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Abstract

A comparative study of two new Galerkin projection schemes to compute the response of discretized stochastic
partial differential equations is presented for discretized structures subjected to static and dynamic loads. By
applying an eigen-decomposition of a discretized system, the response of a discretized system can be expressed
with a reduced basis of eigen-components. Computational reduction is subsequently achieved by approximating
the random eigensolutions, and by only including dominant terms. Two novel error minimisation techniques have
been proposed in order to lower the error introduced by the approximations and the truncations: a) Sample-based
Galerkin projection scheme, b) Sample-aggregated based Galerkin projection scheme. These have been applied
through introducing unknown multiplicative scalars into the expressions of the response. The proposed methods
are applied to analyse the bending of a cantilever beam with stochastic parameters undergoing both a static and
a dynamic load. For the static case the response is real, however the response for the case of a dynamic loading
is complex and frequency-dependent. The results obtained through the proposed approaches are compared with
those obtained by utilising a direct Monte Carlo approach.

c© 2017 Published by Elsevier Ltd.

Keywords: Stochastic differential equations; eigenfunctions; Galerkin; projection; reduced methods.

1. Introduction

The mathematical models and the parameters used to model physical systems are ide-

alizations of physical processes. They cannot often be known for certain, and a degree of

randomness is involved. In fact, input uncertainty in the form of material parameters, ge-

ometrical configuration or boundary conditions are ubiquitous and intrinsic to the models

being analysed. Many civil engineering problems are concerned with materials that are
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intrinsically random and merely using the average value or the best possible deterministic

values of the material properties would not establish their behaviour with desired confi-

dence or reliability. Fortunately, the entire subject of uncertainty can itself be addressed

in a scientific and a mathematically precise way by utilising stochastic computational

models.

This work proposes and compares new reduced order methods to approximate the re-

sponse of stochastic discretized equations. Stochastic sampling techniques which employ

Monte Carlo type simulations have been widely used to solve such systems [1, 2]. However

the convergence of such methods can be deemed slow. In order to lower the computa-

tional cost numerous methods have been suggested. These include principal component

analysis [3], quasi Monte Carlo [4] and Latin hypercube sampling [5]. A comprehensive

review of sampling techniques is given by [6]. In spite of the slow convergence rate, brute

force Monte Carlo simulations are often treated as a benchmark solution in stochastic

computational mechanics literature e.g. [7].

Expansion methods have also been utilised for computing the response of stochastic

structures. Such methods include the perturbation method [8, 9] and Neumann series

[10, 11]. A perturbation method expands a systems solution by using a Taylor series

whilst the Neumann series method approximates the inverse of the stochastic matrices

with a Neumann type matrix series expansion. Projection methods have also been used

for solving stochastic equations. Originating from [12], [13] have proposed a polynomial

chaos expansion (PCE) for stochastic finite elements which produces a linear combination

of Hermite polynomials and undetermined deterministic coefficients. Numerous studies

have applied the PCE including [14] and [15]. In turn a generalised PCE approach has

been proposed [16, 17] based upon the Wiener-Askey chaos expansion. [18, 19] have

explored projections onto preconditioned stochastic Krylov basis functions whilst [20] has

utilised a random eigenfunction expansion method to formulate a random basis. Further

methods such as stochastic collocation techniques [21, 22] and meta-modelling schemes

[23, 24] and reduced stochastic spectral function approach [25, 26] have been suggested

when a stochastic finite element analysis of a structural dynamic system is performed.

A comprehensive review of the available literature is not given in this paper, however
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we refer the reader to [27, 28] for a wide-ranging review of the available reduced order

methods.

If the PCE were used, both the static and dynamic cases would use the same pro-

jections. In turn this introduces additional problems into the computation [29]. This

paper aims to discuss projection methods which are specificity designed to capture the

physical nature of the systems. By applying a random eigenfunction approach a compar-

ative study between two novel Galerkin projection schemes (a) A sample-based Galerkin

projection scheme and (b) A sample-aggregated based Galerkin projection scheme are

presented. After applying appropriate computational reduction methods, the two novel

Galerkin projection schemes are introduced to a system undergoing a static load and to a

system subjected to a dynamic load. The system subjected to a dynamic load is analysed

in the frequency domain. The methods are consequently applied to a cantilever beam

and their effectiveness are compared. These comparisons are based upon relative error

estimates with respect to a benchmark direct Monte Carlo approach.

A brief outline of the formulation of stochastic structural systems is given in Section 2.

The relevant projection methods for both loading cases are derived in Section 3 before two

methods for reducing the computational cost are discussed in Section 4. As a result of the

induced error due to the computational reduction, Section 5 introduces the novel Galerkin

projection schemes. The methods are subsequently applied to analyse the bending of a

Euler-Bernoulli cantilever beam in Section 6 before the major conclusions are drawn in

the concluding section.

2. Formulating the discretized systems

In this work, stochastic discretized equations are considered for structures which are

subjected to both static and dynamic loads. This section aims to give a brief overview of

the stochastic discretized equations considered to describe structures which are subjected

to both static and dynamic loads. The stochastic discretized equations can be obtained

by utilising a stochastic finite element approach on a partial differential equation. The

technical details of obtaining the discretized set of equations have been omitted, however

many references are available on this topic [13].
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2.1. Discretized system: Static load

The case of a structure undergoing a static load can be described by the following set

of stochastic discretized equations

K(θ)uS(θ) = f0 (1)

where K(θ),uS(θ) and f0 correspond to a random stiffness matrix, the response vector

and a deterministic excitation field respectively. The discretized set of stochastic linear

equations given by Equation (1) can be expressed as follows

K(θ)uS(θ) =

[
K0 +

M1∑

j=1

ξj(θ)Kj

]
uS(θ) = f0 (2)

K0 ∈ RN×N is a positive definite, symmetric matrix which contributes to the deterministic

nature of the random stiffness matrix. In a similar manner Kj ∈ RN×N are general

matrices for j = 1, 2, ...M1 which contribute to the stochastic nature of K(θ). The function

ξj(θ) corresponds to a set of random variables for j = 1, 2, ...M1. The methods proposed

in this paper are general in nature, therefore the random variables are not restricted to a

specific distribution. A benchmark solution to the set of stochastic linear equations given

above can be obtained through direct Monte Carlo simulations [DMCS]

uS(θ) =

[
K0 +

M1∑

j=1

ξj(θ)Kj

]−1
f0 (3)

Convergence is guaranteed if all realisations of K(θ) are positive definite and the number

of realizations is sufficiently large. Equation (3) would subsequently be solved for each

θ ∈ Θ.

2.2. Discretized system: Dynamic load

The following set of stochastic discretized equations can be used to represent a vis-

cously damped structure undergoing a dynamic load in the frequency domain [30]

[−ω2M(θ) + iωC0 + K(θ)]uD(ω, θ) = f̃0(ω) (4)

where M(θ),K(θ) and C0 are matrices that correspond to a systems’ random mass and

stiffness matrices and a systems’ deterministic damping matrix respectively. The vector f̃0
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is a deterministic excitation field, ω is a frequency in the frequency space Ω and i =
√
−1.

The vector uD corresponds to the complex dynamic response vector. For both the static

and dynamic loading cases θ ∈ Θ is a sample point from the sampling space Θ.

The random variables associated with both the random mass matrix and the random

stiffness matrix seen in Equation (4) can be grouped so that ξj(θ) = ηj(θ) for j = 1, 2, . . . q1

and ξj+q1(θ) = νj(θ) for j = 1, 2, . . . q2. Thus the random mass matrix M(θ) and random

stiffness K(θ) can be modelled as:

M(θ) = M0 +

q1∑

j=1

ηj(θ)Mi ∈ RN×N (5)

K(θ) = K0 +

q2∑

j=1

νj(θ)Ki ∈ RN×N (6)

M0 ∈ RN×N and K0 ∈ RN×N are the deterministic contributions to the mass and stiffness

matrices, whilst Mj ∈ RN×N and Kj ∈ RN×N are the corresponding stochastic contribu-

tions. Similarly to the static case, we assume a deterministic excitation vector f̃0 ∈ RN .

The matrix C0 ∈ RN×N is a deterministic damping matrix. For this study, we consider

constant modal damping [30], therefore the damping matrix C0 takes the following form

C0 = 2ζM0

√
M−1

0 K0 (7)

where ζ denotes a diagonal matrix which contains the modal damping factors

ζ = diag[ζ1, ζ2, . . . ζN ] ∈ RN×N (8)

As it is assumed that all the diagonal entries are equal it can be deduced that ζ1 = ζ2 =

· · · = ζN . After combining the above expressions, Equation (4) can be expressed as
[
D0(ω) +

M2∑

j=1

ξj(θ)Dj(ω)

]
uD(ω, θ) = f̃0(ω) (9)

where D0 ∈ CN×N represents the complex deterministic part of the system and Dj ∈
RN×N the random components. The total number of random variables, M2, can be

computed through summing q1 and q2. For the given configuration, the expressions for

D0 and Dj are as follows

D0(ω) = −ω2M0 + iωC0 + K0 (10)
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Dj(ω) = −ω2Mj for j = 1, 2, . . . , q1

Dj(ω) = Kj−q1 for j = q1 + 1, q1 + 2, . . . , q1 + q2

(11)

In the subsequent sections, a reduced order projection method is presented in conjunction

with two different Galerkin methods. In order to compare the accuracy of the different

methods, a benchmark solution is produced by directly solving Equation (4) [DMCS]

uD(ω, θ) =

[
D0(ω) +

M2∑

j=1

ξj(θ)Dj(ω)

]−1
f̃0(ω) (12)

This above expression is solved for each θ ∈ Θ and for every frequency value ω ∈ Ω.

3. Stochastic projection methods

In this section two stochastic projection methods are discussed to calculate the re-

sponses of Equations (2) and (9). We aim to represent these responses by projecting

random scalars onto random bases. In turn, the following stochastic projections will form

a foundation for the proposed Galerkin approaches

uS(θ) =
N∑

j=1

αj(θ)aj(θ) and uD(ω, θ) =
N∑

j=1

βj(ω, θ)bj(θ) (13)

For the case of a static load, αj(θ) ∈ RN denotes the random scalars and aj(θ) ∈ RN×N

the random basis. Likewise for the case of a dynamic load, βj(ω, θ) ∈ CN denotes the

random scalars and bj(θ) ∈ RN×N the random basis. The stochastic projection method

for the case of a static load is initially considered.

3.1. Stochastic projection: Static load

In order to obtain an expression for the response in the same form as Equation (13)

we initially consider the following random eigenvalue problem

K(θ)φk(θ) = λk(θ)φk(θ); k = 1, 2, . . . N (14)

For convenience, the matrices of the random eigenvalues and eigenvectors of K(θ) are

defined as follows

Λ(θ) = diag [λ1(θ), λ2(θ), . . . , λN(θ)] ∈ RN×N and

Φ(θ) = [φ1(θ),φ2(θ), . . . ,φN(θ)] ∈ RN×N
(15)
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The random eigenvalues are arranged in ascending order so λ1(θ) < λ2(θ) < . . . < λN(θ).

The corresponding eigenvectors are consequently arranged in the same order. Due to the

orthogonality of Φ(θ), it is deduced that Φ(θ)−1 = Φ(θ)T . Thus the following identities

can be defined

ΦT (θ)K(θ)Φ(θ) = Λ(θ); K(θ) = Φ−T (θ)Λ(θ)Φ−1(θ) and K−1(θ) = Φ(θ)Λ−1(θ)ΦT (θ)

(16)

Using these identities, the response of Equation (2) can be expressed as

uS(θ) =
[
Φ(θ)Λ−1(θ)ΦT (θ)

]
f0 =

N∑

j=1

φTj (θ)f0

λj(θ)
φj(θ) (17)

It is apparent that Equation (17) is of the same form as Equation (13). The quantity
φT

j (θ)f0
λj(θ)

corresponds to the scalar term αj(θ) and φj(θ) corresponds to the vector term

aj(θ). The number of terms in the summation, N , corresponds to the number of degrees

of freedom associated with a structure.

3.2. Stochastic projection: Dynamic load

Similarly to the case of a static load, a random eigenvalue problem is considered in

order to represent the response in the form of Equation (13). However contrary to the

static case, random stiffness and random mass matrices are taken into consideration

K(θ)ψk(θ) = µk(θ)M(θ)ψk(θ); k = 1, 2, . . . N (18)

where µk(θ) and ψk(θ) are the kth undamped random eigenvalue and eigenvector. Ma-

trices that contain the set of undamped random eigenvalues and eigenvectors are defined

as follows

Ω2(θ) = diag [µ1(θ), µ2(θ), . . . , µN(θ)] ∈ RN×N and

Ψ(θ) = [ψ1(θ),ψ2(θ), . . . ,ψN(θ)] ∈ RN×N
(19)

where the undamped eigenvalues are arranged in ascending order so µ1(θ) < µ2(θ) < . . . <

µN(θ). The corresponding eigenvectors are subsequently mass normalised and arranged

in the same order. It is apparent that the following relationships hold

ΨT (θ)M(θ)Ψ(θ) = I

ΨT (θ)K(θ)Ψ(θ) = Ω2(θ)
(20)



Pryse, Adhikari and Kundu / Probabilistic Engineering Mechanics 00 (2017) 1–30 8

By combining the above identities with Equation (4) it is possible to gain a representation

for the response in the form of Equation (13). We initially define the following modal

damping matrix

C′(θ) = ΨT (θ)C0Ψ(θ) = 2ζΩ(θ) (21)

where ζ corresponds to the diagonal modal damping matrix introduced in Equation

(8). By using the following modal transformation uD(ω, θ) = Ψ(θ)ȳ(ω, θ) and by pre-

multiplying Equation (4) with ΨT (θ), we obtain

[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]
ȳ(ω, θ) = ΨT (θ)̃f0(ω) (22)

By inverting
[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]
and pre-multiplying both sides of the above

equation with Ψ(θ) it is apparent that

Ψ(θ)ȳ(ω, θ) = Ψ(θ)
[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]−1
ΨT (θ)̃f0(ω) (23)

The computational cost of calculating the inverse of
[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]
is rather

inexpensive due to the diagonal nature of
[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]
. By reintroducing

uD(ω, θ) for Ψ(θ)ȳ(ω, θ) a dynamic response in the frequency domain can be obtained

uD(ω, θ) = Ψ(θ)
[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]−1
ΨT (θ)̃f0(ω) (24)

This expression can be rewritten in the form of a summation, where N corresponds to

the number of degrees of freedom associated with a structure

uD(ω, θ) =
N∑

j=1

βj(ω, θ)bj(θ) =
N∑

j=1

(
ψT
j (θ)̃f0(ω)

µj(θ)− ω2 + 2i
√
µj(θ)ωζ

)
ψj(θ) (25)

It is apparent that the response of a system undergoing a dynamic load can be represented

in same form as Equation (13). The random scalars, βj(ω, θ), correspond to the result of
φT

j (θ)
˜f0

λj(θ)−ω2+2i
√
λj(θ)ωζ

. In turn, these random scalars are projected onto the space spanned

by ψj(θ).

4. Approaches towards reducing the computational cost

Calculating the exact values of αj(θ), βj(ω, θ), aj(θ) and bj(θ) could prove difficult,

and in turn could be more computationally expensive than solving Equations (3) and

(12). This section aims to address this issue by offering two approaches to lower the

computational cost:
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• The random eigensolutions arising in Equations (17) and (25) can be approximated.

• The number of terms arising in the summations seen in Equations (17) and (25) can

be reduced.

By implementing these approaches the computational cost associated with approximating

the responses of Equations (2) and (9) will be dramatically lower than the computational

cost associated with computing the exact solutions. Approximating the random eigenso-

lutions for the case of a static load is initially considered.

4.1. Approximating the random eigenvalues and eigenvectors

Direct Monte Carlo simulations can be used in collaboration with the random eigen-

value problem in order to calculate the exact values of the random eigenvalues and eigen-

vectors; however this method is computationally expensive. Numerous methods have

been proposed to approximate the random eigensolutions and in turn lower the compu-

tational cost. These include a subspace iteration method [31] and a polynomial chaos

approach [32]. This work explores the use of a perturbation method to approximate both

the random eigenvalues and random eigenvectors.

4.1.1. Approximating the random eigenvalues and eigenvectors: Static load

Solutions of different perturbation methods are obtained by varying the truncation

value of a Taylor series expansion. Due to its efficiency and ease, the first order pertur-

bation method has been considered. An approximation of the j th random eigenvalue and

its corresponding random eigenvector is given by

λj(θ) ≈ λj0 +

M1∑

k=1

(
∂λj
∂ξk

)
dξk(θ) (26)

and φj(θ) ≈ φj0 +

M1∑

k=1

(
∂φj
∂ξk

)
dξk(θ) (27)

where dξk(θ) is a set of random variables. By differentiating the random eigenvalue

equation with respect to ξk, pre-multiplying with φTj0 and utilising that φTj0φj0 = 1, ∂λ
∂ξk

can be expressed as
∂λj
∂ξk

= φTj0
∂K

∂ξk
φj0 (28)
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In the instance of Equation (28), ∂K
∂ξk

= Kk.

The partial derivative of φj with respect to ξk can be calculated by expanding
∂φj
∂ξk

as

a linear combination by utilising deterministic eigenvalues and eigenvectors [33]

∂φj
∂ξk

=
N∑

i=16=j
αjkiφi where αjki =

φTi0
∂K
∂ξk
φj0

λj0 − λi0
(29)

In this instance, ∂K
∂ξk

= Kk and αjkiφi = 0 when i = j. This method requires all the

deterministic eigenvalues and eigenvectors to be know and for all the eigenvalues to be

distinct. The case of repeated eigenvalues is beyond the scope of this paper.

4.1.2. Approximating the random eigenvalues and eigenvectors: Dynamic load

Similarly to the previous case, the random eigenvalues and eigenvectors for the case

of a dynamic load can be approximated by a first order perturbation

µj(θ) ≈ µj0 +

M2∑

k=1

(
∂µj
∂ξk

)
dξk(θ) (30)

and ψj(θ) ≈ ψj0 +

M2∑

k=1

(
∂ψj

∂ξk

)
dξk(θ) (31)

where µj0 and ψj0 are the jth deterministic undamped eigenvalue and eigenvector and

dξk(ω) a set of random variables. The derivative of the undamped random eigenvalues

with respect to ξk can be obtained by differentiating and manipulating the random eigen-

value equation denoted by Equation (18) [33]. This results in the following equation

∂µj
∂ξk

=
ψT

0j

[
∂K
∂ξk
− µ0j

∂M
∂ξk

]
ψ0j

ψT
0j

M0ψ0j

(32)

where µ0j and ψ0j
correspond to the deterministic undamped eigenvalues and eigenvec-

tors. Due to the mass normalisation of the undamped eigenvectors, the above denominator

equates to one, thus it can be deduced that

∂µj
∂ξk

= ψT
0j

[
∂K

∂ξk
− µ0j

∂M

∂ξk

]
ψ0j

(33)
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The values of both ∂M
∂ξk

and ∂K
∂ξk

seen in Equation (33) are as follows

∂M

∂ξk
=





Mk, for k = 1, 2, . . . , q1

0, otherwise

∂K

∂ξk
=





Kk−q1 , for k = q1 + 1, q1 + 2, . . . , q1 + q2

0, otherwise

(34)

where Mk and Kk−q1 correspond to the random components of M(θ) and K(θ) introduced

in Equations (5) and (6). The partial derivative of the random undamped eigenvectors

with respect to ξk can be expressed by a linear combination of deterministic eigenvectors.

The full algebraic detail of obtaining the derivative of the random eigenvectors has been

omitted, but can again be found in [33]. The final expression for
∂ψj

∂ξk
is given by

∂ψj

∂ξk
= −1

2

(
ψT
j0

∂M

∂ξk
ψj0

)
+

N∑

i=16=j

ψT
k0

[
∂K
∂ξk
− µj0 ∂M∂ξk

]
ψj0

µj0 − µk0
ψk0 (35)

where values of both ∂M
∂ξk

and ∂K
∂ξk

are identical to those given in Equation (34). This

method also requires all the deterministic eigenvalues and eigenvectors to be known.

Furthermore the eigenvalues are required to be unique. The proposed methods would

still be valid for the case of repeated eigenvalues, however a different method would be

required to approximate the eigenvectors.

4.2. Truncation of the series expansions

At present both the static and dynamic methods described in Section (3) require the

calculation and summation of N terms. However a vast number of higher order terms seen

in the summations have a relatively low value, therefore further computational reduction

can be achieved by removing these low valued terms.

4.2.1. Truncation: Static load

The series given in Equation (17) can be truncated after a certain number of terms.

As the eigenvalues have been ordered ascendingly, it can be deduced that the higher order

terms arising in the summation have a low value. By retaining the dominant terms, it is

hoped that enough terms are retained in order to capture the behaviour of the system.
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The number of dominant terms to be retained can either be predefined or determined by

a ratio such as:
λ10
λns0

> ε (36)

where λ10 is the first, and therefore the smallest deterministic eigenvalue and λns0
is the

ns largest deterministic eigenvalue which satisfies the above inequality. The value of ns

would correspond to the number of terms to be kept in the truncation. The value ε is to

be selected appropriately. Hence Equation (17) can be truncated as follows

uS(ω) ≈
ns∑

j=1

φTj (ω)f0

λj(ω)
φj(ω) (37)

where ns < N . The full response for uS(ω) can then be obtained by performing a Monte

Carlo simulation on each sample.

4.2.2. Truncation: Dynamic load

By combining the ordering of the eigenvalues with the following relationship: ωj(θ) =
√
µj(θ) it can be deduced that

ω1(θ) < ω2(θ) < . . . < ωN(θ) (38)

where ωj corresponds to the jth natural frequency. By examining the scalar term βj(ω, θ)

it can be observed that the natural frequencies appear in the denominator

βj(ω, θ) =
ψT
j (θ)̃f0

ω2
j (θ)− ω2 + 2iωj(θ)ωζ

(39)

For the values of j satisfying ω2
j (θ) + 2iωjω(θ)ζ > ω2, it is apparent that the value of

the denominator increases as the value of j increases. Therefore it is established that the

value of βj(ω, θ) generally decreases as the value of j increases. Consequently the upper

limits of the summations seen in Equation (25) can be lowered

uD(ω, θ) ≈
nd∑

j=1

(
ψT
j (θ)̃f0

ω2
j (θ)− ω2 + 2iωj(θ)ωζ

)
ψj(θ) (40)

where nd < N . Similarly to a system subject to a static load, the value of nd can be

defined in two ways. The value can be predefined or it can by deduced from the ratio of

two eigenvalues (similarly to that seen in Equation (36)). Monte Carlo simulations would

subsequently be performed for each θ ∈ Θ and ω ∈ Ω.
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5. Error minimisation through Galerkin methods

Expressions for computing the response of discretized structures that are subjected to

a static or a dynamic load have been proposed. It has been shown that computational

reduction can be achieved by approximating eigensolutions and by applying suitable trun-

cations. However these reductions induces error into the calculations. This has motivated

an error minimisation approach, and as a consequence, two Galerkin approaches have

been considered:

• A sample-aggregated based Galerkin approach [SPAG]

• A sample-based Galerkin approach [SPSG]

By incorporating the Galerkin approaches, this section aims to reduce the error induced

due by the approximations and truncations introduced in Section (4). The SPAG approach

for the case of a static load is initially considered.

5.1. Sample-aggregated based Galerkin approach: Static load

For this approach, the solution vector is modified to take the following form

uSA(θ) ≈
ns∑

j=1

cj

(
φTj (θ)f0

λj(θ)

)
φj(θ) (41)

where λj ∈ Rns and φj ∈ RN×ns represent the random eigenvalues and eigenvectors, and

f0 ∈ RN is the deterministic excitation vector. cj ∈ Rns corresponds to deterministic

constants which need to be determined. The residual vector for this the new approach is

defined as

rSA(θ) = K(θ)u(θ)− f0 (42)

By making the residual orthogonal to a basis function, the deterministic scalars cj can be

computed. As Equation (23) can be viewed as a projection onto a subset of random eigen-

vectors, the residual can be made orthogonal to the same subset of random eigenvectors

< rSA(θ),φk(θ) > ∀ k = 1, 2, . . . ns (43)
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where < u,v >= E{uTv} is the inner product. By using this condition and the expression

for the residual, one has

E

{
φTk (θ)

(
M1∑

i=0

Ki(θ)ξi(θ)

)(
ns∑

j=1

cj

(
φTj (θ)f0

λj(θ)

)
φj(θ)

)
− f0

}
= 0

∀ j = 1, 2, ...ns and k = 1, 2, ...ns

(44)

where E {�} donates the expected value. For notational convenience, we can define

αj(θ) =
φT

j (θ)f0
λj(θ)

, thus it can be shown that Equation (44) can take the following form

E

{
ns∑

j=1

M1∑

i=0

φTk (θ)Ki(θ)φj(θ)ξi(θ)αj(θ)cj

}
= E

{
φTk (θ)f0

}
(45)

By defining the vector cSA = [c1, c2, . . . cns ]
T , Equation (45) can be re-written as

E {ZSA(θ)} cSA = E {ySA(θ)} j, k = 1, 2, . . . , ns (46)

where ZSWkj
(θ) =

∑M1

i=0

[
φTk (θ)Ki(θ)φj(θ)

]
[ξi(θ)αj(θ)] ; ∀j, k = 1, 2, . . . ns and ySA(θ) =

φTk (θ)f0. The number of equations that need to be solved in order to calculate the unknown

vector c(ω, θ) corresponds to the value of ns. The arising expected values can be computed

by using Monte Carlo simulations. Therefore by solving the set of linear equations given

by Equation (46) the unknown coefficients can be obtained.

5.2. Sample-based Galerkin approach: Static load

In a similar manner to the previous approach, the solution vector has been modified

to take the following form

uSS(θ) ≈
ns∑

j=1

dj(θ)

(
φTj (θ)f0

λj(θ)

)
φj(θ) (47)

where λj ∈ Rns and φj ∈ RN×ns represent the random eigenvalues and eigenvectors and

f0 ∈ RN represents the deterministic excitation vector. Contrary to the previous approach,

dj(θ) ∈ Rns are unknown constants that need to be computed for each realisation. The

residual vector for this approach is defined as

rSS(θ) = K(θ)uSS(θ)− f0 (48)
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By making the residual orthogonal to a basis function, dj(θ) can be computed. By using

the same analogy as seen in the previous approach, the residual has been made orthogonal

to a subset of random eigenvectors

< rSS(θ),φk(θ) > ∀ k = 1, 2, . . . ns (49)

Thus resulting in the following expression
{
φTk (θ)

(
M1∑

i=0

Ki(θ)ξi(θ)

)(
ns∑

j=1

dj

(
φTj (θ)f0

λj(θ)

)
φj(θ)

)
− f0

}
= 0

∀ j = 1, 2, . . . ns and k = 1, 2, . . . ns

(50)

For notational convenience, we define αj(θ) =
φT

j (θ)f0
λj(θ)

. Therefore, the above expression

can be manipulated to give

ns∑

j=1

M1∑

i=0

[
φTk (θ)Ki(θ)φj(θ)

]
[ξi(θ)αj(θ)dj(θ)] = φTk (θ)f0 (51)

where dj(θ) would be computed for each realisation. By defining the vector dSS (θ) =

[d1(θ), d2(θ), . . . dns(θ)]
T , Equation (51) can be simplified to

ZSS(θ)dSS(θ) = ySS(θ) j, k = 1, 2, . . . , ns (52)

where ZSSkj
(θ) =

∑M1

i=0

[
φTk (θ)Ki(θ)φj(θ)

]
[ξi(θ)αj(θ)] ; ∀j, k = 1, 2, . . . ns and ySS(θ) =

φTk (θ)f0. The number of equations that need to be solved in order to calculate the unknown

vector d(θ) corresponds to the value of ns. Therefore, similarly to the sample-aggregated

based Galerkin approach, the lower the dimension of the reduced system, the fewer the

number of equations that need to be solved.

5.3. Sample-aggregated based Galerkin approach: Dynamic load

A similar approach to that seen in Section 5.1 can be implemented for incorporating a

sample-aggregated based Galerkin error minimisation approach. The response vector for

the case of a dynamic load has been modified to take the following form

uDA(ω, θ) ≈
nd∑

j=1

gj(ω)

(
ψT
j (θ)̃f0

ω2
j (θ)− ω2 + 2iωj(θ)ωζ

)
ψj(θ)

=

nd∑

j=1

gj (ω) βj (ω, θ)ψj(θ)

(53)
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Here βj(ω, θ) corresponds to the scalars introduced in Equation (25) and gj (ω) ∈ Cnd

are unknown constants that need to obtained for each ω ∈ Ω. In order to compute these

unknown scalars, the residual obtained by computing the response by using Equation (53)

can be projected onto the random undamped eigenvectors

< rDA(ω, θ),ψk(θ) > ∀ k = 1, 2, . . . nd (54)

where

rDA(ω, θ) =

(
M2∑

i=0

Di(ω)ξi(θ)

)(
nd∑

j=1

gj(ω)βj(ω, θ)ψj(θ)

)
− f̃0(ω) ∈ CN (55)

By following a similar approach to that seen in Section 5.1, the unknown constants gj can

be computed by solving the following set of linear equations

E {ZDA(ω, θ)}gDA(ω) = E {yDA(ω, θ)} j, k = 1, 2, . . . , nd (56)

where ZDAkj
(ω, θ) =

M2∑

i=0

[
ψT
k (θ)Di(ω)ψj(θ)

]
[ξi(θ)βj(ω, θ)] ;

βj(ω, θ) =

nd∑

j=1

(
ψT
j (θ)̃f0

ω2
j (θ)− ω2 + 2iωj(θ)ωζ

)

yDA(ω, θ) = ψT
k (θ)̃f0(ω) ∀ j, k = 1, 2, . . . nd

and gDA(ω) is a vector that contains the unknown constants gj(ω)

The expected values can be computed by utilising Monte Carlo simulations. The size of

the linear system that needs to be solved corresponds to nd × nd.

5.4. Sample-based Galerkin approach: Dynamic load

Similarly to the case of a static load, the response vector has been modified to take

the following representation

uDS(ω, θ) ≈
nd∑

j=1

hj(ω, θ)

(
ψT
j (θ)̃f0

ω2
j (θ)− ω2 + 2iωj(θ)ωζ

)
ψj(θ)

=

nd∑

j=1

hj (ω, θ) βj (ω, θ)ψj(θ)

(57)

The scalars βj(ω, θ) correspond to those seen in Equation (25) and hj (ω, θ) ∈ Cnd are

unknown constants that need to be obtained for every realisation of each frequency. By
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applying a sample-based Galerkin approach the unknown constants can be computed.

By making the residual orthogonal to the random undamped eigenvectors, the unknown

scalars hj(ω, θ) can be computed. By applying the same analogy as that seen in Section

5.2, it can be shown that the following set of equations need to be solved for every

realisation of each frequency

ZDS(ω, θ)hDS(ω) = yDS(ω, θ) j, k = 1, 2, . . . , nd (58)

where ZDSkj
(ω, θ) =

M2∑

i=0

[
ψT
k (θ)Di(ω)ψj(θ)

]
[ξi(θ)βj(ω, θ)] ;

βj(ω, θ) =

nd∑

j=1

(
ψT
j (θ)̃f0

ω2
j (θ)− ω2 + 2iωj(θ)ωζ

)

yDS(ω, θ) = ψT
k (θ)̃f0(ω) ∀ j, k = 1, 2, . . . nd

and hDS(ω, θ) is a vector that contains the unknown constants hj(ω, θ)

The number of equations that need to be solved in order to calculate the unknown

vector hDS(ω, θ) corresponds to the value of nd. It is imperative that the value of nd is

kept as low possible as a nd× nd sized set of linear equations needs to be solved for every

realisation in each frequency step.

Let N correspond to the dimension of a stochastic finite element linear system and

nsamp the number of Monte Carlo simulations under consideration. The total computa-

tional complexity incurred by directly solving Equation (3) is nsampO(N3). The same is

true when solving Equation (4) for each frequency step. For both sample-based Galerkin

approaches, the main contributions towards the computational complexities occur when

inverting all of the ZSS and ZDS matrices. For the case of a static load, it can be deduced

that the main contribution towards the computational complexity is nsampO(N3
s ) where

Ns < N . Likewise for the case of a dynamic load, for each frequency step it can be de-

duced that the main contribution towards the computational complexity is nsampO(N3
d )

where Nd < N . However for the sample-aggregated based Galerkin approaches, the con-

tributions due to inverting the E {ZSA} and E {ZDA} matrices are considerably less. For

the case of a static load the contribution is O(N3
s ) where Ns < N , whilst for the case

of a dynamic load the contribution is O(N3
d ) where Nd < N for each frequency step.
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The reduction in the computational complexity is due to the reduction in the number of

inversions that need to be performed.

6. Application examples

Thus far four different methods for computing and approximating the responses of

Equations (1) and (4) have been discussed:

• Directly solving in order to compute the benchmark solution (Equation (3) and

(12)) [DMCS]

• Approximating the solution by projecting random scalars onto a stochastic basis

(Equations (37) and (40)) [SP]

• Approximating the solution by projecting a random scalar onto a stochastic basis

(including a sample-aggregated based Galerkin error minimisation approach) (Equa-

tions (41) and (53)) [SPAG]

• Approximating the solution by projecting a random scalar onto a stochastic basis

(including a sample-based Galerkin error minimisation approach) (Equations (47)

and (57)) [SPSG]

This section aims to apply and compare the proposed methods by utilising a phys-

ical structure. Subsequently the four methods are applied to analyse the bending of a

Euler-Bernoulli cantilever beam that has stochastic parameters. The analysis has been

conducted separately for when the cantilever beam is subjected to a static load and for

when the cantilever beam is subjected to a dynamic load. The effectiveness of the approx-

imation methods are subsequently scrutinised for both cases. The length of the cantilever

beam under consideration is 0.80 m, and its cross-section is a rectangle of width 0.035 m

and height 0.0035 m. Figure 1 illustrates the system.

By using a stochastic finite element method the cantilever beam has been discretized

into 80 elements. For the deterministic case, the Young’s modulus is E = 2× 1011 Nm−2

thus corresponding to a steel beam. The deterministic second moment of area of the beam
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Fig. 1: The configuration of the cantilever beam

is I = 1.25× 10−10 m4. The bending rigidity of the beam, EI, has been assumed to be a

random field of the following form

EI(x, θ) = EI(1 + a(x, θ)) (59)

where x corresponds to the position along the length of the cantilever beam and EI

corresponds to the mean of the bending rigidity. The random field a(x, θ) is assumed to

be an uniform random field with correlation length µa = L/2 where L is the length of

the cantilever beam. Each of the projection methods have been simulated 10,000 times

and the performances of the approximation methods have been compared with that of

the DMCS approach. 10, 000 samples gives a satisfactory convergence of the first two

moments of the quantities of interest for both the static load and dynamic load cases.

Both cases have been modelled for two different values of the standard deviation of the

bending rigidity: σa = {0.05, 0.25}. This allows the methods to be compared under

different levels of uncertainty.

6.1. Cantilever beam: Static load

For the case of a static load a 1.00 N deterministic vertical point load is applied at

the free end of the cantilever beam. All three stochastic projection methods have been

truncated to include the first 4 terms, hence ns = 4. This implies that 156 terms have

been discarded from each of the summations. In addition to the matrix that contributes

to the deterministic nature of the random stiffness matrix, four general matrix are used

in conjunction with the random variables ξi to model the random stiffness matrices. It

has been proven that the displacement of the beam can be normalised by f0L3

3EI
to ensure

that the deterministic vertical displacement has a value of 1 at the tip of the cantilever

beam.

Figures 2a and 2b illustrate the mean of the normalised vertical displacement at all

nodes of the beam for both values of σa. When σa = 0.05 no visible difference can be seen
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Fig. 2: The mean of the normalised vertical displacement of the cantilever beam and a
comparison of the percentage error of the mean of the normalised vertical displacement for
σa = {0.05, 0.25}.

between the different methods, however when σa = 0.25 a slight discrepancy can be seen

between the SP and the other methods. In order to further analyse the discrepancy, the

percentage error of the mean of the vertical displacement is explored. This is represented

by

ε% = 100× |MDMCS −MCOMP |
MDMCS

(60)

where MDMCS indicates the mean of the DMCS approach, and MCOMP the mean of the

comparable methods. The discrepancy between the SP method and the Galerkin methods

is apparent in Figure 2d. It is apparent that both Galerkin methods lower the error in

the mean of the vertical displacement, however the SPSG method slightly outperforms

the SPAG method.
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Fig. 3: The standard deviation of the normalised vertical displacement of the cantilever beam
and a comparison of the percentage error of the standard deviation of the normalised vertical
displacement for σa = {0.05, 0.25}.

The normalised standard deviation of the vertical displacement of the cantilever beam

is illustrated for all nodes in Figures 3a and 3b. All methods seem to capture the standard

deviation of the benchmark method well when σa = 0.05, however this is not the case when

σa = 0.25. The percentage error of the standard deviation of the vertical displacement

is explored to further compare the methods. The percentage error has been defined as

follows

ε% = 100× |SDMCS − SCOMP |
SDMCS

(61)

where SDMCS indicates the standard deviation of the DMCS approach, and SCOMP the

standard deviation of the comparable methods. Contrary to the mean, for the case of
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σa = 0.25 a vast difference is apparent between the standard deviation of the SPSG and

SPAG methods. Barring the initial 0.06 m of the cantilever beam, the SPSG dramatically

reduces the percentage error of the standard deviation. Although applying the SPAG

lowers the percentage error along the cantilever beam, the reduction is small.
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Fig. 4: A comparison of the percentage errors of the mean and standard deviation of the vertical
tip displacement for different values of ns when σa = {0.05, 0.25}.

In Figure 4 the percentage error of the mean and the standard deviation of the vertical

displacement at the tip of the cantilever beam is further assessed for different values of ns

i.e. the number of terms retained in Equations (37), (47) and (41). As expected, for each

method the percentage error decreases as additional terms are retained in the summations.

It is apparent that both the Galerkin methods significantly lowers the percentage error

of the mean in comparison to the SP method. However the performances of the Galerkin

methods differ considerably when assessing the percentage error of the standard deviation.
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The SPSG method considerably lowers the percentage error of the standard deviation.

Only a very small reduction is seen when the SPAG method is used in comparison to the

SP method.

6.2. Cantilever beam: Dynamic load

For the case of a dynamic load, an unit amplitude harmonic point load is applied at

the free tip of the beam. This is applied over a frequency range of 0−500 Hz at an interval

of 2 Hz. The constant modal damping model has a 1.5% damping factor for each of the

modes. Initially nd has been set to 10 thus implying that 10 terms have been retained

in Equations (25), (53) and (57). Similarly to the static case four general matrices (Ki

where i = 1, 2, 3, 4) are used in conjunction with the random variables ξi and deterministic

matrix K0 to model the random stiffness matrices. The mass matrix is assumed to be

deterministic.

The mean vertical amplitude at the tip of the cantilever beam is illustrated over

the stated frequency range in Figures 5a and 5b for both σa = 0.05 and σa = 0.25.

The deterministic vertical amplitude is also illustrated [DET]. In order to analyse the

error arising from the mean of the response vector, the approximate L2 relative error is

considered. This ensures that the error arising for a given frequency can be characterised

by a single value. The approximate L2 relative error of the mean of the response vector

for each frequency step has been defined as follows

ε̂
µ
L2(ω) =

||µDMCS(ω)− µCM(ω)||L2

||µDMCS(ω)||L2

(62)

where µDMCS denotes the mean of the response vector obtained by using the DMCS

method and µCM the mean of the response vector obtained by a comparable method.

Although decreases are apparent, the SPAG method does not always decrease the error.

Increases are visibly apparent in comparison to the SP method at large valued resonance

frequencies. On the other hand the SPSG method always decreases the L2 relative error

of the mean. This is most apparent at the systems’ resonance values.

Figures 6a and 6b depict the standard deviation of the vertical amplitude at the tip

of the beam for both values of σa. In a similar manner to the case of the mean, the

approximate L2 relative error of the standard deviation of the response vector is defined
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(c) The L2 relative error of the mean
of the response vector: σa = 0.05
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of the response vector: σa = 0.25

Fig. 5: The mean of the vertical amplitude is observed at the tip of the cantilever beam in
conjunction with the L2 relative error of the mean of the response vector at each frequency step.
These are illustrated for σa = {0.05, 0.25}.

as follows

ε̂σL2(ω) =
||σDMCS(ω)− σCM(ω)||L2

||σDMCS(ω)||L2

(63)

where σDMCS denotes the standard deviation of the response vector obtained by using the

DMCS method and σCM denotes the standard deviation of the response vector obtained

by a comparable method. When σa = 0.05 it’s apparent that the SPAG method slightly

lowers the L2 relative error of the standard deviation for the majority of frequencies.

However when σa = 0.25 the effectiveness of the SPAG method is suspect due to the L2

relative error rising at numerous frequencies in comparison to the SP method. Neverthe-

less the SPSG method lowers the L2 relative error at all frequencies for both values of

σa.
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Fig. 6: The standard deviation of the vertical amplitude is observed at the tip of the cantilever
beam in conjunction with the L2 relative error of the standard deviation of the response vector
at each frequency step. These are illustrated for σa = {0.05, 0.25}.

The probability density function of the vertical amplitude of the displacement at the

tip of the beam is illustrated by Figure 7 for both vales of σa at a frequency of 154 Hz. This

frequency value corresponds to the fourth resonance frequency of the cantilever beam.

Figure 8 depicts the log of the approximate L2 relative error of the mean of the response

vector for different values of nd. This is depicted for each of the frequency steps and for

both values of σa. The troths arising in the contour plots of the relative errors correspond

to the resonance values, thus it can be deduced that the error is larger at adjacent anti-

resonance values. As expected, the trend of the approximate relative error increases with

frequency. This is due to the higher order terms becoming more important at the higher

frequencies. Both Galerkin approaches seem to lower the relative error of the mean in
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Fig. 7: The probability density functions of the vertical amplitude when an unit harmonic point
load of 154 Hz is asserted at the tip of the cantilever beam. The probability density functions
are illustrated for σa = {0.05, 0.25}.
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Fig. 8: The log of the L2 relative error of the mean of the response vector. The contour
plots depict the log of the L2 relative error for different values of nd at each frequency step for
σa = {0.05, 0.25}.

general, however the SPSG method significantly outperforms the SPAG method when

σa = 0.25.

The log of the approximate L2 relative error of the standard deviation of the response

vector is illustrated for different values of nd at each frequency step in Figure 9. A

slight reduction is seen in the relative error at low frequencies when the SPAG method
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Fig. 9: The log of the L2 relative error of the standard deviation of the response vector. The
contour plots depict the log of the L2 relative error for different values of nd at each frequency
step for σa = {0.05, 0.25}.

is applied, however at larger frequencies the SPAG method increases the relative error of

the standard deviation in comparison to the SP method. This is evidently visible when

σa = 0.25. A large reduction in the relative error of the standard deviation is seen when

the SPSG method is applied. This can be observed at both values of σa.

7. Summary and Conclusions

7.1. Summary

Two approaches which incorporate different Galerkin projection schemes have been

suggested to calculate the response of discretized stochastic partial differential equations.

By utilising the random eigenvalue problem, it has been proven that the response vec-

tor of discretized structures subjected to static or dynamic loads can be represented by

a summation. Due to the high computational cost associated with calculating the ex-

act solutions, reduced approaches have been proposed where random eigenvalues and

eigenvectors are approximated and low valued terms discarded. Consequently two multi-

plicative Galerkin error minimisation approaches have been presented. The first being a

sample-based Galerkin projection scheme and the other being a sample-aggregated based
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Galerkin projection scheme. The two novel novel Galerkin projection schemes presented

in the paper are subsequently used to analyse the response of a stochastic Euler-Bernoulli

cantilever beam undergoing both a static and a dynamic load.

7.2. Conclusions

Following the application of the methods to analyse a stochastic Euler-Bernoulli can-

tilever beam, the following conclusions have been established:

The cantilever beam subjected to a static load

• Both Galerkin schemes lower the error arising in the mean of the response.

• It is only the sample-based Galerkin projection scheme that substantially lowers the

error arising in the standard deviation of the response.

The cantilever beam subjected to a dynamic load

• At low frequencies both Galerkin schemes lower the error arising in the mean of the

response. Both methods also lower the error induced in standard deviation, however

the sample-based Galerkin projection scheme substantially outperforms the sample-

aggregated based Galerkin projection scheme.

• At high frequencies the sample-aggregated based Galerkin projection scheme intro-

duces additional error in both the mean and standard deviation of the response.

• The sample-based Galerkin projection scheme lowers the error in both the mean

and standard deviation of the response at low and high valued frequencies.

• When the sample-based Galerkin projection scheme is utilised, a substantial reduc-

tion in the L2 relative error is seen in both the mean and standard deviation of the

response at the resonance values in comparison with neighbouring anti-resonance

values.

Further work in this field would include developing methods to compute optimal bases

in order to produce new efficient reduced-order methods.



Pryse, Adhikari and Kundu / Probabilistic Engineering Mechanics 00 (2017) 1–30 29

8. Acknowledgements

The authors acknowledge the financial support received from Engineering Research
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