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Abstract 

High-intensity interval training (HIT) has been proposed as a time-efficient alternative to traditional 

cardiorespiratory exercise training, but is very fatiguing. In this study we investigated the effects of a 

reduced-exertion HIT (REHIT) exercise intervention on insulin sensitivity and aerobic capacity. 

Twenty-nine healthy but sedentary young men and women were randomly assigned to the REHIT 

intervention (men: n=7, women n=8) or a control group (men n=6; women n=8). Subjects assigned to 

the control groups maintained their normal sedentary lifestyle, whilst subjects in the training groups 

completed 3 exercise sessions per week for 6 weeks. The 10-min exercise sessions consisted of low 

intensity cycling (60 Watts) and one (1st session) or two (all other sessions) brief ‘all-out’ sprints (10 s 

in week 1, 15 s in weeks 2-3 and 20 s in the final 3 weeks). Aerobic capacity (V̇O2peak) and the 

glucose and insulin response to a 75-g glucose load (OGTT) were determined before and 3 days after 

the exercise program. Despite relatively low ratings of perceived exertion (RPE: 13±1), insulin 

sensitivity significantly increased by 28% in the male training group following the REHIT intervention 

(P<0.05). V̇O2peak increased in the male training (+15%) and female training (+12%) groups 

(P<0.01). In conclusion we show that a novel, feasible exercise intervention can improve metabolic 

health and aerobic capacity. REHIT may offer a genuinely time-efficient alternative to HIT and 

conventional cardiorespiratory exercise training for improving risk factors of T2D. 
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Introduction 

The prevalence of type 2 diabetes (T2D) is increasing rapidly in the UK (Gonzalez et al. 2009) and 

throughout the world (Danaei et al. 2011). T2D is associated with substantial human costs in terms of 

reduced quality of life and life expectancy, and management of the symptoms and secondary 

complications of T2D accounts for a considerable proportion of total public health care expenditure 

(American Diabetes Association 2008). As such, finding effective and inexpensive strategies to 

prevent and treat T2D should be a key objective and is indeed essential if affordable health care 

systems are to remain a viable proposition.  

The primary defect underlying the development of T2D is skeletal muscle insulin resistance 

(DeFronzo and Tripathy 2009). The metabolic causes of insulin resistance are numerous and 

complex but there is accumulating evidence that physical inactivity may be the major initiating factor 

(Thyfault and Krogh-Madsen 2011), whereas regular exercise is associated with improved muscle 

insulin sensitivity and thus represents an effective strategy to prevent T2D (Hawley and Gibala 2009). 

In fact, it is now recognised that exercise, rather than just being a useful strategy for improving health, 

is actually essential for good metabolic and cardiovascular function, of which insulin action is a key 

component (Thyfault and Krogh-Madsen 2011; Booth et al. 2002). With this in mind, the finding that 

~6 out of 10 men and ~7 out of 10 women in the UK are currently not achieving the (low) minimum 

recommended levels of physical activity is a major concern (Allender et al. 2008). Recommendations 

for levels of physical activity place heavy emphasis on performing moderate and/or vigorous-intensity 

cardiorespiratory exercise training (Garber et al. 2011), which is associated with a substantial time-

commitment. ‘Lack of time’ is often cited as a barrier to being physically active (Korkiakangas et al. 

2009; Reichert et al. 2007), suggesting that these guidelines may not be the ideal approach to 

increase physical activity levels to improve public health.  

Several recent studies have suggested that high-intensity interval training (HIT), a training model 

involving a series of 30-second ‘all-out’ cycling sprints (i.e. Wingate sprints) with 4 minutes of 

rest/recovery between each bout, may provide a time-efficient strategy for inducing adaptations that 

are similar to traditional cardiorespiratory training (Gibala et al. 2006; Burgomaster et al. 2005; 

Burgomaster et al. 2008; Rakobowchuk et al. 2008; Burgomaster et al. 2007; Trilk et al. 2010). 
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Furthermore, we have recently demonstrated the beneficial effects of HIT on insulin sensitivity (Babraj 

et al. 2009), a finding that has since been confirmed by others (Little et al. 2011; Richards et al. 2010; 

Whyte et al. 2010). However, whilst these observations are interesting from a human physiological 

perspective, their translation into physical activity recommendations for the general population is 

uncertain for two reasons. Firstly, the relatively high exertion associated with ‘classic’ HIT sessions 

requires strong motivation and may be perceived as too strenuous for many sedentary individuals 

(Hawley and Gibala 2009). Secondly, although a typical HIT session requires only 2-3 minutes of 

actual sprint exercise, when considered as a feasible exercise session including a warm-up, recovery 

intervals and cool-down, the total time commitment is more than 20 minutes, reducing the time-

efficiency (Garber et al. 2011). Thus, there is scope for further research to determine whether the 

current HIT protocol can be modified to reduce levels of exertion and time-commitment while 

maintaining the associated health benefits. 

We (Babraj et al. 2009) and others (Whyte et al. 2010) have suggested that high levels of glycogen 

depletion observed during repeated 30-second Wingate sprints may play an important role in 

mediating improvements in insulin sensitivity following HIT. This hypothesis is based on evidence that 

muscle glycogen availability is inversely related to muscle cell membrane GLUT4 content during 

insulin stimulation (Derave et al. 2000), glycogen synthase activity (Jensen et al. 2006), the 

expression of GLUT4 mRNA (Steinberg et al. 2006), and hence insulin sensitivity (Derave et al. 2000; 

Jensen et al. 2006; Kawanaka et al. 2000; Laurent et al. 2000; Litherland et al. 2007; Richter et al. 

2001). The upregulation of key metabolic genes initiated by the release of glycogen-bound proteins 

may, at least in part, explain how glycogen depletion affects insulin-dependent muscle glucose uptake 

(Steinberg et al. 2006; Graham et al. 2010). Regardless of the potential mechanisms however, if 

muscle glycogen regulates insulin sensitivity then exercise protocols aiming to reduce glycogen levels 

should be effective.  

It has consistently been shown that a single 30-second Wingate sprint can reduce muscle glycogen 

stores in the vastus lateralis by 20-30% (Esbjornsson-Liljedahl et al. 1999; Parolin et al. 1999; 

Esbjornsson-Liljedahl et al. 2002; Gibala et al. 2009). What is intriguing, however, is that 

glycogenolysis is only activated during the first 15 seconds of the sprint and is then strongly 

attenuated during the final 15 seconds (Parolin et al. 1999). Moreover, activation of glycogenolysis is 
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inhibited in subsequent repeated sprints (Parolin et al. 1999). This suggests that the traditional HIT 

protocol (4-6×30 seconds) may be unnecessarily strenuous as similar glycogen depletion may be 

achieved using 1-2 sprints of shorter duration (15-20 seconds). In turn, this would make the training 

sessions more time-efficient, less strenuous and more applicable to the largely sedentary general 

population. Therefore, in the current study we investigated the effects of a reduced-exertion HIT 

(REHIT) intervention on insulin sensitivity in previously sedentary subjects. We hypothesised that 

despite reducing sprint time and number, REHIT would still be effective at improving glucose 

tolerance. 
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Methods 

Subjects 

Twenty-nine sedentary but healthy young men (n=13) and women (n=16) were recruited to take part 

in the study and randomly allocated to a training group or a control group. Subjects allocated to the 

training group completed the full experimental protocol whilst subjects in the control group completed 

the pre- and post-training assessments without an exercise intervention. Baseline characteristics for 

each subject group are shown in Table 1. All participants were classified as sedentary according to 

the criteria of the International Physical Activity Questionnaire (IPAQ) (Craig et al. 2003) and were 

only included in the study if they answered ‘no’ to all questions in the physical activity readiness 

questionnaire (PAR-Q) (Thomas et al. 1992). Further exclusion criteria included clinically significant 

hypertension (>140/90 mm Hg) and a personal history of metabolic or cardiovascular disease. All 

subjects were fully informed of the experimental protocol and any associated risks, both verbally and 

in writing, before providing written informed consent to participate. In addition, the potentially 

confounding effect of changes in diet and physical activity patterns was fully explained to all 

participants and they were asked to maintain their normal lifestyle patterns throughout the study 

period. The experimental protocol was approved by the Heriot-Watt University School of Life Sciences 

Ethics Committee and was conducted in accordance with the Declaration of Helsinki. 

 

Experimental Design 

All subjects underwent pre- and post-intervention testing for insulin sensitivity and aerobic capacity. 

Insulin sensitivity was assessed using an oral glucose tolerance test (OGTT) and aerobic capacity 

was assessed using a conventional V̇O2peak cycling test. The baseline OGTTs were performed two 

weeks before training commenced and the post-intervention OGTTs were conducted 3 days after the 

final training bout at the same time of day as the pre-intervention OGTT. This meant that there were 

exactly 8 weeks between the pre- and post-training OGTTs which ensured that female subjects were 

in the same stage of their menstrual cycle. The V̇O2peak tests took place 1-2 days after the OGTTs.  

 

Oral Glucose Tolerance Test (OGTT) 
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Prior to OGTTs subjects performed no moderate or vigorous intensity physical activities for three 

days, and refrained from drinking alcohol for one day. Furthermore, subjects completed a 3-day food 

diary before each OGTT which was analysed for total energy and macronutrient content using 

commercially available dietary analysis software (Dietplan6, Forestfield Software, UK). There were no 

significant differences in total energy, carbohydrate, fat or protein content over the 3 days before the 

pre- and post-intervention OGTTs in any of the subject groups.  

On the day of the OGTT subjects reported to the laboratory between 7:30 and 9:30 am following an 

overnight fast from 10 pm the previous evening. A fasting blood sample was obtained from a forearm 

antecubital vein by venepuncture using the vacutainer system. 75 g of anhydrous glucose (Fisher 

Scientific, Loughborough, UK) dissolved in 100 ml of water was then orally administered and further 

blood samples were taken at 60 and 120 min after glucose ingestion. Collected blood samples were 

stored on ice and then centrifuged for 10 min at 1600 g to separate the plasma, which was stored at -

20°C prior to the determination of plasma glucose and insulin concentrations. Plasma glucose 

concentration was determined by the glucose oxidase reaction using an automated analyser (YSI Stat 

2300, Yellow Spring Instruments, Yellow Spring, OH). Plasma insulin concentration was measured 

using a commercially available ELISA according to the manufacturer’s instructions (Invitrogen, UK). 

All glucose and insulin assays were carried out in duplicate. Area under the curve (AUC) for plasma 

glucose and insulin was calculated using the trapezoid model. Peripheral insulin sensitivity was 

determined using the Cederholm index (Cederholm and Wibell 1990) which is calculated using the 

formula: 

ISICederholm = 75000 + (G0-G120) × 1.15 × 180 × 0.19 × BW/120 × Gmean × log (Imean) 

Where BW is body weight, G0 and G120 are plasma glucose concentration at 0 and 120 min (mmol·l-1), 

and Imean and Gmean are the mean insulin (mU·l-1) and glucose (mmol·l-1) concentrations during the 

OGTT. The Cederholm Index has previously been shown to correlate well with the gold standard 

insulin clamp method (Piche et al. 2007).  

V̇O2peak Test 

Peak oxygen uptake capacity (V̇O2peak) was determined using a graded cycling test to volitional 

exhaustion on a mechanically braked cycle ergometer (Ergomedic 874e, Monark, Vansbro, Sweden). 
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Subjects cycled at 60 W for one minute after which the resistance was increased by 30 W∙min-1 until 

the pedal cadence could no longer be maintained at 60 rpm. Participants respired through a rubber 

mouthpiece which was connected to an online gas analysis system (Sensor-Medics, Bilthoven, the 

Netherlands). Respiratory volume, flow and levels of expired O2 and CO2 were measured and V̇O2 

was averaged over 10 second periods. V̇O2peak was taken as the highest 10 second value achieved 

during the test. In all tests two or more of the following criteria were met: a plateau in V̇O2 despite 

increasing intensity, RER > 1.15, heart rate within 10 beats of age-predicted maximum, and/or 

volitional exhaustion. 

Training Protocol 

Subjects allocated to the training group completed three exercise sessions per week for 6 weeks, 

completing 18 sessions overall. All exercise sessions lasted 10 minutes in total, including a warm up 

and cool down, which meant a total training time of 30 minutes per week. Each training session 

consisted of low intensity cycling (60 Watts) and one (1st session) or two (all other sessions) all-out 

cycling sprints. Just before each sprint, resistance was removed, subjects increased the pedal 

cadence to their maximal speed, a braking force equivalent to 7.5% of body weight was then applied 

to the ergometer, and participants sprinted against the braking force for a designated time period. The 

duration of the sprints increased from 10 seconds in week 1, to 15 seconds in weeks 2 and 3, and 20 

seconds in the final 3 weeks. A full schematic of the training protocol is shown in Figure 1. Training 

sessions were fully supervised and verbal encouragement was given during each sprint. A rating of 

perceived exertion (RPE) was collected using the 15-point Borg scale (Borg 1970) at the end of the 

first session, and subsequently at the end of each training week, immediately following the completion 

of the 10-minute training session. 

Statistical Analysis 

All data are presented as mean ± SEM. Data were analysed using the commercially available SPSS 

statistics package (PASW Statistics, version 17.0). Three-way mixed-model ANOVAs (gender [male, 

female] × group [REHIT, control] × time [pre, post]) were performed to test the effects of the REHIT 

intervention. For variables with significant gender × time interactions, males and females were 

analysed separately using 2-way mixed model ANOVAs (group × time). Comparisons in RPE data 
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between men and women were made using an independent sample t-test. Significance was accepted 

at P<0.05. 

 



10 

 

Results 

No significant differences existed between the REHIT and control groups at baseline (Tables 1-2). 

There were no changes in weight or BMI following the REHIT training program in any of the groups 

(Table 2). Ten out of fifteen training group participants completed all 18 training sessions (100% 

adherence), with a mean adherence to the REHIT training program of 97% for all subjects combined. 

V̇O2peak 

For V̇O2peak there were significant main effects of gender (P<0.001) and time (P<0.01), and a 

significant interaction effect for group × time (P<0.01): following REHIT V̇O2peak was increased by 

15% in men and by 12% in women with no significant gender difference in this effect (Table 2). These 

results were the same when V̇O2peak was expressed in l·min-1 or ml·kg-1min-1. 

Glucose and insulin responses to the OGTT 

Effects of the REHIT intervention on glucose and insulin responses to an oral glucose load are shown 

in Figure 2, with glucose and insulin AUCs shown in Table 2. As we observed a significant interaction 

effect for gender × time for glucose AUC (P<0.05), results for male and female subjects were 

analysed separately using a two-way mixed-model ANOVA (group × time). No significant effects were 

observed for men. A significant main effect for time for women (P<0.05) indicated that post-

intervention values for glucose AUC were increased, but there was no significant difference between 

the female REHIT and control groups. No significant changes in insulin AUC were observed (Table 2). 

A significant interaction effect for gender × time was also observed for insulin sensitivity (P<0.01), so 

male and female subjects were analysed separately. Following REHIT, insulin sensitivity significantly 

improved by 28% in male subjects (P<0.05), but not in female subjects (Figure 3). 

Rate of Perceived Exertion 

RPE data over the course of the REHIT training program is shown in Figure 4. On the whole, despite 

the incorporation of brief but intense sprints, the training sessions were well tolerated by all of the 

participants. Mean RPE values peaked at the end of session 12 (week 4; 2x20 s), corresponding to 

‘somewhat hard’ and between ‘somewhat hard’ and ‘hard’ in men and women respectively (Figure 
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4A). None of the participants gave an RPE score higher than 15. When mean RPE values over the 

whole training program were calculated, female participants found the training program significantly 

harder than male participants (Figure 4B). 
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Discussion 

In the present study we show that a 6-week novel exercise intervention consisting of very brief, 

manageable sessions is associated with improved insulin sensitivity in sedentary young men, and 

improved aerobic capacity in men and women. The beneficial effects occurred independently of 

changes in body mass and may represent a chronic training adaptation since post-training 

measurements were taken 3 days after the final exercise bout. Importantly, the improvements were 

observed despite the low time commitment (totalling 30 minutes per week) and low required effort: 

RPE peaked at an average of 14 (‘somewhat hard’) in week 4 which is comparable with RPE scores 

reported with prolonged cycling at 50-75% V̇O2max (Borg 1982). This study extends the previous 

literature showing the beneficial effects of HIT (Burgomaster et al. 2007; Babraj et al. 2009; Richards 

et al. 2010; Whyte et al. 2010; Rakobowchuk et al. 2008; Trilk et al. 2010) by showing that the sprint 

number and duration can be substantially reduced whilst still maintaining positive effects. 

Based on current knowledge, when considering the health effects of exercise solely from a 

physiological perspective it is fair to state that more (within reason) is better. In other words, to 

optimise the metabolic, cardiovascular and psychological benefits that exercise can offer, people 

should be encouraged to perform a large volume (at least 30 minutes per day) of both moderate and 

vigorous intensity cardiorespiratory exercise on most days of the week, as well as sessions focused 

on strength and flexibility 2-3 times per week (Garber et al. 2011). However, whilst these guidelines 

may be effective in people who adhere to them, they remain largely ineffective at a societal level 

(Allender et al. 2008), partly because they fail to sufficiently consider the key barriers which prevent 

people from performing regular exercise, such as ‘lack of time’. For exercise prescriptions to have a 

beneficial effect for society there must be a balance between providing adequate health benefits and 

helping to generate motivation to perform exercise by overcoming key barriers. One possible 

alternative strategy could be to define the minimum volume of exercise required to improve health 

indices with the aim of increasing exercise adherence. To date, the training program utilised in the 

current study represents the smallest volume of exercise (when considered per session) that has 

been shown to induce positive effects on health.  
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Insulin sensitivity was increased by 28% in men following REHIT. The magnitude of this change is 

comparable with responses to 2 weeks of classic HIT in recreationally active men and women (Babraj 

et al. 2009; Richards et al. 2010) and in obese men (Whyte et al. 2010). Our results suggest that 

repeated glycogen depletion might be a key determinant of improved insulin sensitivity following HIT, 

at least in young lean sedentary male subjects. However, as we did not determine glycogen depletion 

during the REHIT training sessions this is only speculative, and further studies are required to 

elucidate the mechanisms by which REHIT improves insulin sensitivity.  

The improvements in insulin sensitivity after REHIT appear to be gender-specific as mean insulin 

sensitivity was not improved in the female subjects after the training program. This is in contrast to a 

previous study which did not observe gender differences in the improvements in insulin sensitivity in 

12 recreationally active subjects after 2 weeks of classic HIT (Richards et al. 2010). No other study 

has investigated the effects of HIT on insulin sensitivity in women. Following a traditional aerobic 

exercise intervention in a large cohort, insulin sensitivity improved to a greater degree in men when 

compared with women but (similar to our study) the female participants had a higher baseline level of 

insulin sensitivity which may have impacted on the subsequent training response (Boule et al. 2005). 

The gender differences in the change in insulin sensitivity in response to our REHIT intervention may 

in part be caused by the low statistical power of our study, with only 8 female subjects performing the 

REHIT intervention. However, it can be speculated that differences in metabolic perturbations during 

the brief high-intensity cycle sprints may contribute to the observed gender difference, as women 

have been shown to break down up to 50% less glycogen during a single Wingate sprint 

(Esbjornsson-Liljedahl et al. 2002; Esbjornsson-Liljedahl et al. 1999). From this perspective, it would 

be interesting to determine whether the extent of muscle glycogen breakdown during a REHIT training 

bout correlates with changes in GLUT4 protein content, insulin-stimulated canonical signalling protein 

content and activation, glycogen synthase activity, and insulin sensitivity following the training 

program. Alternatively, it could be that our small sample included several non-responders. Previous 

studies have comprehensively demonstrated that following a period of exercise training part of the 

population will not adapt for specific parameters (non-responders), and for insulin sensitivity this has 

been shown to be the case for up to 40% of the population (Boule et al. 2005; Vollaard et al. 2009; 

Bouchard and Rankinen 2001). Therefore, further studies with larger sample sizes will be needed to 
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confirm or refute our initial observations. Furthermore, the post-intervention OGTT was scheduled 

three days following the final exercise session, and we cannot rule out that insulin sensitivity was 

improved in female subjects at an earlier time-point. Finally, although we did not measure power 

output during the sprints, we observed that some of the female volunteers struggled with the transition 

from 60 W to the all-out sprints, and were unable to substantially increase their pedal frequency, and 

thus their power output during the sprints. This may have increased the aerobic contribution to energy 

supply and reduced glycogen depletion. For sedentary women substituting the 60 W cycling with 

unloaded pedalling may make the sprints more effective.  

Aerobic capacity increased by 15% and 12% in men and women respectively after the REHIT 

intervention, an important observation since a high aerobic capacity is associated with a lower risk of 

cardiometabolic disease (Church et al. 2005; Wei et al. 1999). Interestingly, since women improved 

their aerobic capacity but not their insulin sensitivity, it appears that there is a dissociation between 

changes in aerobic capacity and changes in insulin sensitivity.  

Average RPE values reported on immediate completion of the REHIT training sessions were 

comparable with RPE values obtained during prolonged moderate intensity cardiorespiratory exercise 

at 50-75% V̇O2max (Borg 1982). However, there are limitations to the use of the RPE scale in the 

current study, as the RPE scale is designed for use during (or immediately following) continuous 

exercise at a constant intensity and may not be a valid measure of exertion during interval based 

exercises, especially when values are given retrospective of the most intense exercise, as was the 

case in this study. RPE values obtained in this manner may underestimate exertion during the sprints; 

indeed, other studies where RPE has been obtained following a 20 second all out sprint have 

reported higher values of ~16-18 (Baker et al. 2001; Gearhart et al. 2005). However, we were 

interested in gaining an exertion measure to characterise our entire training intervention and our 

subjects were asked to consider the whole 10 minute exercise session when giving their ratings. 

Whether the effort required to perform REHIT sessions would deter individuals from performing this 

type of intervention is a question to be answered in future studies.  

In conclusion, in this study we have shown that a very brief and feasible exercise intervention is 

associated with improvements in metabolic health and aerobic capacity. Our findings suggest that this 
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REHIT protocol may offer a genuinely time-efficient alternative to HIT and conventional 

cardiorespiratory exercise training for improving risk factors of T2D.  
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Table 1 Subject Characteristics 

 Training  Control 

 Male (n=7) Female (n=8)  Male (n=6) Female (n=8) 

Age (y) 26±3 24±3  19±1 21±1 

Height (m) 1.74±0.02 1.62±0.02  1.78±0.03 1.65±0.03 

Weight (kg) 73.7±6.0 59.7±2.7  80.5±6.6 60.8±5.3 

SBP (mm Hg) 126±4 118±3  126±4 120±4 

DBP (mm Hg) 74±3 74±3  71±3 73±3 

SBP: systolic blood pressure; DBP diastolic blood pressure 

Data shown are mean ± SEM 

 

 

Table 2 Effects of REHIT on BMI, V̇O2peak, and glucose and insulin AUC 

 Male Female 

 REHIT (n=7) Control (n=6) REHIT (n=8) Control (n=8) 

 Pre Post Pre Post Pre Post Pre Post 

BMI (kg·m-2) 24.4±1.9 24.0±1.7 25.2±1.6 25.3±1.6 22.7±1.1 22.8±1.3 22.3±1.4 22.3±1.4 

V̇O2peak (ml∙kg-1·min-1) 36.3±2.2 41.6±1.5 * 38.0±2.7 38.0±2.3 32.5±1.5 36.4±1.3 * 32.9±2.1 31.6±2.1 

Glucose AUC (mmol·min·l-1) 789±65 695±53 762±41 801±55 671±67 712±76 ^ 748±108 850±93 ^ 

Insulin AUC (mU·min·l-1) 11713±1829 7147±1152 8728±1914 9944±2089 7399±1393 8599±1728 6734±1427 7970±1477 

Note: Male training group V̇O2peak data is shown for n=5 and female training V̇O2peak is shown for n=6 due to 

technical problems during the pre-training tests. 

Data shown are mean ± SEM 

*: P<0.01 for the group × time interaction effect 

^: P<0.05 for the main effect of time in women 
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Figure 1 REHIT training protocol 

 

Figure 2 Effects of REHIT on glucose (A-B) and insulin (C-D) responses to an OGTT in men (A-C) 

and women (B-D). Solid dots: REHIT group, open dots: control group; dotted lines: pre, solid lines: 

post. 

 

Figure 3 Effects of REHIT on insulin sensitivity (Cederholm Index) in (A) men and (B) women.  

* P<0.05 for the group × time interaction effect 

 

Figure 4 Rate of perceived exertion for REHIT training sessions (A) and gender differences in the 

mean RPE score over the REHIT training intervention (B).  

* P<0.05 men vs. women 

 


