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Integrated Geometric and Mechanical Analysis of an

Image-Based Lymphatic Valve. (Second Revision)

Daniel J. Watsona, Igor Sazonova, David C. Zawiejab, James E. Moore Jr.c,
Raoul van Loona,∗

aZCCE, College of Engineering, Swansea University
bCollege of Medicine, Texas A&M Health Sciences Center
cDepartment of Bioengineering, Imperial College London

Abstract

Lymphatic valves facilitate the lymphatic system’s role in maintaining fluid home-

ostasis. Malformed valves are found in several forms of primary lymphœdema,

resulting in incurable swelling of the tissues and immune dysfunction. Their

experimental study is complicated by their small size and operation in low pres-

sure and low Reynolds number environments. Mathematical models of these

structures can give insight and complement experimentation. In this work, we

present the first valve geometry reconstructed from confocal imagery and used

in the construction of a subject-specific model in a closing mode. A framework

is proposed whereby an image is converted into a valve model. An FEA study

was performed to identify the significance of the shear modulus, the conse-

quences of smoothing the leaflet surface and the effect of wall motion on valve

behaviour. Smoothing is inherent to any analysis from imagery. The nature of

the image, segmentation and meshing all cause attenuation of high-frequency

features. Smoothing not only causes loss of surface area but also the loss

of high-frequency geometric features which may reduce stiffness. This work

aimed to consider these effects and inform studies by taking a manual recon-

struction and through manifold harmonic analysis, attenuating higher frequency

features to replicate lower resolution images or lower degree-of-freedom recon-
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structions. In conclusion, two metrics were considered: trans-valvular pressure

required to close the valve, ∆Pc, and the retrograde volume displacement after

closure. The higher ∆Pc, the greater the volume of lymph that will pass through

the valve during closure. Retrograde volume displacement after closure gives

a metric of compliance of the valve and for the quality of the valve seal. In

the case of the image-specific reconstructed valve, removing features with a

wavelength longer than four µm caused changes in ∆Pc. Varying the shear

modulus from 10kPa to 60kPa caused a 3.85 fold increase in the retrograde

volume displaced. The inclusion of a non-rigid wall caused ∆Pc to increase

from 1.56 to 2.52 cmH2O

Keywords: lymphatic, valve, harmonic manifold analysis, segmentation, FEA

2010 MSC: 65D18, 65M60

1. Background

The lymphatic system is responsible for maintaining fluid balance within the

tissues (Carola et al. (1990)). The collecting lymphatics drain fluid from the

interstitial tissues, transport this fluid through valved contractile tubular struc-

tures - called lymphangions - before emptying into the venous system (Alitalo5

(2011)). The valve behaviour is poorly understood and essential for efficient

fluid transport against gravity. Insufficient transport can lead to lymphœdema

i.e. inflammation and an accumulation of lymph fluid in the tissues. This

results in swelling leading to fibrous tissue formation and compromised im-

mune function (Penzer (2003); Bellini & Hennekam (2014)). Several authors10

have commented on the potential benefit of a lumped model of the lymphatic

system and attempts to that end have been made (Margaris & Black (2012);

Rahbar & Moore Jr.. (2011); Macdonald (2008)). Sensitivity analysis of lumped

models has revealed that valve resistance is a determinant of lymphatic pump-

ing function (Jamalian et al. (2013)) as is the trans-valvular pressure required15

to close the valves (Bertram et al. (2013)).

As far as the authors are aware no numerical analysis greater than 1-D has
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been performed to study lymphatic valve closure. A finite volume approach

to flow around a 2-D valve has been considered (Macdonald (2008)). Studies

have looked at the opening behaviour of three-dimensional parametric valves20

through mixed finite element and finite volume methods (Wilson et al. (2015)).

However, reconstruction from confocal imagery (Rahbar et al. (2012)) re-

veals geometric features on the valve that have not been included in previ-

ous parametric models (Wilson et al. (2015)). Reconstruction, spectral analy-

sis and finite element analysis of these structures may elucidate their role and25

allow their inclusion in parametric models. Manifold harmonic analysis of tri-

angulations is analogous to Fourier analysis in signal processing, as it allows

a controlled removal of features, that is not possible in other smoothing algo-

rithms.

Confocal scans allow for a geometric characterisation of lymphatic valves.30

This information can be used as a basis for building idealised models, which are

well-suited for parametric studies to elucidate a representative valve behaviour

with the construction of a lumped model of the lymphatic system as a final

goal. This process is intensive, and an idealised representative model would

allow large parametric studies to find the relationships necessary to construct35

a lumped model of the lymphatic system. The presence of wavy features on

the surface of the valve poses a problem as they can only be captured with

higher order geometric models, which requires more information. Smoothing

is inherent to imaging and meshing, but the sensitivity of lymphatic models to

surface smoothness has not been established.40

This work aimed to provide the first image-specific lymphatic valve geome-

try and to use a mechanical analysis for studying the closure of these compliant

valves. The sensitivity of this model is assessed against smoothing, the shear

modulus of the leaflet and the inclusion of a non-rigid wall.
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2. Methods45

2.1. Image Processing and Segmentation

The image set used was produced by confocal imagery of a lymphangion

isolated from the mesentery of a rat. A section of lymphatic vessel was ex-

tracted and placed in a calcium-free solution to prevent contraction. The vessel

was cannulated and loaded intra-luminally with Cell Tracker Green. The lym-50

phangion was pressurised to a trans-mural pressure of 5 cmH2O and scanned

with a Leica AOBS SP2 confocal-multiphoton microscope with an U APO 40.0

x 1.15 W CORR objective. A 100mW 488nm laser was attenuated with an

acousto-optical modulator, and acousto-optical beam-splitters were used to

select the wavelengths from the emission spectrum between 510-525 µm. A55

single x-y confocal slice was acquired perpendicular to the axial direction of

the vessel, after which the focal plane was advanced along the z-axis before

acquiring the next x-y image. The scans represent a pack of 195 2D slices

containing 512-by-512 pixels at a resolution of 0.6-by-0.6 µm. The distance

between consecutive images was 1 µm. A 307 micron length of wall was seg-60

mented from the image set. The valves length was 230 µm from the middle of

the bases to the middle of the commissures. The diameter at the commissures

was 160 µm, and the diameter at the base was 90 µm. The average thickness

of the wall was 14 µm and the average thickness of the leaflet was deemed

5 µm by inspection. The valve had a sinus-to-root ratio of 1.78, larger than the65

mean of 1.65, but still within the observed range of 1.20 to 2.66 (Wilson et al.

(2015)).

As can be seen in Figure 1.A, the images were noisy, the objects blurred

and the intensity was non-uniform. Intensity decayed exponentially from the

surface to the depth of the object due to absorption. These issues complicated70

the reconstruction of the leaflets, which was ultimately performed manually.

The image was then subjected to a median filter. An overview of the lymphatic

valve geometry is shown in Figure 2.A and B.
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2.1.1. Segmentation of the Wall

A custom algorithm for segmenting the wall and reconstructing the leaflets75

was implemented in MATLAB. The wall was segmented by an automatic active

contour method. In order to achieve this, we introduced the Cartesian coor-

dinates; x, representing the horizontal direction in each slice; y, the vertical

direction; and z, the depth of a slice. Then wall contours are arranged in every

z-y slice, see Figure 1.B. The initial contour in the first z-y slice is an ellipse80

set manually by four points on the image in the middle of the wall. The contour

displaces along its normal, moving up intensity gradients and stopping when

it reaches the maximal intensity. In all subsequent slices, the final contour of

the previous slice is taken as the initial. Thus the procedure is practically auto-

matic except the initialisation of the first four points. As a result, the wall medial85

surface is recovered and represented as a cloud of points. The local thickness

is then determined by examining the decay of the image intensity from the me-

dial surface normal, with the outer and inner surfaces defined as the opposing

points of maximal intensity decay. The geometry is then smoothed along the

surface to remove noise effects, shown in blue in Figure 1.C. The inner and90

outer surfaces can be seen in yellow in Figure 1.B-D.

2.1.2. Reconstruction of the leaflets

First, a separation line is drawn between the two leaflets on each slice,

see Figure 1.A. This line is then be used to distinguish the leaflets. A z-y and

x-y slice with the leaflets coloured red and blue is shown in Figure 1.B and C95

respectively. The intensity for each coloured leaflet is summed in the z direction

creating a 2D image that reveals the outline of the leaflets, shown in Figure 1.D.

The trailing edges of the leaflets are traced and used as a guide for manual

reconstruction. A vector is constructed such that it is roughly perpendicular to

the valve in the z-y plane with the guidelines parallel to this vector as is shown100

in Figure 1.C. For each slice, the user places a number of vertices resulting in a

polygonal chain that describes the shape of the leaflet, see Figure 1.D. These

points can then be post-processed and meshed to obtain the final geometry,
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see Figure 2.C.

2.2. Material Properties105

The mechanical response of lymphangions consists of both a passive re-

sponse, due to the material, and an active response, due to muscular tone and

periodic contraction as part of the pumping mechanism. No consideration was

given to the contractile nature of lymphangion walls as the imaging was per-

formed in a calcium-free media and complimentary experimental results exist

(Davis et al. (2011)). Rahbar et al. (2012) found that the leaflets consist of an

elastin network whilst the wall is composed of an collagen-elastin matrix with

embedded muscle cells. In the same work, experimentation on rats showed a

highly non-linear pressure-diameter relationship for lymphangions given as,

Pmural(D) = Pref

(

exp

[

Sp

(

D

Dref

− 1

)]

− 0.001

(

D

Dref

)−3

+ 0.05

)

(1)

where Pmural represents the transmural pressure in cmH2O, D represents the

vessel diameter in µm, Sp the sharpness of the curve and Dref the normal-

ising diameter measured at Pmural = Pref . For lymphangion sections taken

upstream of valves the mean values for Pref and Sp were 18.0 and 20.4 re-

spectively. It is important to note that the normalising pressure, Pref is the high-

est pressure observed and thus its associated diameter, Dref , is the largest.

Ideally, study toward a constitutive model would take into account fibre orien-

tation, ratio and topology, as has been previously performed for thoracic ducts

(Caulk et al. (2015)). However, experimentation is complicated by the small

size and the collapse of the wall in a stress-free state. The assumption that

the wall is dominant over the leaflets allows a method by which representa-

tive wall motion can be achieved. Through an elasto-plastic model where the

wall was considered very stiff elastically, and artificial plastic deformation was

used to model the non-linear component of the behaviour described in Eq 1.

This model reproduces representative wall motion for use in leaflet study only

for monotonically increasing pressurisation. Firstly the wall is considered to

be a homogenous thin walled cylinder described in {Θ, R} with 0 < Θ ≤ 2π,
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R = r(Pmural) with associated thickness, t(Pmural); where r(Pmural) is the

radius of the wall at pressure Pmural. The assumption of symmetry allows

only displacement u in R. The assumption of incompressibility suggests that

cross-sectional area is conserved which allows the calculation of t(Pmural).

The principle strains can be written as:

ǫΘ =
u

r(Pmural)
, ǫR =

t(P1)− t(Pmural)

t(Pmural)
(2)

The principle stresses can be written as:

σΘ =
r(Pmural)Pmural

t(Pmural)
,σR =

−Pmural

2
(3)

P1 represents the transmural pressure at imaging. This allows the creation of a

von-Mises equivalent stress-strain relationship. The pre-stress of the cylinder

was modelled by the addition of the existing stress with the von-Mises stress,

σvM .

σvM (Pmural) = σvM (P1) + σvM (Pmural − P1) (4)

This relationship was decomposed into a linear-elastic component with elas-

tic component representing the gradient at Pmural = P0, in this case, a modulus

of 413 kPa. The remaining strain is modelled through artificial plastic deforma-

tion. This model was implemented in ANSYS Workbench, and the wall was

pressurised to 18 cmH2O. Shown below in Figure 3 is the fit described in Eq 1110

compared to the mean D/Dref for 10 equally sized bands taken along the z-

axis, shown as the coloured wall in Figure 3. As can be seen, the reconstructed

wall is slightly more compliant than the fit.

As the leaflets surface does not contain collagen, an incompressible neo-

Hookean model was used for the leaflets with a shear modulus of 45kPa for115

the smoothing study, see section 2.4. This value has been used in other stud-

ies of lymphangions but is based on experimental data from arterial elastin

(Wilson et al. (2015)). The sensitivity of this value was assessed in the mate-

rial properties study.
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2.3. FEA model set-up120

ANSYS Workbench was used to solve the FEA problems. Meshes of vary-

ing densities were originally created for the reconstructed geometry. For the

smoothing study, these meshes were then converged to a mean 1 percent rel-

ative error of displacement for coincident nodes, at a meshing density of 1 node

per 3 µm2. The results of the manifold harmonic analysis were re-meshed, to125

preserve mesh quality, at a finer level of 1 node per µm2. See Appendix A.1 for

more re-meshing details. For the flexible wall studies an initial mesh of 1 node

per 5 µm2 was refined until the pressure required to close the valve, ∆Pc, and

the retrograde displacement of volume both had a relative error of less than one

percent. For every mechanical model, the leaflet was represented as a series130

of linear quadrilateral and triangular shells each with an associated thickness of

5 µm. Contact between the leaflets was modelled by an augmented Lagrange

algorithm; the normal stiffness was relaxed to 0.5 of the default setting to al-

low convergence and a contact stabilisation damping factor of 0.5 was used.

The leaflets were considered rough, and slipping was discouraged through a135

penalty scheme. A static analysis was performed where a maximum trans-

valvular pressure difference of 5 cmH2O was incrementally imposed over 50

steps resulting in valve closure. For the smoothing study, the annulus was

fixed in space. For the flexible wall studies the afferent and efferent ends of

the wall were held in-plane, and one node on the afferent end of the wall was140

fixed in space. The leaflets were bound to the wall by coupling displacements

to the nearest nodes on the wall. Rotations were also coupled in order to repre-

sent collagen buttressing of the leaflet (Rahbar et al. (2012)). After calculation,

two metrics were considered, i.e. the trans-valvular pressure required to close

the valve and the retrograde volume displacement after closure. Closure was145

defined as the minimum orifice area calculated by projecting the trailing edge

onto an axial plane. The retrograde volume displaced after closure was esti-

mated by comparing integrations between the two leaflets in the imaged state

and then after the application of a 5 cmH2O trans-valvular pressure difference

in a closing manner. As can be expected, the retrograde volume displaced is a150
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function ∆Pc, but is also influenced by the compliance of the geometry.

2.4. Smoothing Method

The wall was considered rigid, as only the behaviour of the leaflets due to

smoothing was considered. The objective of the manifold harmonic analysis

was to perform a low-pass filtering. To remove higher frequency features asso-

ciated with a subject-specific geometry in a quantifiable manner. This allowed a

discussion of geometric valve features and their influence on mechanical valve

behaviour. For detail on manifold harmonic transforms see Appendix B. Filters

can be applied to the transformed geometry, much like any Fourier transform

of an image. By simply truncating the transform, prior to taking the inverse

transform, we achieve a low-pass filter (Vallet & Lévy (2008)). By removing

high-frequency features from the valve surface, it allows us to differentiate fea-

tures that affect valve behaviour. To reduce filtering artefacts, a high roll-off

low-pass Gaussian filter was used with a defined cut-off frequency, ωcut. From

the eigenvalue matrix, we can define a frequency vector, . A filter kernel f(ω)

can now be constructed as,

f(ωi) =











1 for ωi < ωcut

e−r(ωi−ωcut)
2

for ωi ≥ ωcut

(5)

where r is a constant related to the roll-off (in this case r = 105 was used) and

ωi =
√
Ωii with frequency eigenvalue matrix Ω.

3. Results155

Using harmonic analysis, the transform of the reconstructed geometry was

found and eight filters placed exponentially through the frequency space. For

each filter, the transform was inverted, creating a smoothed geometry with high

frequency features removed. As shown in Figure 4 the filter points are super-

imposed on a magnitude-frequency spectrum of both leaflets. The solid lines160

represent the apex of the Gaussian filter, and the dashed lines represent the
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half-power points. The full cases can be seen in Figure A.2. Two phases of

displacement can be identified during the application of an increasing trans-

valvular pressure gradient. In Figure 5, the mean of the peak axial displace-

ment of the trailing edge for both leaflets with a flexible wall is shown with two165

specific regions highlighted. Firstly, the unimpeded motion of the trailing edges

toward each other and subsequently a transition where the trailing edges start

to co-apt together. This leads to the second phase, where the leaflets co-apt

and the valve seal develops. These regions can be delineated by the first trans-

valvular pressure at which contact between the two leaflets occurs, Figure 5.A.170

Also shown are the pressure of closure as previously defined and the final

load-step Figures 5.B,C.

3.1. Leaflet Material Sensitivity Study

A study was performed to assess the sensitivity of the model to changes in

leaflet shear modulus. The wall was included in this study to capture a repre-175

sentative wall motion. The shear modulus of the leaflets was varied from 10kPa

to 60kPa. A trans-valvular pressure of 5 cmH2O was applied to close the valve.

Shown in Figure 6 are the effects of leaflet shear modulus on the trans-valvular

closing pressure of the leaflet, ∆Pc. There is a clear relationship between de-

creasing stiffness and a reduced ∆Pc. Comparison with experimental data for180

a comparable valve suggests that the valve shear modulus lies in the range

10-20 kPa (Davis et al. (2011)). After closure of the valve, the leaflets continue

to deform axially under the applied trans-valvular pressure, which results in

retrograde displacement of the fluid within the lymphangion. The change in ret-

rograde volume displaced at 5 cmH2O is shown in Figure 8. This metric can be185

considered a measure of valve compliance as the deformations will be larger

for smaller shear moduli resulting in a larger volume displaced.

3.2. Leaflet Smoothing Sensitivity Study

The upper graph of Figure 7 shows the development of the orifice area

for an increasing trans-valvular pressure. Due to bending instabilities, many190
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kinks can be observed in the curve for the original geometry. Less kinks are

present in the curves for the smoother valves as the features responsible for

these instabilities are removed. The bottom plot of Figure 7 shows the values

of ∆Pc at various cut-off frequencies. Whilst ∆Pc generally increases with the

removal of features, this relationship is not monotonic. It is clear that a non-195

trivial relationship exists between the frequency of a feature its effect on valve

closure.

4. Discussion

This work demonstrates that it is feasible to reconstruct a lymphatic valve

from confocal images. Smoothing the original reconstruction shows that the200

absolute relative error between the seventh filter and the original geometry is

within four percent, see Figure 7. This suggests critical features are those not

attenuated by the 8th filter, i.e. those with a wavelength of less than 4.094 µm.

These features could still be discerned at a resolution as low as the Nyquist

interval for that filter of approximately 2 µm per pixel, which is half of the z205

resolution of the images used in this study and three-tenths of the resolution

in the other directions. Lowering the resolution may be beneficial to the study

of real geometries if a coarser image had a higher signal-to-noise ratio. There

is a large difference in pressure required to close the valve, ∆Pc, between the

second and third smoothest filters, see Figure 7. Whilst it could be argued that210

this is due to the loss of surface area, the difference in area is 8% between

the second and third filter. However, the difference in ∆Pc is smaller between

the first and second smoothest filters, whose difference in area is 14%. This

suggests there is a geometric feature or features whose wavelength lies be-

tween 33.8 and 51.5 µm, which has a contribution to the behaviour of the valve215

disproportionate to the surface area it adds.

Comparing the 45 kPa shear modulus case from the material study and

the original geometry from the smoothing study, shows the consequences of

a non-rigid wall. The change in ∆Pc increases from 1.56 to 2.52 when repre-
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sentative wall motion is allowed. Given the experimental fit used to generate220

the wall model, see Eq. 1, predicts a 3.55% increase in diameter for a change

in transmural pressure from 5 to 10 cmH2O it would appear the wall has a

significant effect on ∆Pc.

Intuitively, the shear modulus also affects ∆Pc causing a 3.85 fold increase

as the leaflet stiffness increases from 10 to 60 kPa. Given previous experimen-225

tal results it would appear that for ∆Pc to lie within a physiological range of 1.1

to 1.2 cmH2O (Davis et al. (2011)), then the shear modulus of the leaflet would

have to be reduced by more than half.

There are several limitations to this study. The wall model in this study was

designed to produce representative motion. The implementation of an experi-230

mentally validated constitutive model for the wall would allow for a greater con-

sideration of its behaviour. The contractile nature of the lymphangion wall was

not considered and would offer greater insight in lymphatic insufficiency. The

estimated shear modulus for the leaflet of 45kPa, based on arterial studies of

elastin and similar to previously used values, appears to be an over-estimation235

(Wilson et al. (2015)). The properties describing the elastin network in lym-

phatic leaflets are still unknown and will affect valve behaviour. Experimental

determination of these properties is very challenging given the small size of

the leaflets. Hence, future work could address these limitations by performing

a material characterisation of the valves imaged at two distinct pressure states240

and through a fully coupled two-way fluid-structure interaction study. While

a case has been made for the consequences of wavy features on valve be-

haviour, there is no evidence for their existence in-vivo. They could be an arte-

fact of imaging or be exaggerated by the imaging procedure. The contractile

nature of the wall will mean that the wavy features present during contraction245

differ from those imaged. Muscle cells are absent within the leaflet therefore

as the contractions would reduce vessel diameter the leaflets to become com-

pressed and the wavy features to be exaggerated. The consequences of geom-

etry smoothing have been revealed to be non-trivial, and further work should

seek to address questions of the existence of such features and methods of250
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incorporating them into idealised models.

In conclusion, we have reconstructed a lymphatic valve from confocal im-

ages and performed a mechanical analysis to elucidate the characteristics

during closing. This analysis indicated the three stages of valve closure and

demonstrated the influence of wall motion on ∆Pc. A material sensitivity anal-255

ysis of the wall suggested that the shear modulus of a lymphatic valve is more

likely in the range of 10-20kPa in contrast to arterial elastin networks that have

been found around 45kPa.

All these findings will provide a better understanding of the lymphatic drain-

ing mechanisms and aid the development of lumped models to study larger260

networks.
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Appendix A. Meshing

The polygonal chains describing the centre of the leaflets were processed

to form a triangulated mesh for use in finite element analysis. First, the edge

wall nodes are moved to the lumen wall surface by the shortest path, or an275

additional point is inserted on the wall surface. If the closest leaflet point is

located at a large distance from the wall; then the angular positions of the

wall edge points, relative to the vessel centreline, are smoothed along the ves-

sel axis. The free edge line is smoothed by a method previously described

(Sazonov et al. (2011)).280

After that, the leaflet lines in every z-y slice are smoothed by the same

method with the weighting coefficients proportional to the length of each seg-

ment. This modification is necessary to reduce variations in segment length.

The new points are then uniformly distributed along every line and approxi-

mated by a cubic spline.285

Note that point positions have essential variation from slice to slice, i.e.

along the vessel axis, see Figure A1.A. A mesh has to be built before the

application of the smoothing technique. As the points are organised along

lines, the part of the surface between two subsequent lines, i.e. a strip, can

be easily triangulated to form a Delaunay triangulation for each strip. Thus290

the total mesh is not necessarily Delaunay compliant. The boundary nodes,

i.e. nodes along the free edge and the wall edge of the leaflet, are located

non-uniformly in some places. They are substituted by uniformly distributed

points, and the mesh is re-triangulated locally. The mesh needs anisotropic

smoothing to preserve the reconstruction in the y and x-axis, whilst sufficiently295

attenuating variation from slice to slice in the z-axis. Therefore a modification of

the Laplace smoothing method is proposed, in which contiguous nodes placed

in the same line, are disregarded. The result of such a method is presented in

Figure A.1
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Appendix A.1. Re-Meshing300

The initial leaflet mesh is too fine, each element spans a single voxel and

the total geometry contains 35000 nodes and 64000 elements. The initial mesh

is used as a benchmark and for fast re-gridding of the mesh to obtain a range of

element sizes necessary to assess convergence of the finite element scheme.

To aid this process, every node of the coarser meshes exactly coincides with305

one of the nodes in the initial fine mesh. In the re-gridding procedure, the fact

that mesh nodes are arranged along lines, is actively used.

Appendix B. Smoothing Algorithm

Taubin (2000) first constructed analogues of common image processing

functions by analysing the discrete Laplacian of graphs. Lévy (2006) then used

the eigenvectors of the Laplace-Beltrami operator as bases for spectral filtering

of triangulations. Consider any triangulation with nv vertices V and an associ-

ated edge list E. Now a geometric weight matrix W of size nv can be defined

as,

Wij =











− cot(β(i,j))+cot(β́(i,j))
2 for (i, j) ∈ E

0 else

(B.1)

Wii = −
∑

j 6=i

(Wij) (B.2)

where β(i, j) and β́(i, j) are the measures of the angles opposing the edge

(i, j). A diagonal matrix, D, can be defined where Dii equals the finite Voronoi

area of the ith member of V, calculated using the method described by Meyer et al.

(2003). The Laplace-Beltrami operator can now be defined as ∆ = D
−1

W.

However, it may not be symmetric thus the following symmetric generalised

eigenvector problem is solved WΦ = ΩΦD (Reuter et al. (2009)). Which

yields a nv-by-nv matrix of eigenvectors Φ, and the eigenvalue matrix, Ω,

whose diagonal, Ωii, corresponds to the square of the fundamental frequen-

cies those bases represent. We can thereby transform V to give V́ = 〈V,Φ〉D

15



  

with V́ the spectral representation and with 〈A,B〉D as the D normalised inner

product of A and B, i.e. AT
DB.

The new set of vertices, Y, can now be found as below.

Y = (f(ω)⊗Φ)T 〈V,Φ〉D (B.3)

Upon the boundaries, only one angle opposing the edge is found. Hence,

cot(β́(i, j)) does not exist, and only the finite Voronoi region is considered thus310

creating a Neumann boundary condition (Lévy (2006)). The use of a Dirichlet

boundary condition was considered, but as the wavy features are also present

on the boundary, the smoothing of the domain would create transitional fea-

tures between the wavy boundary and the smoothed domain. This was consid-

ered unrepresentative of the problem. However, the use of Neumann boundary315

conditions makes the issue of area loss more acute.
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Figure 1: A series of z-y slices illustrating a step by step overview of the segmentation process. A) 
A z-y image slice. B) A segmentation of the wall (yellow). C) The guidelines of leaflet edges used in 
reconstruction (cyan). D) Manual reconstruction of the leaflet structures (red and blue). 
 
Figure 2: An overview of the lymphatic valve configuration and nomenclature. A) Nomenclature for 
the valve leaflets. B) The configuration of the leaflets to form the valve. C) Shows the Segmented 
structures of a subject-specific valve. Leaflets are shown in red and green, and the wall is shown 
in blue. 
 
Figure 3: A plot of the mean 𝐷 𝐷"#$ for ten equally spaced bands throughout z-axis during 
pressurisation; also shown is the fit for experimental data found by Rahbar et al. 
 
Figure 4: Magnitude-frequency spectrum with filter cut-off frequencies superimposed solid lines 
indicate filter apex, dashed lines indicate half power points. Red and blue indicate the two 
leaflets. The blue dots overlay the red. 
 
Figure 5: A plot of the peak axial displacement of the trailing edge against trans-valvular pressure. 
Also shown is the original valve at three different trans-valvular pressures with the Euclidean 
displacement field coloured. A marks the first contact between the leaflets. B marks the point of 
minimal orifice area and C is the maximum applied trans-valvular pressure. 
 
Figure 6: Trans-valvular pressure required to close the valve for differing leaflet shear moduli. The 
black lines represent the range of trans-valvular closing pressures from experimental data for a 
lymphatic valve without tone and a trans-mural pressure of 5 cmH2O 
 
 
Figure 7: Top: The relative change in the area of the axial projection of the orifice with load. 
Bottom: The trans-valvular pressure required to close the valve against 𝜔&'( the filter cut-off 
frequency. Note: The top plot is sampled once per 0.1 cmH2O the kinks are due to bending 
instabilities 
 
Figure 8: The retrograde volume displaced for differing leaflet shear moduli after the valve has 
closed. Also shows 2D sketch illustrating the volume in question. 
 
Figure A.1: Smoothing manual reconstruction. Variation in colour represents variation in the 
surface normal direction. A) The meshed leaflet before smoothing. B) The meshed leaflet after 
smoothing.   
 
Figure A.2: Geometries produced by filtering the reconstructed leaflets. Top: leaflet 1. Bottom: 
leaflet 2. Frequencies in rad 𝜇𝑚+, 

Figure Legends
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