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Highlights

A novel finite element approach for solution of the Boltzmann-BGK equation.
Nano-particle drag prediction.

Drag predictions are aligned well with alternative numerical approaches.
Significance of molecular wall absorption assumptions demonstrated.
Applications in a range of fields, including medical, is outlined.



Nano-particle drag prediction at low Reynolds number using a direct
Boltzmann—-BGK solution approach

B. Evans®*

Abstract

This paper outlines a novel approach for solution of the Boltzmann-BGK equation describing molecular gas
dynamics applied to the challenging problem of drag prediction of a 2D circular nano—particle at transitional
Knudsen number (0.0214) and low Reynolds number (0.25 - 2.0). The numerical scheme utilises a discontinuous-
Galerkin finite element discretisation for the physical space representing the problem particle geometry and a
high order discretisation for molecular velocity space describing the molecular distribution function. The paper
shows that this method produces drag predictions that are aligned well with the range of drag predictions for
this problem generated from the alternative numerical approaches of molecular dynamics codes and a modified
continuum scheme. It also demonstrates the sensitivity of flow-field solutions and therefore drag predictions to
the wall absorption parameter used to construct the solid wall boundary condition used in the solver algorithm.
The results from this work has applications in fields ranging from diagnostics and therapeutics in medicine to

the fields of semiconductors and xerographics.

Keywords: mnano—particle, drag, Boltzmann, molecular dynamics, discontinuous Galerkin, finite element

1. Introduction

1.1. Background to the Problem

As the scale of possible practical engineering structures continues to reduce to the nano—scale, the demand
to be able to predict the behaviour of such structures of this size within fluid flows is becoming increasingly
significant. The principles of molecular biomechanics have, in recent years, allowed the development of microscale
devices that are sub 100nm in length-scale [1]. To put this into context, a red blood cell has a diameter of the
order 6,000-8,000nm[2], a rod—shaped E-coli bacterium has a length of 2,500nm [3], a human DNA molecule has
a typical length scale of the order 2-3nm[4] and an individual atom is typically a fraction of a nano—metre.

Nano-scale devices (or nano—particles) can be made of a range of materials including lipids, metals and
natural or synthetic polymers[5] at length scales ranging from 1 to 100nm. They have been employed in medical
applications for both therapeutic and diagnostic purposes over the past two decades [5]. It has, more recently,
been acknowledged [6] that an improved understanding of the mechanical forces (drag) acting on particles at
this scale will result in significant improvements in, for example, the efficacy of targeting of cancer molecules
in therapies involving the use of nano—particles for cancer treatment delivery [7]. Nano—particles used for this

type of drug delivery are now being trialled at scales of sub 10nm [8]. In the work of Kingsley et al [9] and
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Uhrich et al [10] it has been noted that despite the use of nano-scale therapeutic devices in medicine for many
years, targeting capabilities are still poor and that this is largely due to inabilities to predict drag forces on
nano—devices accurately.

Other applications involving nano—particles that would benefit from improved flowfield simulation capabilities
include applications in the semiconductor, pharmarceutical and xerographic fields [11]. For example, the drag
force on nano—particles has been used [12] to ‘clean’ structured nano-scale surfaces.

The forces acting on a particle at the molecular scale can be sub-divided into three types: mechanical, thermal
and chemical. This paper explores a modelling method that considers the first two (mechanical and thermal) of
these force types. The mechanical (viscous) force is of fundamental importance in diffusion processes whereas the
thermal (collisional) force is defined as that which takes place when molecules collide with each other. Thermal
forces tend to drive movement within a molecular flowfield and (as will be shown) are the dominant source of
drag on a nano—particle.

A review of the literature quickly leads to the conclusion that modelling the drag on particles below 100nm
in dimension remains a highly challenging topic of study. This is exacerbated by the fact that at this scale there
are no direct analytical solutions or experimental data available with which to compare simulation results. The
majority of work in this field has been undertaken by practioners using either a boundary condition adapted
continuum approach [13] or a molecular dynamics approach [5] and different schemes produce relatively large
differences in predicted drag coefficients as a function of Reynolds number in the transitional region of the
Knudsen regime. For this reason, this paper focusses on the solution of a relatively simple problem i.e. predicting
the relationship between the drag coefficient, C; and Reynold’s number, Re between Re = 0.25 and Re = 2.0
at a Knudsen number, Kn of 0.0214 on a 2nm diameter 2D circular particle in a channel of width 8nm (shown
in Figure 1) since there is a range of simulation data available [5, 13, 14] against which the direct Boltzmann

solution results can be compared.
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Figure 1: Particle geometry considered in this paper (adapted from [5])

In the remainder of this section of the paper the macroscopic and molecular approaches for studying fluids
will be compared and contrasted in the context of the Knudsen regime before the Boltzmann and Boltzmann—
BGK equations are introduced. This is followed by a literature review detailing approaches for solving the
Boltzmann equation and phenomenological molecular modelling schemes that claim to produce solutions to the
Boltzmann equation. In Section 2 the novel discontinuous—Galerkin finite element scheme for Boltzmann-BGK
equation solution is outlined including a discussion on the implementation of the necessary boundary conditions

at which point the important ‘wall absorption parameter’ is introduced. Section 3 sets out the results from the



set of simulations conducted as part of this work including flow—field predictions and drag coefficient predictions.
These results are discussed and compared with results from molecular dynamics codes and a modified continuum
(Navier—Stokes) approach. Finally in Section 4 the conclusions from this study are summarised and future work

and potential improvements to the solver are outlined.

1.2. Fluids modelling approaches

A gas flow may be modelled at either the macroscopic or microscopic level. At the macroscopic level we
must make the assumption that the gas properties can be regarded as continuous variables. If this assumption
is reasonable then the Navier—Stokes equations provide the appropriate mathematical description of the physics
of the flow.

We can classify a gas flow in terms of a non—dimensional parameter called the Knudsen number (Kn), defined

as

Kn=— (1)

where A is the mean free path of molecules in the flow, i.e. the average distance travelled between collisions, and
L is some typical length scale in the flow. The traditional ‘rule of thumb’ for continuum assumption validity is
that Kn should be less than 0.1 [30]. This can be misleading if L is chosen to be some overall dimension of the
flow in order to define a single global Kn for the flow. The limit can be defined more precisely if we define a
local Kn with L

_ P
N dp/dx @)

as the scale length of the macroscopic gradients where p is the fluid density. The Knudsen number limits on

the conventional formulations to describe gas flows is shown schematically in Figure 2

Discrete Particle / COLLISIONLESS

Mol BOLTZMANN EQUATION BOLIZIANY

Continuum EULER NAVIER - STOKES
Model EQS EQS

0 /\4111 01 1 10 1m/\/ ®

Local Knudsen Number T

Figure 2: The Knudsen Regime [18]

This paper focusses on flows in the low Reynolds, Re region (Re = 0.2 — 2.0) at a global Knudsen number
(based on particle diameter) of 0.0214. This places the problem in the ‘transitional’ region in the Knudsen
regime where the validity of the traditional Navier—Stokes approach is beginning to break down, particularly

with regards to the ‘no slip” wall boundary condition. It is for this reason that a direct Boltzmann equation



solution approach (which in principle is valid across the full range of Kn) has been chosen and compared with

both molecular dynamics solutions to this problem and boundary condition modified Navier—Stokes solutions.

1.8. Background to the Boltzmann—-BGK Equation and solution approaches
1.3.1. The BGK simplification to the Boltzmann Equation

It will be useful at this stage to introduce the Boltzmann equation and its ‘BGK form’ simplification. Note
that its derivation can be found in the following references [30, 62, 61]. The full Boltzmann equation can be
written as,

onf) . 0(nf)

onf) 1
o o TF e T m Y )

where f = f(r,c,t) is the distribution function, n is the molecular number density, F' describes any force fields

(gravitational, electrostatic etc) that might be present and Q(f, f) is the term accounting for molecular collisions.
Note that ¢ here refers to the molecular velocity.

The Boltzmann equation is an integro—differential equation and analytical solutions are restricted to extremely
simple applications [59, 60]. The term Q(f, f) is a five-fold integral, in three spatial dimensions, and is the
source of many of the difficulties in solving this equation. As a result of this, simplification of the Boltzmann
equation is usually focussed on some form of complexity reduction of the collision term. The most useful
of these simplifications by Bhatnagar, Gross and Krook [62] relies on the assumption that departures from
thermodynamic equilibrium are relatively small and that the effect of collisions is to return a non—equilibrium
molecular velocity distribution to equilibrium at a rate proportional to the molecular collision frequency such
that the Boltzmann-BGK equation becomes,

0 Onf) o Onf) _
Snf)+ e D PEED — o (nfo) - (nf). @

where v(r,t) is a term proportional to the molecular collision frequency and fy is the local Maxwellian

equilibrium distribution function defined as,

3
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in 3 dimensions where ¢g is the bulk velocity of the flow and 8 = (2RT)~/? = \/W R is the gas
constant, T is the gas temperature measured in Kelvin, m is the molecular mass and k is the Boltzmann constant
(1.380 650524 x10~23 Joules/Kelvin). A helpful derivation of the Maxwellian distribution function is provided
by Vincenti and Kruger in [61]. The inclusion of the equilibrium distribution function in the BGK term means
that the Boltzmann-BGK equation is still a non-linear, integro—differential equation because fy is a function
of the stream velocity, ¢ and the temperature, 7', which are obtained by taking integrals over f. However,
computationally, the BGK term is significantly less demanding than the full Boltzmann equation right-hand side

term. Solution of the Boltzmann-BGK equation will form the basis of all of the work presented in this paper.

1.8.2. Direct solution approaches for the Boltzmann equation
A class of methods that has the Boltzmann equation at its heart, although cannot be truly regarded as
providing solutions of the Boltzmann equation, are lattice Boltzmann methods (LBMs), [19]. The LBM is a

mesoscopic particle-based approach to simulate fluid flows and has become a serious alternative to traditional



methods in CFD for certain applications. The LBM is often derived from the simplified Boltzmann-BGK
equation (see section 1.3.1). In lattice gases, particles ‘live’ on the nodes of a discrete lattice. Particles ‘jump’
from one node of the lattice to another according to their discrete velocities. This highly simplified view of
the propagation of molecules differentiates it from the true Boltzmann solver detailed in this work in which no
restrictions are placed on possible molecular velocities. In the LBM approach, particles may collide and acquire
new discrete velocities in the ‘collision phase’. This method is applied to three dimensional flows in pipes and
around a sphere at moderate Reynolds numbers by Rossi et al [20] and an example of the treatment of boundaries
is provided by Yu, Mei and Shyy [21]. There are many cases of the LBM being applied to microchannel flows,
thermal problems and mesoscale flows in the literature [22, 23, 24]. However, the author is unaware of any
successful attempts to use the LBM approach for nano—particle drag prediction in the literature.

A class of methods known as discrete velocity models (DVM) [25, 26, 27] exist that have much in common
with the LBM. Succi [28] provides a comparison of the LBM and DVM pointing out that even though they are
close relatives in mathematical terms (since they are both based on grid-bound particles moving with a set of
discrete speeds), the DVM remains more faithful to the underlying kinetic theory whereas the LBM is more
concerned with ‘capturing hydrodynamic phenomena’; i.e. it is a more phenomenological methodology. There
are molecular interaction ‘simulation’” methodologies that have been linked with the Boltzmann equation with
sufficient rigour that they have been regarded as ‘solutions’ of the equation [29]. One such technique is the direct
simulation Monte Carlo (DSMC) method pioneered by Bird [30]. In the strictest sense, the DSMC method is
merely a phenomenological model, simulating the gas molecules rather than being derived from fundamental
theory. The DSMC method is, however, extremely popular for simulating rarefied and highly non—equilibrium
gas flows [31, 32, 33] because of its efficiency and parallelisability [34]. The method uses a probabilistic Monte
Carlo approach in the tracking of simulation molecules, representing a large number of real molecules, through
physical space and in the modelling of inter-molecular collisions and molecule—surface collisions.

A family of numerical schemes which may be generically described as ‘kinetic schemes’ exist [35, 36, 37, 38,
39, 40]that are designed specifically for the analysis of high Knudsen number flows. The method involves a
Chapman—Enskog expansion analysis [41] of (usually) the Boltzmann-BGK equation to form a set of equations,
similar in form to the Navier—Stokes equations, but including additional terms to account for the inter—molecular
interactions and molecule—surface interactions. This removes the need for any kind of ‘special’ boundary treat-
ment for high Knudsen number flows using the standard Navier—Stokes equations. One popular variant of such
types of scheme is the Kinetic Flux Vector Splitting method [42, 43, 44]. This scheme employs a particular type
of upwinding based on the flow physics at the Boltzmann level rather than the Euler/Navier-Stokes level. Tt is
important to note that such methods are not direct solutions of the Boltzmann equation.

There are a limited number of direct numerical Boltzmann solvers detailed in the literature at the time of
writing. Aristov [45] provides a general overview of discretisation approaches, especially focussing on the discreti-
sation of velocity space. However, in physical space, he is limited to a finite difference approximation. Analysis
of the literature on direct numerical approaches makes it clear that one of the principal difficulties in solution
of the Boltzmann equation lies in the right—hand side collision term. A ‘spectrally accurate approximation of
the collision operator’ is presented in [46] and [47]. In [48], a second order upwind finite difference scheme is
applied to the simplified BGK and higher moment models of the Boltzmann equation. Other approaches to
direct Boltzmann equation solution procedures do exist [49, 50, 51, 52] including a limited number of approaches

[63, 54, 55, 56] involving a finite—element discretisation approach in physical space. In each of these cases the



application has been highly simplistic (and in most cases restricted to 1D) with no attempts (to the author’s
knowledge) to tackle the problem of nano—particle drag prediction.

The idea behind the approach presented in this paper was first outlined by Evans et al [57]. In this paper,
the general methodology was applied to the collisionless form of the Boltzmann equation (valid for high Knudsen
number flows) and used to analyse a rarefied shock tube example and rarefied subsonic flow over a vertical plate.
This work was extended in [18] to include the BGK collision term in the formulation but applications were
restricted to rarefied macroscopic gas flows. This paper presents the results from the first application of this

method to nano—scale flows.

1.4. Alternative Solution Approaches

This section will briefly outline the solution approach that are being contrasted within this paper. For a more

detailed description of the algorithms the reader is referred to [5, 13].

1.4.1. Molecular Dynamics

In a computational molecular dynamics approach, the physical movements of atoms and molecules are simu-
lated and is thus a type of ‘N-body’ simulation. Atoms and/or molecules are allowed to interact for a fixed period
of time, based on clearly defined interaction laws, giving a view of the dynamical evolution of the system. In the
most common version, the trajectories of simulated particles are determined numerically using Newton’s equa-
tions of motion in which the inter—particle forces are determined based on interatomic potentials or molecular

mechanics force fields.

1.4.2. Modified Boundary Condition Continuuwm Approach

As the Knudsen number of a flow field is increased through the transition region (Kn = 0.01 — 0.1) the first
difference that is noticed between continuum solutions and molecular level solutions is the behaviour of the flow
field near solid boundaries. The traditional ‘no slip’ wall boundary condition is observed to break down and
therefore attempts have been made [13, 15, 16] to model transitional flows with a continuum solver by simply
modifying the wall boundary condition to match observations in flows at various higher Knudsen numbers. For
more information on such approaches the reader is directed to an overview of Navier—Stokes based transitional

modelling approaches in [17].

2. Boltzmann-BGK Discontinuous—Galerkin Finite Element Solution Approach

2.1. Physical and Velocity Space Discretisation
The solution approach for the Boltzmann-BGK equation used in this work will be briefly explained in this

section. For a full description of the algorithm derivation the reader is referred to [18].

As the single dependent variable, the velocity distribution function, in the Boltzmann—BGK equation is
defined across both physical space and wvelocity space a suitable discretisation approach must be adopted for
both domains. The two dimensional physical space domain, €2, is discretised into an unstructured assembly
of discontinuous, linear, triangular elements with nodes at the vertices as shown in Figure 3. A discontinuous

discretisation approach was chosen in order to naturally capture solution discontinuities such as shock waves.
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Figure 3: Physical space discretisation using an assembly of discontinuous, unstructured, triangular elements

The corresponding two dimensional velocity space domain, 2., is, in principle, infinite in extent i.e. there is
no natural limitation on the maximum speed of a molecule. However a finite limit, r,, must be placed on the
radial extent of the domain. The guide that was used on this limit in this work is that the limit of the velocity
space should be several times larger than the mean thermal (peculiar) molecular velocity [30]. The assumption
underpinning this guide is that the number (or fraction) of molecules travelling with a molecular speed higher
than this cutoff limit have a negligible effect on the bulk properties of the flow. The validity of this assumption
was tested in the previous work using the Boltzmann—-BGK approach for studying high Kn macroscale flows
[18]. This is justified when the molecular distribution functions are plotted (in Figures 17 - 19 in Section 3.2).
These show the the product nf tails off rapidly towards zero as the magnitude of the molecular velocity increases
beyond one or two thermal velocities. The velocity space dé)vmain description is shown in Figure 4.

Extent of V-space ~ several
thermal velocities

N

Cx

Figure 4: Velocity Space Domain

As the velocity space domain contains no internal geometries it can be discretised as a single high order
(spectral) element. This is advantageous for efficient integration over the domain. It is convenient to map the
domain from polar coordinates in real space into a quadrilateral element in the (1, () plane, shown in Figure 5,

using the transformation

n=%—1
Ty
0
(= (6)
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where (1, 0) are polar coordinates in real v—space and r, is the radius of the v—space domain, i.e. the maximum
molecular speed. A high order quadrature method is then applied to the element. In the 5 direction, a Lobatto
quadrature is applied whereas in the ¢ direction a constant spacing / constant weighting discretisation is applied.
This results in a rotationally symmetric distribution of sampling points with no preferred radial direction, when
the points are mapped back into real space. The coordinates of the quadrature points and the associated
weightings in the (1,() plane are shown in Figure 6 for a (20 x 20) discretisation. If these points are then
mapped back into real space, the (u,v) plane, the corresponding coordinates and weights are as shown in Figure
7.

-1

+1

------ -1

Figure 5: A Standard Quadrilateral Element in the (7, () Plane

2.1.1. Equation Discretisation
A two-step discontinuous Taylor—Galerkin [63, 64] approach is implemented taking advantage of the approx-

imation

m+i m At m At 6(nf)J ‘m
D) =+ (Ghan - a2y ™
where @ is computed as Q = v(r,t)((nfo)—(nf)) with fy representing the Maxwellian equilibrium distribution
function, given in equation (5), modified to its two dimensional form, fo(c) = (82/7) exp(—B%(c — ¢o)?) and v

is the molecular collision frequency determined as

+oo
v(r,t) = / orle —e1|f dex (8)

—o0
where o is the total collision cross section [30]. If we make the assumption of hard sphere molecules, we obtain
the simplest possible expression for the total collision cross section, o7 = wd?, where d is the molecular diameter.

Step 1

A piecewise-constant increment A(nf),e ¢ is computed on each physical space element according to

At At . ON,
TZQk,CNk -5 Lk 6_1":6 9)

re,C

A(nf)re,c =
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Figure 6: Quadrature Coordinates and Weights in the (7, ) Plane

where the summation k extends over the three nodes of element re, At is the global timestep governed by the
Courant stability condition [18]. Nj, is the standard, piecewise-linear finite element shape function associated
with node k in physical space and

iTI?,C =F; ((”f)?c) = C(”f)Z?c- (10)

The element fluxes at the half-timestep are then approximated by the piecewise linear discontinuous represen-

tation

™ 00 = F((0f)e + A f)re.c) N (11)
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Coordinates of sampling points in the u-v plane
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Second Step
A piecewise-linear approximation for A(nf) on each physical space element is assumed which is discontinuous
at the element edges. The element nodal values of the solution increment over the complete timestep are
determined according to
m+% aNk

MplreA(nf)pe = AML],.Q™ 2 + At /F Fle > Npdlye — At /Q Fie’ 5 dec (12)

re

where M), is the standard, lumped, 3x3 physical space element mass matrix, F:Ln Z H denotes the normal
component of the upstream flux at the physical space element edges for a velocity of ¢, I',.. is the physical space
element boundary and €2,.. is the physical space element domain.

For inter—element edges, the direction of the flux across the edge must be calculated based on the convection
velocity. The convection velocity is determined by the v—space mesh node under consideration. If the flux is
‘into the element’, the integral in the first term on the RHS of (12) is given a value based on the corresponding
upstream element edge flux. If the flux is ‘out of the element’, the same term is given a negative value based on
the normal edge flux at that edge in the element. This ensures the local conservativeness of the scheme, since
the fluxes of the distribution function are transferred directly from one element to the next.

In the BGK formulation shown here, the term v is regarded as a collision frequency term and governs the
rate at which the distribution function is restored to equilibrium. The form of the BGK collision term is such

that the distribution function will be restored to equilibrium in a timescale,

T = O(l) (13)

v

This places a further restriction on the allowable timestep size

1
At < " (14)

in addition to the Courant condition. Note that the Courant condition is dictated by the maximum molecular
speed in the velocity space discetisation and therefore the choice of velocity space limit can affect the timestep
used. In future work it might be possible to study the most effective velocity space limit for a given problem
which maximises the allowable timestep size for a given solution accuracy but that was deemed beyond the scope

of this work.

2.1.2. Boundary Condition Application

There are a range of potential approaches to deal with boundaries in the context of solution of the Boltzmann
equation as detailed in the literature [65, 66, 67]. In this work application of the boundary conditions in the
algorithm is achieved by an appropriate modelling of F:ln g H in the first term on the right-hand side of equation
12. Essentially three types of boundary need to be considered; inflow, outflow and wall. Note that a more
extensive discussion of the boundary condition implementation can be found in [18].

Inflow

The assumption is made that the gas flow entering the physical space domain is in thermodynamic equilibrium
with prescribed macroscopic properties. As such, for molecular velocities directed into the physical space domain

at an inflow boundary the inter—element flux is constructed as

11



F:Lng% = c.n(%Q)exp(—B%C —Co))- (15)

(8%/7) exp(—B%(c — ¢o)) is the Maxwellian distribution function in two dimensions. If the molecular velocity is
directed out of the physcial space domain the flux is computed as usual according to equation 10.

Outflow

At a physical space domain boundary flagged as an outflow the assumption is made that the gradient of
macroscopic variables is zero perpendicular to the boundary and that the underlying molecular velocity distribu-
tion function is constant across the boundary. Therefore fluxes both into and out of the domain are constructed
based on values inside the domain. This approach requires that outflow boundaries are positioned sufficiently
far downstream for any unwanted reflection effects to be negligible.

Wall

At a wall the condition that must be enforced is zero mass flux across the boundary. In a molecular kinetic

+oo
/ / F,cdedl, =0 (16)
I'.J—c

where F,, ¢ = (e.n)f(c,7,t) and T'; is the section of the p-space domain boundary across which we wish to

theory description this is expressed as

enforce zero mass flux. This condition is ensured by an appropriate modelling of molecular collisions with the
wall. We make the assumption that a certain fraction, «, of molecules are absorbed by the wall and remitted in
equilibrium with wall, i.e. they are reflected back into the domain with a Maxwellian distribution based on the
wall temperature. This is termed diffuse reflection. The remaining fraction, (1 — «), are not absorbed by the
wall and simply reflect directly back into the domain. This is termed specular reflection. These two models, for
the interaction of a flux of molecules with a solid surface, was first suggested by Maxwell [68]. The term « is
referred to as the ‘absorption coefficient’ in this work and is analagous to the ‘wall roughness parameter’ used in
molecular dynamics simulations [5]. It will be shown that this parameter has a powerful effect on the predicted
flowfields (and therefore particle drag) under the conditions simulated.

The distribution function of the net reflected flux of molecules is, therefore, constructed as

fle,rt) = (1 — a)Rf(c,m,t) + aMf(c,7,t),  for en <0 (17)

where
Rf(c,r,t) = f(c — 2n(n.c),rt) (18)
Mf(e,r,t) = n(r,t)My(c) (19)

and mn is the outward facing unit normal at the wall. If T}, is the wall temperature and R is the gas constant,
then M,, is determined as
2
c
20
5 RTw) (20)

The parameter 7 is used to enforce the zero perpendicular mass flux condition using the method outlined in [18].

M, = eXp(_

12



2.1.3. Post—processing for macroscopic variables
Given that the dependent variable f is a probability distribution function for the molecular speed, at each

point in physical space the mean value of any molecular quantity, @, is defined as
o=/ asede (21)

By setting @ to the appropriate molecular quantity, we can obtain the macroscopic properties as follows:
-density p: @ = m where m is the molecular mass
-bulk velocity v;: Q = ¢;
-static pressure p;: @ = mc}?> where ¢} = ¢; — v; (thermal / peculiar velocity) To determine the temperature,

we simply use the definition of kinetic temperature,

p

T, = —. 22
= (22

We evaluate the integral in equation (21) by transforming the coordinate system from the real v—space

coordinates to the (1, () plane. Moving from Cartesian to polar coordinates gives us

ou U .
u=rcosf = 5—00597%——7“51119
. v v
v=rsinf = e =sinf, — 50 =rcosé. (23)

The Jacobian, J, of the transformation from Cartesian to polar coordinates is, therefore,

ou
[J| = gg gg =rcos?f +rsin®f =r (24)
ar 09
so that . e
Q—:/ Qf(c)de = / Qf(r,0)rdrdd. (25)
—o0 - 0
The mapping from the real polar v—space to the (7, () plane gives
T or 1, Or
5 (1+1) = o= 2
00 00
0= —=0,—= 26
N e (26)
so that the Jacobian, .J, of the transformation is
ar 0 Ty
| an ac - Ty
1= % g g - (27)
an 0
We can rewrite equation (25) as
_ +1 41 2
o= [ [ ermoTEasnaac (25)
-1 —
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so that the integral in equation (21) may be evaluated using the high order quadrature method as

N
- N
Dz wi(nf)ilJ|
where the summations are over all the v—space sampling points in the discretisation, w; is the weighting associated
2
with the point and |J| = == (n; +1).

The macroscopic variables are calculated at the element nodes. For post—processing of the results, data

defined at the mesh nodes is required. This is achieved using the simple element weighted averaging procedure.

Qi _ Z?:l Ai@
Z;L:l A;

where @), is the value of the macroscopic variable at the mesh node, the summations are over each discontinuous

(30)

node, i, meeting at the mesh node, A; is the area of the element associated with discontinuous node i and Q; is

the value of the macroscopic variable at discontinuous node 1.

2.1.4. Parallelisation

Due to the large memory requirement involved in discretising both physical and velocity space domains,
parallelisation of the algorithm is required for realistic problems to be tackled (even in two dimensions). The
code has therefore been parallelised via physical space domain decomposition utilising the METIS family of

graph partitioning libraries [69]. For more details you are referred to [18].

3. Results

In this study, a set of 24 steady simulations was undertaken at a range of Re between 0.25 and 2.0 (the
conditions for this set of simulations is summarised in Table 1). The details of the particle geometry under
consideration is shown in Figure 1. The channel was extended a distance of 10nm upstream and 20nm downstream
in order to avoid unwanted reflection effects from the inflow and outflow boundaries. The bulk flow was considered
travelling from left to right, relative to Figure 1 with standard inflow boundary conditions applied to the left-hand
boundary and standard outflow boundary conditions applied to the right-hand boundary. All other boundaries
(including that defining the particle) were considered to be solid walls. At each discrete Re considered, a
simulation was run with the wall absorption parameter, « first set to 0.9 (as recommended in the literature for
boundary conditions of this type for macroscopic flows [68]) and then modified to the upper limit of 1.0 (purely
diffuse reflection) and lower limit of 0.0 (purely specular reflection) in order to analyse the effect of this parameter
on the solution.

Following a phase space discretisation convergence study it was determined that a suitable physical space
discretisation for this problem was as shown in Figure 8. This physical space mesh consists of 29,261 elements (3 x
29,261 = 87,783 discontinuous nodes). The velocity space mesh was disretised using 1,600 nodes resulting in total
of 1,600 x 87,783 ~ 140M degrees of freedom in the system. Each steady state simulation was run across 32 cores
(distributed over 2 nodes) of an Intel Xeon Sandy Bridge based PC Cluster (utilising Infiniband interconnect).
Convergence to 5 orders of magnitude reduction in the L2 (Euclidean) norm of nf across phase space (which

equated to approximately 3 significant figure accuracy in the drag coefficient) took approximately 24hrs wallclock

14



T AVa A AVAVAVAVY PVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAN
YAy AVAVAV ey AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAW
Ay VAV o AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY b

aTaRAvYy A W Ahy‘u"l'AV‘VAVAYAVAVAVAVAYAVAVAYAVAVAVAVAVAVAVAVAb
v, AANNAS NAYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA VS

v
AT A0
< YAVLY,
A arany A
¥ 17
an

0
Yoy,
e

Al
")

vy,
2000

TANATAVAYAY
v,

N

EaYAVAYAVAN

FAAVAVA)

e
““ “%

%
5

Figure 8: Unstructured triangular Physical space mesh used for simulations comprising 29,261 elements (87,783 discontinuous nodes). Note

that 12 layers of quasi-structured (triangular) boundary layer mesh is utilised.

time. The problem set up and computational resource requirements for the simulations is summarised in Table

1.

3.1. Drag Prediction Comparison

Table 2 summarises the computed drag coefficient, Cy for each of the 24 simulations in this study. It is
clear that at each « setting the predicted Cy reduces asymptotically with Re,,. Also, as you might expect, the
a = 1.0 Cy values are much closer to the a = 0.9 values than the a = 0 results. It is also clear already that the
« setting has a significant impact on the predicted drag. Given that this parameter is analagous to the surface
roughness parameter, f utilised in a molecular dynamics simulation approach, this is perhaps not surprising since
the results of Hafezi et al [5] also indicate that predicted drag coefficients in this regime are highly dependent
on f. The final row in Table 2 indicates the standard deviation of the three predictions of Cy at each Re..
Clearly the absolute dependence on « is tending to decrease with increasing Res, (as the magnitude of Cj is
also decreasing). In percentage terms the variation of C; with « remains roughly constant.

Figure 9 shows the results from Table 2 plotted and compared with the molecular dynamics results of Hafezi
[5] and Tang [14] and results from the modified continuum approach of Lagree [13]. The solid line indicates
the results from the finite element Boltzmann-BGK solver (this work) with o = 0.9 (since this was the a priori
assumption on the most suitable setting for «) with the error bars indicating the range of solutions possible
over the a range 0.0 (lower) to 1.0 (upper). The two dashed lines show the solutions of Hafezi with f = 0
(lower) and f = 1 (upper), the dotted line indicates the continuum predictions of Lagree and the ‘dot-dash’
line indicates the molecular dynamics solution of Tang under the same conditions but with Argon gas modelled

(rather than Methane). Clearly, given the range of discrepancy in existing solutions to this problem (and absence
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Parameter Value
Kng 0.0214
Reo 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0
Gas Methane
Gas constant, R 518 J/Kg K
Molecular diameter, d 414e-12m
Molar mass, M 16g

Geometry
p-space mesh
v-space mesh

DoFs
Ty
@
compute
No. timesteps

wallclock runtime

2nm diameter circular particle, 8.2nm wide channel
29,261 elements (87,783 discontinuous nodes)

16,000 nodes
140 million
2,000 m/s

0.0,0.9,1.0

32 cores
~ 150,000 to converge (3sf drag)
24hrs

Table 1: Summary of simulation conditions and computational requirements

Kneo 0.0214
Reso
e 025 05 075 1.0 125 15 175 20
0.9 182 110 65 45.9 30.2 255 24.7 23.1
0.0 104 571 323 21.1 159 132 126 10.1
1.0 186 120 755 486 321 26.2 248 23.5
Stand. Dev. 379 276 184 124 76 59 57 6.3

Table 2: Drag coefficient, Cy results summary showing the variation in drag prediction with Re and «. Note that the standard deviation is
based on the three « settings considered at each Re.
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of experimental data or analytical solutions) the direct Boltzmann-BGK solution approach provides remarkably
consistent predictions, most closely aligned with the molecular dynamics results of Hafezi et al. However,
it must be noted that the direct Boltzmann-BGK solution approach presented here is more computationally

expensive than the molecular dynamics approach of Hafezi whose simulations converged to steady state in a
similar timeframe but parallelised across only 8 cores.

200

Boltzmann-BGK

—_ - - = MD Methane f=0 (Hafezi)
- - = MD Methane f=1(Hafezi)

wo— N e Continuum (Lagree) ||

=+=-=-MD Argon (Tang)

160

140

120 T

3 100

80

60

40 —

20 —

25

Figure 9: Drag coefficient, Cy prediction comparisons

3.2. Flowfield Analysis

Three discrete Re values were chosen (Re = 0.25,1.0,2.0) in order to study the predicted flowfields. Figures
10, 11 and 12 show the normalised pressure (p/ps) and normalised bulk flow speed (|v|/|v|,) in the vicinity
of the nano—particle. Note that only the & = 0.0 and o = 0.9 flow-fields are shown since the o = 1.0 solutions
were so similar to the a = 0.9 solutions.

It is immediately evident that the wall absorption parameter, o has a dominating impact on the flowfield
predictions (and hence the particle Cy values). The differences between the flowfield solutions with « appear to
be highest at the lower Re., considered. This observation seems to correlate with the findings of Hafezi et al
[5] with reference to the impact of the wall roughness parameter, f. It is clear, particularly at higher Re, that
the effect of increasing « is similar to the impact of enforcing a the ‘no slip’ boundary conditions in a continuum

solver. Given the definition of « (i.e. the percentage of molecules absorbed into the wall and remitted with
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Figure 10: Predicted flow-field solutions at Reoo = 0.25 showing p/pec and |v|/|v|_ at a = 0.0 ( (a),(b) ) and a = 0.9 ( (c),(d) )

the thermal properties of the wall) this is to be expected. Given the dominance of the effect of o parameter on
drag prediction at these small scale, low Re flows, this does beg the question of how one should make ‘a priori’
decisions on the appropriate setting for « for a given case. This is still a largely unanswered question since there
is so little alternative analytical, empirical or numerical data to compare solutions to.

It is also interesting to note that at these low Res, values the variations from freestream conditions in
the velocity field are much larger than the deviations from freestream in the pressure field in all of the cases

considered.

Figure 13 details the definitions of two lines (1234 and 5678) with 8 disrete coordinate points (1,2,3,4,5,6,7,8)
at which the flowfield behaviour and underlying molecular behaviour has been analysed. These lines were chosen
to allow comparison with the results of Hafezi et al [5].

Figures 14, 15 and 16 show the normalised (v;,v,) bulk velocity components along lines 1234 and 5678 (with
reference to Figure 13. The solid line in these figures represents the o = 0.9 solution, the dotted line represents
the a = 0.0 solution and the crosses represent the a = 1.0 solution. It is evident that the percentage deviations
in the bulk flow velocities from freestream values increase with Re., as you might expect. It is also clear that
the a = 0.9 and o = 1.0 solutions are very similar and at these high « settings enforce a no slip condition (or
close to a no slip condition) at solid boundaries whereas the ae = 0.0 condition allows slip at the walls. This is
particularly clear in the v,/ |v| ((a) and (c)) plots where the lines meet the horizontal boundary at the upper

and lower extremes of the lines plotted where they meet the horizontal wall boundary of the channel. These
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Figure 11: Predicted flowfield solutions at Reoo = 1.0 showing p/pec and |v|/|v| at a« = 0.0 ( (a),(b) ) and a = 0.9 ( (c),(d) )

obervations compare qualitatively well with the observations of Hafezi et al.

Finally, the underlying molecular velocity distributions (which are captured at all points in physical space in
a solution of the Boltzmann-BGK equation) were analysed at the disrete coordinates represented by the crosses
1,2,3,4,5,6,7,8 in Figure 13. These are shown in Figures 17 (Res = 2.0, = 0.9), 18 (Reo = 0.25,a = 0.9) and
19. Each figure shows the distribution of (nf) with molecular velocity (c;,c,). The obvious observation from
these three figures is that the variations in the molecular distribution function from equilibrium (Maxwellian)
are minor (almost unobservable) even though these minor departures from equilibrium are driving significant
differences in the bulk flowfields that are directly derived as integrals across this velocity space. This observation
does give confidence that the BGK approximation assumption used in this work (i.e. that departures from

equilibrium are small) is valid in the cases considered.

4. Conclusions and Future Work

The work presented in this paper details the first ever attempt, to the author’s knowledge, to study the
flow and drag characteristics of a nano—scale particle by means of direct solution of the Boltzmann equation.
The method utilised in this work is based on a discontinuous Galerkin finite element approach for physical
space discretisation coupled to a spectral disretisation scheme for molecular velocity space. The problem of a
2D circular particle 2 nm in diameter within flow constrained by an 8.2 nm wide channel is considered at a

transitional Knudsen number, Kn of 0.0214 and freestream Reynold’s number, Re,, across the range 0.25 to
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Figure 12: Predicted flowfield solutions at Reo. = 2.0 showing p/pe and |v|/|v| at « = 0.0 ( (a),(b) ) and a = 0.9 ( (c),(d) )

2.0. The results show that this method produces drag predictions that compare favourably with a range of
other numerical approaches to the solution of this problem using molecular dynamics and modified continuum
numerical schemes. The results indicate that the simulated flowfields and drag predictions are highly sensitive to
the assumed wall absorption parameter applied at solid wall boundaries and variations in predicted drag to this
parameter are similar to the variations in drag predicted when varying the wall roughness parameter in molecular
dynamics simulations. There are a number of potential applications for solvers such as this in nano—scale fluidics
ranging from therapeutic and diagnostic bio—medical applications to applications in the semiconductor and
xerographic fields.

A review of the literature and the work presented in this paper indicate that the field of nano-fluidic flowfield
modelling is still in its infancy. The approach outlined in this paper adds to the growing body of work that is
generating solutions to nano—particle drag prediction. It is hoped that in the future an increased understanding
(and experimental data) for such applications will allow these techniques to be improved. As part of ongoing
work it is also hoped that the inclusion chemical forces within the scheme will be developed to widen the range of
problems that can be tackled. One important improvement to the Boltzmann—-BGK solver outlined in this work
that will also be implemented in future work is an improvement to the parallelisation approach to incorporate
both physical and velocity space domain decomposition. This should improve the computational efficiency of

the scheme allowing more complex (and potentially 3D) geometries at this scale to be studied in the near future.
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Figure 15: Reo = 1.0 bulk velocity (v, and v, component) distributions
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Figure 17: Re=2.0 «=0.9 molecular distribution functions (nf = f(cs, cy)) at points 1,2,3,4,5,6,7,8 with reference to Figure 13
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Figure 18: Re=0.25 =0.9 molecular distribution functions (nf = f(cs,cy)) at points 1,2,3,4,5,6,7,8 with reference to Figure 13
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Figure 19: Re=2.0 «=0.0 molecular distribution functions (nf = f(cs,cy)) at points 1,2,3,4,5,6,7,8 with reference to Figure 13
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