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ABSTRACT 19 

Purpose: Previously it has been reported that reduced-exertion high-intensity interval 20 

training (REHIT; total training time of 3x10 min per week) improves aerobic capacity 21 

(V̇O2max) in both sedentary men and women, but improves insulin sensitivity in men only. 22 

The aim of the present study was to determine whether there is a true sex difference in 23 

response to REHIT, or that these findings can be explained by the large interindividual 24 

variability in response inherent to all exercise training.  25 

Methods: Thirty-five sedentary participants (18 women; mean±SD age for men and women 26 

respectively: 33±9 and 36±9 y, BMI: 25.1±2.1 and 24.1±3.5 kg·m-2, V̇O2max: 38.6±8.3 and 27 

31.6±4.6 ml·kg-1·min-1) completed a 6-week REHIT programme consisting of eighteen 10-28 

min unloaded cycling sessions with one (first session) or two (all other sessions) 'all-out' 10-29 

20-s sprints against a resistance of 5% of body mass. V̇O2max and oral glucose tolerance 30 

test (OGTT)-derived insulin sensitivity were determined before and after training. 31 

Results: REHIT was associated with an increase in V̇O2max (2.54±0.65 vs. 2.78±0.68 32 

L·min-1, main effect of time: p<0.01), a trend toward reduced plasma insulin area-under-the-33 

curve (AUC; 6.7±4.8 vs. 6.1±4.0 iU∙min-1∙ml-1, p=0.096), but no significant change in plasma 34 

glucose AUC or the Cederholm index of insulin sensitivity. Substantial interindividual 35 

variability in response to REHIT was observed for all variables, but there was no significant 36 

effect of sex.  37 

Conclusions: REHIT improves the key health marker of aerobic capacity within a minimal 38 

total training time-commitment. There is large interindividual variability in responses to 39 

REHIT, but sex differences in the responses are not apparent. 40 

 41 
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Abbreviations: 44 

AUC: area under the curve; BMI: body mass index; GLUT4; glucose transporter type 4; HIT: 45 

high-intensity interval training; IPAQ: international physical activity questionnaire; OGTT: oral 46 

glucose tolerance test; PAR-Q: physical activity readiness questionnaire; PGC-1α, 47 

peroxisome proliferator-activated receptor gamma coactivator 1-alpha; REHIT: reduced-48 

exertion high-intensity interval training; RER: respiratory exchange ratio; RPE: rating of 49 

perceived exertion; SIT: sprint interval training; V̇O2max: maximal aerobic capacity  50 
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INTRODUCTION 51 

High-volume aerobic exercise is currently the strategy recommended by public health 52 

guidelines for improving the key cardiometabolic health markers of V̇O2max and insulin 53 

sensitivity (Garber et al. 2011). However, these parameters can also be modified to a similar 54 

extent with very short bouts of high-intensity exercise (high-intensity interval training (HIT)) 55 

or sprint interval training (SIT; in this article we will refer to both as HIT in order to be 56 

consistent with our previous publications on this topic) (Babraj et al. 2009; Cocks et al. 2013; 57 

Shepherd et al. 2013; Richards et al. 2010; Weston et al. 2014). As lack of time has been 58 

identified as a major barrier to performing regular exercise (Korkiakangas et al. 2009), HIT 59 

has been proposed as an alternative/adjunct time-efficient exercise strategy for the general 60 

population. However, due to the need for recovery periods in between sprints the majority of 61 

HIT protocols studied to date do not save much time compared with aerobic exercise-based 62 

recommendations (Gillen and Gibala 2014), and the associated high levels of exertion may 63 

present an additional barrier for the target sedentary population.  64 

The mechanisms by which HIT protocols exert their beneficial effects on V̇O2max and insulin 65 

sensitivity remain poorly understood. We have recently proposed that the adaptations 66 

associated with supramaximal HIT protocols may be explained, at least in part, by the rapid 67 

glycogen utilisation and subsequent release and activation of glycogen-bound protein 68 

kinases during initial sprints (Metcalfe et al. 2015). As glycogen depletion during 69 

supramaximal HIT is limited to the first ~15 s of the initial sprints (Parolin et al. 1999), this 70 

would mean that HIT protocols could be effective with fewer and shorter sprints than 71 

generally used (Metcalfe et al. 2015; Metcalfe et al. 2012). In support of this hypothesis, we 72 

have demonstrated that performing two 20-s Wingate sprints within a 10-min exercise 73 

session (reduced-exertion HIT; REHIT) depletes muscle glycogen stores by ~20% (Metcalfe 74 

et al. 2015), and as a training stimulus is sufficient to improve V̇O2max in sedentary men and 75 

women following 6 weeks of thrice-weekly training sessions (Metcalfe et al. 2012). However, 76 
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REHIT has been observed to only significantly enhance insulin sensitivity and glycaemic 77 

control in men (Metcalfe et al. 2012; Gillen et al. 2014). 78 

While factors such as a potential effect of the menstrual cycle (Valdes and Elkind-Hirsch 79 

1991) and differences in baseline insulin sensitivity and glycaemic control (Boulé et al. 2005) 80 

should be studied in more detail in an attempt to explain this observed sexual dimorphism, 81 

another possible explanation is related to the large interindividual variability in response to 82 

exercise training in general. Large supervised training studies have demonstrated that 83 

although on average important risk factors of cardiometabolic disease improve in response 84 

to regular exercise, individual responses range from highly positive (‘high responders’) to 85 

little or no change (‘low responders’) (Bouchard and Rankinen 2001; Bouchard et al. 2012; 86 

Leifer et al. 2016). Due to the small sample sizes that are more typically used in most 87 

exercise training studies, such studies are highly susceptible to the influence of individual 88 

low or high responders on the mean results. Therefore, it is worth noting that the previous 89 

two studies which have demonstrated sex differences in the response to REHIT were both 90 

small (≤8 participants per group) (Gillen et al. 2014; Metcalfe et al. 2012). Furthermore, 91 

acute changes (3 hr post-exercise) in skeletal muscle expression of genes encoding proteins 92 

related to glucose metabolism or insulin sensitivity (e.g. PGC-1α, GLUT4, hexokinase, 93 

pyruvate dehydrogenase kinase) in response to a single REHIT session were found not to 94 

be different between men and women in a study by Skelly et al. (2016), and a study 95 

investigating the response to a more strenuous HIT protocol did not demonstrate different 96 

training responses for V̇O2max, maximal power output, or substrate oxidation for men and 97 

women (Astorino et al. 2011). Thus, the evidence for a sex difference in the response to 98 

REHIT is not definitive. Studies with a larger sample size are required to address this issue.  99 

Considering the urgent need to identify shorter exercise protocols effective at modifying the 100 

key risk factors of cardiometabolic disease, the REHIT protocol presents a promising 101 

intervention: to date no other intervention has been shown to improve important risk factors 102 

of cardiometabolic disease with such a low time-commitment (30 min per week) combined 103 



6 

 

with manageable ratings of perceived exertion (RPE<15). However, the evidence-base for 104 

the effectiveness and safety of this intervention has to be expanded before it can be 105 

incorporated into physical activity recommendations for the general public, and there should 106 

be no uncertainty about its effectiveness, on average, in specific populations such as 107 

women. Therefore, the aim of the present study was to examine the effects of REHIT on 108 

V̇O2max and OGTT-derived insulin sensitivity in a larger cohort of men and women. We 109 

hypothesised that, similar to other types of training, interindividual variability in the response 110 

to REHIT would be high, but that there would be no sex differences in the mean responses.   111 



7 

 

METHODS 112 

Participants 113 

Fifty participants (27 men / 23 women) gave their written informed consent to take part in this 114 

study, which received ethical approval from the NHS South West Research Ethics 115 

Committee (Central Bristol REC Reference: 12/SW/0018). Seven participants dropped out 116 

prior to completing baseline testing, and eight discontinued the intervention (Figure 1), 117 

leaving 17 men and 18 women for inclusion in the analysis (Table 1). Participants were 118 

recruited based on the following inclusion criteria: aged 18-50 y, classified as sedentary 119 

according to the IPAQ self-report questionnaire (Craig et al. 2003), no contraindications to 120 

strenuous exercise according to a standard PAR-Q (Thomas et al. 1992), body mass-stable 121 

and no conscious change in diet or physical activity patterns over the preceding 6 months, 122 

no evidence of clinically significant hypertension (≥140/90 mm Hg), resting heart rate <100 123 

bpm, and no personal history of metabolic or cardiovascular disease. The potentially 124 

confounding impact of changes in diet and exercise patterns was fully explained to all 125 

participants and they were asked to maintain their normal lifestyle outside the intervention for 126 

the duration of the study period. 127 

Experimental design 128 

Participants underwent baseline testing for insulin sensitivity and V̇O2max two weeks prior to 129 

starting the training intervention. Insulin sensitivity was assessed during an oral glucose 130 

tolerance test (OGTT) and V̇O2max was assessed during an incremental cycle test to limit of 131 

tolerance. OGTTs were repeated 3 days after the final training bout, at the same time of day 132 

as the pre-intervention OGTTs, leaving 8 weeks between the pre- and post-training OGTTs. 133 

This was done in order to reduce potential influences of the menstrual cycle in female 134 

participants, but the stage of the menstrual cycle was not determined. V̇O2max tests took 135 

place 1-2 days after the OGTTs. 136 

Oral glucose tolerance test (OGTT) 137 
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Participants were asked not to perform moderate or vigorous intensity physical activities for 138 

the three days prior to OGTTs, to refrain from drinking alcohol and caffeine for one day prior, 139 

and to drink half a litre of water on the morning of the test to ensure adequate hydration. 140 

Participants reported to the laboratory between 7:30 and 9:30 am following an overnight fast 141 

from 22:00 pm the previous evening. Having rested for 15 min, a cannula (BD Venflon Pro, 142 

BD, Helsingborg, Sweden) was inserted into an antecubital vein and a fasting venous blood 143 

sample was drawn. Participants then consumed 75 g of glucose (Polycal, Nutricia, UK) 144 

dissolved in 300 mL of water, and further blood samples were drawn at 30 min intervals for 2 145 

h. All blood samples were collected into pre-cooled plastic tubes containing EDTA, stored on 146 

ice for 30 min, and then centrifuged at 5000 rpm and 4°C for 10 min, with plasma stored at -147 

80°C until analysis. Plasma glucose concentrations were determined in duplicate on an 148 

automated analyser with a CV for repeated measures of <1% (Randox RX Daytona, Co. 149 

Antrim, UK). Plasma insulin concentrations were determined in duplicate using a 150 

commercially available ELISA kit with a CV for repeated measures of 3.2% (Mercodia, 151 

Uppsala, Sweden). Area under the curve (AUC) for the glucose and insulin responses was 152 

calculated using the trapezoid model, and peripheral insulin sensitivity was determined using 153 

the Cederholm Index (Cederholm and Wibell 1990). OGTT-derived data are presented for 16 154 

men only due to technical difficulties with blood sampling in one participant. 155 

V̇O2max test  156 

Maximal oxygen uptake capacity (V̇O2max) was determined during an incremental cycling 157 

test to the limit of tolerance. For reasons of availability of equipment, two different protocols 158 

and sets of equipment were used to determine V̇O2max, with protocols kept identical for 159 

individual participants. Fourteen participants (7 men and 7 women) completed the tests on a 160 

mechanically-braked cycle ergometer (Ergomedic 874e, Monark, Vansbro, Sweden) with 161 

expired air analysed using the Douglas bag method. The test started at 60 W and increased 162 

in increments of 30 W every 2 min until volitional exhaustion, with expired air samples 163 

collected into pre-evacuated Douglas bags. Expired concentrations of O2 and CO2 164 
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(Servomex miniMP 5200), volume of expired air (Harvard Apparatus, Kent, UK), and air 165 

temperature (Model C, Edale Intruments, Cambridge, UK) were measured for calculation of 166 

V̇O2max by indirect calorimetry (Frayn 1983). All values were corrected to reflect standard 167 

temperature and pressures, dry (STPD), and during each gas collection, samples of ambient 168 

(i.e. inspired) CO2 and O2 concentrations were measured within close proximity to the 169 

participant (Servomex miniMP 5200) rather than just assuming standard atmospheric 170 

concentrations, as has been recommended recently (Betts and Thompson 2012). The 171 

remaining 20 participants (10 men and 10 women) completed the test on an electrically 172 

braked cycle ergometer (Lode Excalibur Sport, Groningen, the Netherlands) with expired air 173 

analysed using an online metabolic cart (ParvoMedics TrueOne 2400, Utah, USA). 174 

Participants cycled at 50 W for 5 min followed by a 15 W∙min-1 continuous ramp protocol to 175 

volitional exhaustion. V̇O2max was determined as the highest value for a 15-breath rolling 176 

average. In all tests two or more of the following criteria were met: a plateau in V̇O2 despite 177 

increasing intensity (<50% of the expected increase for a 5-W increase in workload), 178 

RER>1.15, heart rate within 10 beats of age-predicted maximum, and/or volitional 179 

exhaustion (Howley et al. 1995). We were unable to perform the post-training V̇O2max test in 180 

one female participant due to technical difficulties, so V̇O2max data are presented for 17 181 

men and 17 women. An independent sample t-test revealed no difference in the change in 182 

V̇O2max (L∙min-1) between the two protocols used, so the data were pooled. 183 

Training protocol 184 

All training sessions were fully supervised and carried out on a mechanically-braked cycle 185 

ergometer (Ergomedic 894e, Monark Vansbro, Sweden). Participants completed three 186 

exercise sessions per week for 6 weeks with 1-2 days recovery between sessions, 187 

completing 18 sessions overall. All exercise sessions lasted 10 min in total (including a 3-188 

min warm-up, 3:20-3:40-min recovery in between sprints, and a 3-min cool-down; Figure 2), 189 

resulting in a total training time-commitment of 30 min per week. Each training session 190 

consisted of unloading pedalling and one (first session) or two (all other sessions) ‘all-out’ 191 
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cycling sprints. Just before each sprint, participants increased their pedal cadence to their 192 

maximal speed, a braking force equivalent to 5% of body mass was then applied to the 193 

ergometer, and participants sprinted against the applied braking force for a designated time 194 

period. The duration of the sprints increased from 10 s in week 1, to 15 s in weeks 2 and 3, 195 

and 20 s in the final 3 weeks. Strong verbal encouragement was given during each sprint. At 196 

the end of the third training session of each week an RPE score (6-20 Borg scale) was 197 

collected to reflect the session as a whole (i.e. participants were asked to consider the whole 198 

training session when giving their ratings, not just the sprints). 199 

Statistical analysis 200 

All data are presented as mean±SD unless stated otherwise. Statistical analysis was 201 

performed using the commercially available software Statistics Package for Social Sciences 202 

(SPSS). We calculated that to detect a difference in insulin sensitivity response between 203 

men and women of 1 SD, a sample size of 16 participants in each group would be sufficient 204 

to achieve a power of 0.80 with α=0.05. In order to determine the effects of the intervention 205 

and potential sex differences in these responses, V̇O2max and OGTT summary statistics 206 

were analysed using two-way mixed model analysis of variance (sex [male / female] x time 207 

[pre-training / post-training]) with Greenhouse-Geisser corrections applied for contrasts 208 

where ɛ<0.75 and the Huynh-Feldt corrections applied for less severe asphericity. 209 

Correlations between variables were determined using Pearson’s product-moment 210 

correlation coefficient. Statistical significance was accepted at p<0.05.  211 
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RESULTS 212 

Thirty participants completed all 18 training sessions (i.e. 100% adherence), three 213 

participants missed 1 session, and two participants missed a total of 3 non-consecutive 214 

sessions, resulting in a mean adherence to the training programme of 98.5%. The training 215 

sessions were well tolerated by all participants and rated at 14±2 on the Borg 6-20 scale (i.e. 216 

between ‘somewhat hard’ and ‘hard’), with no significant differences in the ratings given at 217 

the end of each of the six training weeks or in the ratings given by male and female 218 

participants. A small but significant increase in body mass was observed following REHIT 219 

(80.3±15.7 vs. 80.9±15.6 kg; main effect of time: p<0.05), with no significant interaction 220 

effect of sex x time.  221 

REHIT increased mean absolute V̇O2max by 9.6% (main effect of time: p<0.001), with no 222 

significant interaction effect of sex x time (women: +10.1%, men: +9.3%; Table 2), and these 223 

results were similar when V̇O2max was expressed in L·min-1 or ml·kg-1·min-1. We observed 224 

considerable interindividual variability in the response to REHIT for V̇O2max (range: -4 to 225 

+34%; Figure 3). There was no significant correlation between baseline V̇O2max and the 226 

subsequent training response (R2=0.08), and the likelihood of showing a low/average/high 227 

response for V̇O2max did not appear to be influenced by sex (Figure 3). 228 

The effect of REHIT on the plasma glucose and insulin responses to the OGTTs is shown in 229 

Figure 4. REHIT was associated with a trend toward reduced plasma insulin AUC (-8.3%, 230 

main effect of time: p=0.096), but there was no significant sex x time interaction (women: -231 

9.5%, men: -7.4%; Table 2). Plasma glucose AUC and insulin sensitivity as determined 232 

using the Cederholm Index did not significantly change following training (Table 2). Similar 233 

to the V̇O2max responses there was considerable variability associated with the training-234 

induced change in insulin AUC (range: -54 to +70%), glucose AUC (-24 to +62%) and 235 

Cederholm index (-48% to +55%; Figure 3). There were significant negative correlations 236 

between the pre-training value and the change score (%) for insulin AUC (R2=0.14, p<0.05), 237 

glucose AUC (R2=0.18, p<0.05), and for the Cederholm index (R2=0.19, p<0.01).  238 
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DISCUSSION 239 

The aim of the present study was to determine whether there is a true sex difference in 240 

response to REHIT, or that previously observed sex differences may be explained by the 241 

large interindividual variability inherent to the response to all exercise training. We 242 

demonstrate that interindividual variability in response to REHIT is substantial for all 243 

measured parameters, and that no sex differences are evident in response to REHIT, with 244 

similar mean changes for men and women. This suggests that previously observed sex 245 

difference for changes in insulin sensitivity in the small training studies by Metcalfe et al 246 

(2012) and Gillen et al. (2014) may be explained by the inclusion of different proportions of 247 

low and high responders within the male and female training groups. We demonstrate that 248 

on average REHIT is effective at substantially improving the important cardiometabolic risk 249 

factor of V̇O2max in sedentary individuals, with manageable ratings of perceived exertion 250 

and a total training time commitment of just 30 min per week (and a total volume of high-251 

intensity exercise of less than 10 min over the 6-week training period). Previously observed 252 

improvements in insulin sensitivity could not be reproduced in the present study. 253 

Following 6 weeks of REHIT we observed a trend toward a mean improvement of 8% in the 254 

plasma insulin AUC in response to an oral glucose load, but this value masks the fact that 255 

the individual change scores ranged from -54% to +70%, and that 14 out of 34 participants 256 

(41%) experienced a numerical increase rather than a decrease. Likewise, 38% of 257 

participants failed to numerically improve plasma glucose AUC or the Cederholm index of 258 

insulin sensitivity. This is strikingly similar to the variation in response to 20 weeks of high-259 

volume aerobic exercise training as observed in the >700 participants of the Heritage Family 260 

Study (Boulé et al. 2005). Although various modes of exercise may be effective at improving 261 

measures of glycaemic control and insulin sensitivity on average, it is clear that many 262 

individuals do not get this benefit. In this light it is important to note the significant negative 263 

correlation between baseline and response for measures of insulin sensitivity: those 264 

individuals with poorer insulin sensitivity pre-training tend to have a greater improvement. 265 
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This may provide an explanation for the discrepancies between the present study and our 266 

previous study concerning changes in insulin sensitivity and potential sex differences in the 267 

response to REHIT (Metcalfe et al. 2012), as the male participants in our original study 268 

appear to have had poorer insulin sensitivity at baseline. However, regardless of the reason 269 

for these discrepancies, in our present, larger study we provide strong support against a sex 270 

difference in the response to REHIT; interindividual variability in response is evidently of a 271 

greater magnitude than any potential sex differences.  272 

The relevance of the trend toward a reduced insulin AUC remains unclear. Although the 273 

majority of the participants improved OGTT-derived parameters, several participants had 274 

effects in the opposite direction. Whereas some authors suggest that adverse responses to 275 

training may occur (Bouchard et al. 2012), others have pointed out that responses of a 276 

similar magnitude in control participants demonstrate that it is not the intervention per se that 277 

causes adverse effects (Leifer et al. 2016; Yates et al. 2014). As we did not include a control 278 

group in the present study it remains unclear whether the negative responses in some 279 

participants can be attributed to day-to-day biological variation or technical error. Apart from 280 

the influence of the negative correlation between baseline values and response, another 281 

potential explanation for the lack of a significant improvement in OGTT-derived measures 282 

could be that we reduced the sprint resistance from 7.5% of body mass in our previous study 283 

(Metcalfe et al. 2012) to 5% in the present study, in order to make the exercise more 284 

manageable for the female participants. Future studies should examine whether a greater 285 

sprint resistance may lead to superior improvements. 286 

Maximal aerobic capacity following REHIT improved on average by ~10%, with similar mean 287 

increases in men and women. This confirms our previous observations (Metcalfe et al. 2012) 288 

and those by Gillen et al. (2014). Whilst improved aerobic capacity is now a well-established 289 

finding with HIT (Weston et al. 2014), our data are important as REHIT still represents the 290 

smallest volume of high-intensity exercise which has been shown to improve this key health 291 

parameter. The fact that V̇O2max appears to improve so consistently following such a small 292 
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volume of exercise provides support for exercise intensity as a crucial variable underpinning 293 

adaptations in V̇O2max following exercise training in humans. Given that aerobic capacity is 294 

a powerful predictor of cardiovascular and metabolic disease (Blair et al. 1996; Blair et al. 295 

1989; Blair et al. 1995; Myers et al. 2002), this has implications for exercise prescription. 296 

Based upon the results of Lee et al. (2011) the mean increase of ~3-4 ml·kg-1·min-1 in 297 

V̇O2max (i.e. ~1 metabolic equivalent) following REHIT would be expected to reduce the risk 298 

of all-cause mortality by 15% and cardiovascular mortality by 19%. 299 

Although aerobic capacity improved on average following REHIT it should be noted that this 300 

improvement too was associated with substantial interindividual variation. Indeed, similar to 301 

large-scale aerobic training studies (Bouchard et al. 1999; Sisson et al. 2009) change in 302 

V̇O2max ranged from no measurable response to particularly large improvements (>30% 303 

increase from baseline). Previous studies have also demonstrated substantial interindividual 304 

variability in response to more strenuous HIT interventions (Astorino and Schubert 2014; 305 

Bacon et al. 2013; Gurd et al. 2016), which suggests that the variability in response to 306 

REHIT observed in the present study was not caused by an insufficient training stimulus. In 307 

light of this consistent finding of substantial interindividual variability in the response to 308 

training, it seems of increasing importance to move away from studying the mean effect of 309 

various HIT protocols and start focussing more on establishing 1) what causes the large 310 

interindividual differences in response to training, 2) what clinical relevance this has, 3) what 311 

can be done to improve the response in low responders, and 4) how low responders can be 312 

identified prior to prescribing exercise interventions. At least part of the interindividual 313 

variability can be explained by genetic factors (Bouchard et al. 1999), and a set of predictor 314 

genes has been validated that can establish the magnitude of change in aerobic capacity 315 

prior to the initiation of aerobic training (Timmons et al. 2010). It now needs to be established 316 

whether the same predictor can be used to explain/predict the variability in V̇O2max 317 

responses to different modes of training, for example HIT/REHIT. In combination with the 318 

development of similar biomarkers for adaptability of insulin sensitivity and other 319 
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cardiometabolic risk factors this would greatly enhance our ability to prescribe the most 320 

appropriate intervention to individuals. 321 

A number of limitations to the present study should be noted. Firstly, male and female 322 

participants were not matched for the included parameters at baseline, and a number of 323 

significant sex differences were apparent prior to the start of the intervention. Furthermore, 324 

we did not control for the female participants’ menstrual cycle phase. Lack of control for 325 

these potentially confounding factors is common in this area of research, but their potential 326 

influence on training responses will need to be examined in further studies. Secondly, 327 

although our use of a 75-g glucose load in the OGTT is consistent with standard practice, 328 

the significant sex difference in body mass will have resulted in a different relative glucose 329 

load. It remains unknown whether this may have affected the results and/or may explain 330 

some of the observed variability in response. Therefore, a suggestion for further research is 331 

to investigate sex differences in the effects of REHIT using different methods for measuring 332 

insulin sensitivity, such as for example the euglycemic hyperinsulinemic clamp technique.  333 

In conclusion, we demonstrate that performing 6 weeks of REHIT involving a maximum of 2 334 

min of intermittent high-intensity exercise within a total training time-commitment of 30 min 335 

per week is sufficient, on average, to increase maximal aerobic capacity, but did not 336 

significantly improve OGTT-derived parameters. In contrast to previous smaller studies 337 

(Metcalfe et al. 2012; Gillen et al. 2014) we did not observe different responses in sedentary 338 

men and women, suggesting that low response to REHIT in some individuals is not 339 

explained by a sexual dimorphism.   340 
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Table 1 Participant characteristics 

 Men (n=17) Women (n=18) 

Age (y) 33±9 (21-43) 36±9 (18-50) 

Height (m) 1.75±0.08 (1.59-1.87) 1.67±0.07 (1.54-1.84) ** 

Body mass (kg) 76.9±7.2 (66.6-88.9) 66.7±9.6 (56.4-85.9)** 

BMI (kg·m-2) 25.1±2.1 (21.0-28.9) 24.1±3.5 (18.4-29.1) 

V̇O2max (ml·kg-1·min-1) 38.6±8.3 (24.7-57.0) 31.6±4.6 (25.8-39.0) ** 

Data shown are mean ± SD (range); BMI: body mass index; V̇O2max: maximal aerobic capacity; Sex differences: ** p<0.01 
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Table 2 The impact of REHIT on V̇O2max and OGTT-derived variables 

 Men (n=17)  Women (n=18)  Combined (n=35)  Statistics 

 Pre Post  Pre Post  Pre Post  Time Sex Time*Sex 

V̇O2max (L∙min-1) 3.01±0.57 3.28±0.53  2.08±0.29 2.29±0.37  2.54±0.65 2.78±0.68  <0.001 <0.001 0.402 

V̇O2max (mL∙kg-1·min-1) 38.3±9.1 41.4±8.9  31.7±4.6 34.7±5.2  35.0±7.8 38.1±7.9  <0.001 0.010 0.926 

Fasting plasma glucose (mmol∙l-1) 5.29±0.47 5.25±0.51  4.96±0.46 4.91±0.40  5.09±0.49 5.05±0.49  0.534 0.014 0.909 

Fasting plasma insulin (µIU∙ml-1) 5.7±3.2 6.6±3.3  5.6±3.2 5.7±4.2  5.7±3.6 6.0±3.8  0.356 0.643 0.337 

HOMA-IR 1.39±0.86 1.56±0.86  1.28±1.02 1.23±0.93  1.33±0.93 1.38±0.90  0.589 0.455 0.323 

Peak plasma glucose (mmol∙l-1) 9.26±1.68 8.91±2.17  7.29±1.69 7.15±1.23  8.22±1.94 7.98±1.93  0.296 0.002 0.624 

Peak plasma insulin (µIU∙ml-1) 111.3±82.0 97.9±51.5  63.1±43.2 61.5±39.5  85.8±67.9 61.5±39.5  0.158 0.029 0.265 

Plasma glucose AUC (mmol∙120 min∙l-1) 898±185 853±185  721±160 699±126  804±192 771±172  0.119 0.004 0.581 

Plasma insulin AUC (iU∙120 min∙ml-1) 8.37±5.75 7.74±4.54  5.21±3.37 4.72±2.94  6.69±4.84 6.14±4.02  0.096 0.036 0.844 

Cederholm index (mg∙l2∙mmol-1∙mU-1∙min-1) 55.5±19.3 56.7±18.2  78.6±27.2 80.7±23.4  67.8±26.2 69.4±24.1  0.607 0.002 0.882 

Data shown are mean ± SD.  
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Figure 1 Flow of participants through the study 
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Figure 2 Schematic of the REHIT training protocol. Grey boxes represent ‘all-out’ sprints 

against a fixed resistance of 5% of body mass. Training sessions 1-3 were in training week 

1, sessions 4-9 were in training weeks 2 and 3, and sessions 10-18 were in training weeks 

4-6.  
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Figure 3 Variability in training responses following REHIT. Dots represent the training 

adaptation for individual female (white dots) and male (black dots) participants compared to 

their individual baseline. Note that for V̇O2max and insulin sensitivity (Cederholm) an 

‘improvement’ is represented by a % increase, whilst for glucose AUC and insulin AUC an 

‘improvement’ is represented by a % decrease.  
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Figure 4 Plasma glucose and insulin responses to the pre- and post-training OGTTs in men 

and women. Results are presented as mean±SEM for clarity. N=16 for men and n=18 for 

women.  

 


