].

For the other direction BFTn≤sW CCn of the reduction we uniformize ideas
from the third author’s PhD thesis [14]. A central technique is topological degree
theory. For the uniform aspects of both directions, a representation of closed sets
via trees of rational complexes is employed.

The first observation is that the map Conn ◦Fixn is computable (which might
be surprising in light of Theorem 2).

Proposition 1. Conn ◦ Fixn : Cn ⇒ An is computable for all n ∈ N.

Since BFTn ⊇ CCn ◦Conn ◦Fixn we can directly conclude BFTn≤sW CCn for
all n. Together with CCn≤sW BFTn we obtain the following theorem.

Theorem 3 (Brouwer Fixed Point Theorem). BFTn≡sW CCn for all n.

It is easy to see that in general the Brouwer Fixed Point Theorem and con-
nected choice are not independent of the dimension. In case of n = 0 the space
[0, 1]n is the one-point space {0} and hence BFT0≡sW CC0 are both computable.
In case of n = 1 connected choice was already studied in [3] and it was proved
that it is equivalent to the Intermediate Value Theorem IVT (see Definition 6.1
and Theorem 6.2 in [3]).

Corollary 1 (Intermediate Value Theorem). IVT≡sW BFT1≡sW CC1.
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It is also easy to see that the Brouwer Fixed Point Theorem BFT2 in dimen-
sion two is more complicated than in dimension one. For instance, it is known
that the Intermediate Value Theorem IVT always offers a computable function
value for a computable input, whereas this is not the case for the Brouwer Fixed
Point Theorem BFT2 by Baigger’s counterexample [1]. We continue to discuss
this topic in Section 5.

Here we point out that Proposition 1 implies that the fixed point set Fixn(f)
of every computable function f : [0, 1]n → [0, 1]n has a co-c.e. closed connected-
ness component. The converse direction is true, too, and in a uniform way: We
denote by (f, g) :⊆ X ⇒ Y × Z the juxtaposition of two functions f :⊆ X ⇒ Y
and g :⊆ X ⇒ Z, defined by (f, g)(x) = (f(x), g(x)).

Theorem 4 (Fixability). (Fixn,Conn ◦ Fixn) is computable and has a multi-
valued computable right inverse for all n ∈ N.

Roughly speaking a closed set A ∈ An together with one of its connectedness
components is as good as a continuous function f ∈ Cn with A as set of fixed
points. As a non-uniform corollary we obtain immediately Miller’s original result.

Corollary 2 (Fixable sets, Miller 2002). A set A ⊆ [0, 1]n is the set of fixed
points of a computable function f : [0, 1]n → [0, 1]n if and only if it is non-empty
and co-c.e. closed and contains a co-c.e. closed connectedness component.

4 The Lipschitz Trichotomy

It seems to be a natural question5 to what extent finding fixed points becomes
easier if the class of functions to be considered is further restricted. In particular
we will denote by L-LBFTn the restriction of BFTn to L-Lipschitz functions.

Proposition 2. For L1, L2 > 1 we find that L1-LBFTn≡W L2-LBFTn.

Proof. If f is L1-Lipschitz and L2 > 1, then id + L2−1
L1+1 (f − id) is L2-Lipschitz

and has the same fixed points as f .

With some additional constructions and a careful analysis, the proof of The-
orem 3 can be adapted to yield:

Theorem 5. 2-LBFTn≡W BFTn≡W CCn.

Being L-Lipschitz for L < 1 implies the uniqueness of the fixed point, which
in turn implies the computability of L-LBFTn for L < 1. The remaining L = 1
case is also a special (since finite-dimensional) case of the Browder-Goehde-Kirk
Fixed Point theorem. Its Weihrauch degree was studied by Neumann in [15], and
shown to be equivalent to XCn – closed choice for convex sets in [0, 1]n.

Theorem 6 (Le Roux & Pauly [12]).

CC1≡W XC1<W XC2<W XC3<W . . . <W C[0,1]

5 Which was put to the authors by Kohlenbach.
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Corollary 3 (Lipschitz dichotomy in dimension 1).

– L-LBFT1≡W id, iff L < 1
– L-LBFT1≡W CC1, iff L ≥ 1

Corollary 4 (Lipschitz trichotomy). Let n > 1.

– L-LBFTn≡W id, iff L < 1
– L-LBFTn≡W XCn, iff L = 1
– L-LBFTn≡W C[0,1], iff L > 1

5 Classifying Connected Choice

In this section we want to discuss the degree of connected choice, in particular in
relation to the dimension of the ambient space. We will consider three geometric
constructions: The one employed in the original proof by Orevkov/Baigger – this
construction is insufficient for the uniform aspects. Then a simple construction
showing that connected choice is computably complete from dimension three
onwards in the sense that it is strongly equivalent to Weak Kőnig’s Lemma.
Finally, a significantly more involved construction shows even connected choice
in two dimensions to be computably complete, too.

A superficial reading of the results of Orevkov [16] and Baigger [1] can lead
to the wrong conclusion that they actually provide a reduction of Weak Kőnig’s
Lemma to the Brouwer Fixed Point Theorem BFTn of any dimension n ≥ 2.
However, this is only correct in a non-uniform way and the corresponding uniform
result does not follow from the known constructions. The Orevkov-Baigger result
is built on the following fact.

Proposition 3 (Mixed cube). The function M :⊆ A−[0, 1]→ A2 with M(A) =
(A× [0, 1])∪ ([0, 1]×A) is computable and maps non-empty closed sets A ⊆ [0, 1]
to non-empty connected closed sets M(A) ⊆ [0, 1]2.

It follows straightforwardly from the definition that the pairs (x, y) ∈M(A)
are such that one out of two components x, y is actually in A. In order to express
the uniform content of this fact, we introduce the concept of a fraction.

Definition 8 (Fractions). Let f :⊆ X ⇒ Y be a multi-valued function and
0 < n ≤ m ∈ N. We define the fraction n

mf :⊆ X ⇒ Y m such that n
mf(x)

is the set of all (y1, ..., ym) ∈ range(f)m with |{i : yi ∈ f(x)}| ≥ n for all
x ∈ dom( n

mf) := dom(f).

The idea of a fraction n
mf is that it provides m potential answers for f , at

least n ≤ m of which have to be correct. The uniform content of the Orevkov-
Baigger construction is then summarized in the following result.

Proposition 4 (Dimension two). 1
2C[0,1]≤sW CC2.



8 Vasco Brattka, Stéphane Le Roux, Joseph S. Miller, and Arno Pauly

However, the following results shows that the uniform content of the pre-
ceding proposition is very weak, as it cannot even solve closed choice on the
two-point space 2 (which is equivalent to LLPO):

Proposition 5. C2 6≤W
1
2C[0,1]

That is, given a closed set A ⊆ [0, 1] we can utilize connected choice CC2 of
dimension 2 in order to find a pair of points (x, y) one of which is in A. This result
directly implies the counterexample of Baigger [1] because the fact that there are
non-empty co-c.e. closed sets A ⊆ [0, 1] without computable points immediately
implies that 1

2C[0,1] is not non-uniformly computable (i.e. there are computable
inputs without computable outputs) and hence CC2 is also not non-uniformly
computable.

Corollary 5 (Orevkov 1963, Baigger 1985). There exists a computable
function f : [0, 1]2 → [0, 1]2 that has no computable fixed point x ∈ [0, 1]2. There
exists a non-empty connected co-c.e. closed subset A ⊆ [0, 1]2 without computable
point.

Instead, we shall use a different construction to classify connected choice from
three dimensions upwards:

Proposition 6 (Twisted cube). The function T :⊆ A−[0, 1] → A3 with
T (A) = (A × [0, 1] × {0}) ∪ (A × A × [0, 1]) ∪ ([0, 1] × A × {1}) is computable
and maps non-empty closed sets A ⊆ [0, 1] to non-empty connected closed sets
T (A) ⊆ [0, 1]3.

Here tuples (x1, x2, x3) ∈ T (A) have the property that at least one of the first
two components provide a solution xi ∈ A, but the third component provides
the additional information which one surely does. If x3 is close to 1, then surely
x2 ∈ A and if x3 is close to 0, then surely x1 ∈ A. If x3 is neither close to 0
nor 1, then both x1, x2 ∈ A. Hence, there is a computable function H such that
C[0,1] = H ◦ CC3 ◦ T , which proves C[0,1]≤sW CC3. Together with Theorem 3 we
obtain the following conclusion.

Theorem 7 (Completeness of three dimensions). For n ≥ 3 we obtain
CCn≡sW BFTn≡sW WKL≡sW C[0,1].

We note that the reduction CCn≤sW C[0,1]n holds for all n ∈ N, since con-
nected choice is just a restriction of closed choice and C[0,1]n ≡sW C[0,1]≡sW WKL
is known for all n ≥ 1 (see [2]).

Originally, three of the authors had conjectured in [7] that CC2<W C[0,1].
However, a more involved construction actually establishes that:

Theorem 8 (Completeness of two dimensions). CC2≡W C[0,1]

The proof of Theorem 8 exhibits a reduction Ĉ2≤W CC2 instead, using the

equivalence Ĉ2≡W C{0,1}N from [4]. The geometric pattern constructed produces
an infinitely long line which is then subdivided based on both the information

obtained about the input to Ĉ2, as well as the order in which this information
is found. A glimpse of the construction might be gained from Figure 1.
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Fig. 1. The geometric pattern after the third round

6 Two Versus Three Dimensions

A noticeable difference between the construction from the proof of Theorem 8
and Proposition 6 is that the latter yields even a path-connected set, whereas
the former does not. Thus, path-connected choice is computably-complete from
dimension three onwards, but might be simpler in dimension two.

While the status of path-connected choice in dimension two remains open, we
can exhibit a related choice principle distinguishing two from three dimensions.

Definition 9. We say that A ∈ A2 has a straight cross, if there are x, y ∈ [0, 1],
δ > 0 s.t ∀ε ∈ (−δ, δ) (x+ ε, y) ∈ A ∧ (x, y + ε) ∈ A. Let †C[0,1]2 be choice for
sets having a straight cross.

Proposition 7. †C[0,1]2 ≤W
1
2C[0,1] ? CN.

Corollary 6. †C[0,1]2 <W CC2

Proof. Combine Proposition 7 with the Fractal Absorption Theorem from [12].

An analogous argument would not succeed in dimension 3, as 2
3C[0,1]≡W C[0,1]

by a majority-voting argument.
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