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ABSTRACT 
	 Machine learning models were introduced to develop a relationship between the 
elemental composition and degraded mechanical properties in metallic materials due to the 
presence of hydrogen. Single layer and multilayer feed forward back propagation algorithm was 
developed as artificial neural network based machine learning models to predict the mechanical 
properties of hydrogen charged metallic materials. Multilayer feed forward back propagation 
model was used to predicts the tensile strength, had a network topology of 12-13-3-2.  And the 
single layer feed forward back propagation model was employed to predict the percentage of 
elongation, has a network topology of 12-11-1. The developed models were validated and tested 
with unknown inputs and their capability was studied. The models were evaluated using Mean 
Absolute (MAE) value and represented the scatter diagram to demonstrate the efficiency of the 
models. The R-value for both the models seems to prove that the models are ready to be used in 
the practical applications.  
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INTRODUCTION 
The presence of hydrogen in the metallic material may affects the mechanical properties 

due to the loss of ductility and leads to delayed failure mechanism called hydrogen 
embrittlement. Hydrogen may enter in to the metallic materials during manufacturing process or 
in service condition and degrade the mechanical properties that may leads to catastrophic failure. 
The rate of degradation of mechanical properties also depends on the elemental composition in 
metallic materials. So it is important to understand and predict the hydrogen induced degraded 
mechanical properties of metallic material to avoid catastrophic failures. The present 



contribution is to employ Machine learning to map the relationship between the elemental 
compositions and degraded mechanical properties of metallic materials due to the presence of 
hydrogen. Aluminum alloys, well known for their properties and low density are widely utilized 
material in aerospace, automobile and military applications. Material used in astronautically 
applications will be exposed to many environmental conditions such as extreme temperature and 
pressure variations at the same time as highly reactive and corrosive atmospheres and fluids [1]. 
Aluminum alloys due to its lightweight, high corrosion resistance and its ability to not absorb 
hydrogen in normal conditions has made it a suitable material for high-pressure gas canister to 
store hydrogen storing [2]. Many studies have proved that the aluminum is susceptible to 
environmentally assisted cracking when exposed to the gaseous environment [3]. Researchers 
also have reported the concern of environmental degradation of aluminum alloys when exposed 
to the diffusion of hydrogen. Song et al., described the mechanism of material hydrogen 
embrittlement in water containing environment as the effect of hydrogen atoms formed which 
gets absorbed in the crack initiated surface leading to reaction of hydrogen with fracture surface 
leading to hydrogen embrittlement [4]. Material embrittlement because of hydrogen diffusion has 
found to be a major issue in industrial applications and has lead to many main failures that 
thereby attracted the attention of researchers leading to enormous researches [5-7]. Factors such 
as microstructural interaction between hydrogen atom and materials, microstructural engineering 
and morphological behavior play a major role in controlling the vulnerability of hydrogen 
embrittlement in materials [8]. Aluminum alloys, being a candidate material for aerospace 
applications, and their interaction with this hydrogen must be studied in a detailed manner.  

Even though aluminum alloys were believed to be immune to hydrogen embrittlement, 
studies have proved that the environmentally assisted cracking that takes place in high strength 
aluminum may be a phenomenon of hydrogen embrittlement [9]. However, studies have also 
proved that the cathodic charging of hydrogen into aluminum material has enhanced the 
mechanical properties that include both the hardness and tensile properties to the maximum [10]. 
A large number of studies have been carried out on the enhancement of the mechanical 
properties of aluminum alloys by hydrogen charging but a model that predicts the properties 
based on chemical composition and process parameters has not been developed until now. 

Along with aluminum, the effect of hydrogen diffusion into the material and its after 
effects in bulk properties of the parent metal is studied in a great extent on other metals too these 
days. Zhu et al studied the effect of retained austenite on hydrogen embrittlement susceptibility 
in high strength steel under varying heat-treated conditions. Results stated that steel, which 
underwent quenching and tempering, offered the highest strength, hydrogen diffusion rate and 
hydrogen embrittlement immunity, when compared with the other heat-treated specimens [11]. 
Zhu et al proved that providing a nickel- graphene composite coating over the surface of 
quenching and partitioning steel could protect the substrate from hydrogen embrittlement to an 
extent. The mechanism behind this was attributed to the hydrogen storing capacity of graphene 
which reduced the hydrogen permeation into the substrate steel [12]. Yamabe studied the 
characteristics of two aluminium based coating as hydrogen diffusion barriers under high-



pressure conditions. A two-layer (alumina/Fe-Al) and three-layer (alumina/aluminum/Fe-Al) 
coatings was provided onto the surface of austenitic stainless steel of type 304 and was exposed 
to hydrogen at high-pressure conditions. Results proved that the combined effect of alumina, 
aluminum, and Fe-Al layers in three-layer coating exhibited excellent hydrogen entry resistance 
[13]. Brandolt et al provided Niobium coating over the surface of steel substrate and the 
evaluation of mechanical properties after hydrogen charging states that Niobium acts as a barrier 
for hydrogen diffusion thereby minimizing the effect of hydrogen in mechanical properties [14]. 
Dieudonne et al studied the role of copper and aluminum content in Twinning Induced Plasticity 
steel on hydrogen embrittlement susceptibility and concluded that steel with high copper and 
aluminum content increases the hydrogen embrittlement resistance [15].Beryllium - copper alloy 
was hydrogen charged by Ogawa et al and the hydrogen diffusivity, solubility and mechanical 
properties was evaluated. Results exposed high strength and low high embrittlement along with 
high thermal conductivity proposing the material to be a suitable material for heat exchangers 
[16]. 

Even though numerous works has been carried over in hydrogen embrittlement related to 
various metal, study over aluminum is minimal. Alexopoulos investigated the interaction of 
hydrogen embrittlement on structural integrity of aluminum 2024 alloy and it was concluded that 
27% of the ductility decrease occurred is attributed for hydrogen embrittlement while the rest for 
micro crack mechanism [17]. Barnoush and Vehoff investigated the effect of hydrogen on the 
mechanical properties of aluminum with the aid of classical dislocation theory. The mechanisms 
was studied and stated that the mechanical properties of the material was influenced by hydrogen 
to an extent [18]. Qi et al proposed that hydrogen charging reduced the mechanical properties of 
aluminum 7075 alloy while susceptibility of hydrogen embrittlement increased [19]. 
Tashlykova-Bushkevich investigated the behaviour of hydrogen in Al-Cr alloys and the 
mechanisms behind the trapping of hydrogen element by aluminum oxide at highest 
temperatures were explained [20]. 

Artificial neural networks (ANN) mimics the functioning of human brain and are 
influencing the research field nowadays due to their significant ability to learn from the available 
data and predict results from new unknown inputs. A mathematical or computational model 
capable of imitating the formation and biological functioning of a human nervous system can be 
defined as an ANN. Neuron being the basic function of a human nervous system, an ANN has a 
similar computational system called nodes. Nodes are interconnected to each other in layers 
forming an interconnected network to provide an output. This interconnected network acts as a 
non-linear statistical modeling tool capable of studying and imitating according to the patterns 
provided to it in form of inputs and target data. The ability of the same computational method to 
study from the available experiments and provide an output from an unknown input makes it an 
efficient and commonly used methodology in the field of materials engineering [21]. Comparing 
with its ancestral technique, the regression method; ANN performs much better based on both 



accuracy and precision and at the same time its ability to be trained from the available factors 
which impact the output avoiding the factors that are not available or can’t be obtained. 

This has greatly influenced materials engineering both in industry and research allowing 
them to develop new alloys as well as study the processing parameters that produce the required 
material properties for specific applications. Haghdadi et al developed an artificial neural 
network model with single hidden layer comprising of 20 hidden nodes to predict the high 
temperature flow behaviour of A356 aluminum alloy based on the temperature, strain and strain 
rate. Results proposed ANN as a statistically efficient and robust tool for property design [22]. 
Han et al developed a back propagation ANN model to predict the high temperature flow stress 
of 904L austenitic stainless steel in as cast condition. Model developed considered strain, strain 
rate and temperature as the input data; the developed model was found to be precise and reliable 
in predicting the output based on the above said input characteristics [23]. Krajewski and 
Nowacki developed an ANN model based on the experimentally validated data of dual steel to 
correlate the alloying element, transition temperature and microstructural features along with its 
tensile strength. The same model was reliable enough to investigate the effect of these inputs on 
the tensile and yield strength of dual phase steel [24]. Palavar et al studied the wear behavior of 
Inconel 706 prepared through powder metallurgy with the aid of ANN models. Computational 
models for weight loss predictions were prepared with aging time, load and sliding distance as 
inputs. Developed model expressed higher reliability and predictability [25]. ANN have been 
used by researchers and found to be effective for studying the varying properties of different 
aluminum alloys in a range of applications [26-28].	

 Even though many studies on the effective use of ANN in different processes, including 
wear resistance, machining, dendrite spacing, aging processes etc., are carried out for aluminum 
alloys, their application in the field of hydrogen charging is minimal. In this research, the 
effective utilization of ANN in modeling the tensile properties of aluminum alloys of varying 
chemical composition after hydrogen charging with differing processing parameters is carried 
out. 

MATERIALS AND METHODOLOGY 

Experimental methods: 
  In this research, tensile properties of the various aluminum alloy before and after the 
hydrogen charging for varying temperature, strain rate and current density were collected from 
journals [1,10, 29-33]. From the journals the percentage weights of the major alloying elements 
were recorded which included aluminum (Al), copper (Cu), magnesium (Mg), manganese (Mn), 
iron (Fe), lithium (Li), zirconium (Zr) and zinc (Zn). Elements like silicon were not considered 
as in most of the alloys considered in this study the composition remained more or less constant. 
The process parameters such as temperature, time, strain rate and current density for the charging 
process at varying levels were considered as the inputs along with the chemical compositions for 
training the artificial neural network model. The tensile properties of the aluminum alloys before 



and after charging were considered as the target outputs to the ANN model which constitutes 
UTS, YS and percentage elongation. 

Artificial Neural Network Modelling: 
ANN, is considered by researchers as one of the most robust predictive methods among 

the different computational methods available. A human neuron mainly consists of dendrites 
which accept the signals from the other neurons, a cell body which performs the biological 
summation and the axons which provide the signals to the next neuron. An artificial neuron or 
node, the basic element in ANN, has three governing components which are weight, bias and 
activation functions. The node receives the signals from an input which is multiplied and 
summed up in the node. A connection weight, a non- zero value called bias will be added up with 
the input summations. An activation function or transfer function is responsible for the 
conversion based on the signal received. The working of an ANN node can be explained from 
Figure 1 which was studied and developed by McCulloch in 1940’s.  In this figure ‘w’ denotes 
the connection weights, ‘b’, bias and ‘a’, inputs of the node. 

  

Figure 1. Elements of a node [34] 

The ANN model consists of an input layer which accepts the input signals as independent 
variables. The total number of input nodes in the input layer will be same to the number of inputs 
considered in modeling artificial neural network. The input nodes send the values of the 
independent variables to the hidden layer. Selection of hidden layers plays a major role in the 
design of network topology as the hidden layers and nodes decide the efficiency of the model to 
a great extent. The over fitting and under fitting of the model is controlled mainly by the 
topology of nodes and layers. Even though these two factors play a major role in modelling a 
neural network, there is not a specified methodology in selecting the optimal number of nodes 
and layers. Two proposed aids for selecting the same is provided in equation 1 and 2. 

N2 = (No of outputs +1) or (No of outputs +2) for a model with fewer outputs where N1 
has to be found out by trial-and-error method and N1 and N2 indicates the number of nodes in 
first and second hidden layer respectively [35].    (1) 



Number of hidden nodes = [0.5(no of inputs + no of outputs) + sqrt (No of training 
patterns)] which was put forward by neuroshell [36,37].              (2) 

 The output layer obtains its input from the hidden layers in a processed form. The 
outputs in the training section works as the target signals in the supervised form of neural 
network modeling. 

In this research, the input comprises of 12 nodes of which the chemical composition of 
the different alloying elements in weight percentage make up the first eight nodes and processing 
parameters the rest four. The considered alloying elements in this research includes Aluminum 
(Al), Copper (Cu), Magnesium (Mg), Manganese (Mn), Iron (Fe), Lithium (Li), Zirconium (Zr) 
and Zinc (Zn) while, the process parameters considered are temperature (oC), time (Hrs), strain 
rate (s-1) and current density (mA/cm2). The target data for training the ANN model consists of 
UTS (MPa) and YS (MPa) with the percent elongation. Approximately 40 readings were 
collected from various journals to train an ANN model and thereby predict the mechanical 
strength of hydrogen charged aluminum alloys. From these readings data set were used for 
training the network model and the rest for validating it. The statistical values of the training data 
and the target data are provided in Table 1 and 2 respectively. 

Unification of the training data is a major step in ANN modeling were the normalization 
of the data are carried out. The collected data is undergone normalization process to make the 
data in the range of 0 to 1 so that the entire input factors have a similar authority over the output 
values. The equation (3) is utilized in this work for the normalization process. 
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Where Nv stands for the normalized value, Ni denotes the value to be normalized, and 
Nmax and Nmin are the maximum and minimum values within the training set.  

The training of a neural network model in a supervised condition is the process of 
changing the connection weights accordingly for the given inputs based on the target values such 

Table 1 Range of input variables for training 

Variable Al 
wt% 

Cu 
wt% 

Mg 
wt% 

Mn 
wt% 

Fe 
wt% 

Li 
wt% 

Zr 
wt% 

Zn 
wt% 

Temp 
oC 

Time 
hr 

Strain 
rate (s-1) 

Current 
Density 

Min 90.3 1.3 0.5 0.02 0.012 0 0 0.2 25 0 10-3 0 

Max 94.31 4.46 2.2 0.8 0.6 2.59 0.13 5.4 150 48 10-6 17.5 

Mean 92.91 2.5 1.29 0.24 0.16 1.01 0.05 1.39 88.71 9.91  5.37 

Std. Dev 1.54 1.27 0.57 0.31 0.21 1.09 0.057 2.22 51.67 7.85  4.54 



that an exceptional value is obtained by the connection weights which allows the network to 
generate outputs close enough to the target outputs.  

 

 

 

 

 

 

In this research a back propagation algorithm is engaged for the training purpose of 
network of feed forward multilayer perceptron. Back propagation training algorithm is used 
extensively throughout previous research for pattern recognition and forecasting problems with 
the available or back-up data [36]. The back propagation method is a gradient descent technique 
which has been found simple and reliable. The training rule which has been employed in this 
study to optimize the weights and bias was the Levenberg-Marquardt back propagation method 
effectively known as Trainlm in Matlab considering its reliability and speed. The tan sigmoid 
activation function was considered for the hidden layers and purelin for the output layer neurons 
of the model.  

Based on the available data from literature, numerous models were tried out to evolve an 
ANN model that can predict the mechanical properties of aluminum. It was observed from Mean 
Absolute Value (MAE) and scatter diagrams of the developed models that great fluctuations 
occurred between the desired and predicted values. Hence to reduce the load on the models and 
to train with greater efficiency it was decided to develop two models, of which ANN Model I 
predicts the tensile and yield strength, while ANN Model II yields the value of percent 
elongation. It has been noted in the detailed literature surveys that optimizing the hidden layers 
and nodes is essential to achieve the best model and can be done mainly by trial and error. Even 
though a trial and error method was carried out, as explained above, based on equation 1 and 2 
ANN models with varying topology were tested in this study with 25,000 iterations to find out 
the optimal model capable of predicting the mechanical properties with better precision and 
accuracy. The performance function Mean Square Error (MSE) value was considered in this to 
study the generalization of the model. The MSE value between the experimental and predicted 
value can be obtained employing equation 4. 

         (4) 

Table 2 Range of output variables for training 

Variables Minimum Maximum Mean Standard 
Deviation 

UTS 
(MPa) 338 596 441.37 79.5 

YS 
(MPa) 289 571 383.94 81.89 

Percent 
Elongation 1.7 23.6 13.48 7.44 



Where N is the number of samples, M is the number of training parameter, E is the 
experimental output and P is the predicted output by the network. Out of the 25,000 models 
developed for each ANN network topology, the one with the lowest MSE value was considered 
to be the best model. These models of various topologies were then validated to find the 
preeminent ANN model that predicts the results with the best efficiency. 

Results and Discussion 
Evaluating the developed models is one of the most important process to establish their 

efficiency. It is a known fact from the journals that the performance of an ANN model can be 
evaluated by computing the MAE value and plotting the scatter diagram of the desired and the 
model’s output. MAE value of a model can be calculated using the formulae 5. 

 ……………………………….. (5) 

Where t= T-T’ and p = P-P’ in which the T and P are target and predicted output, T’ and 
P’ are its mean with n being the number of samples. [25]. 

 The MAE value of the developed models were computed and highlighted in Figure 2 and 
3 for model I and II respectively. From figure 2 and 3 it can clearly be viewed for the various 
network topology of feed forward ANN model trained with back propagation algorithm. The 
figures show a clear image of the network topologies studied for both Model I which predicts the 
UTS, YS and Model II which forecasts percent elongation. Network topology for both the 
models includes single and double hidden layer were the nodes were varied accordingly for 
single hidden layer models and when considering the double hidden layer models the nodes for 
the first layer were varied and second layer was kept constant at a value of n+1 and n+2 where n 
stands for number of outputs. It is a known fact that model with single hidden layer has the 
capability to train successfully and predict the results as proved by Hornik et al, but in this study 
to predict the tensile properties of aluminum alloys before and after hydrogen charging a model 
with double hidden layer proved to be more efficient as seen in Figure 2. Thus, out of the 
different ANN models developed, a feed forward ANN model trained with back propagation 
algorithm having a network topology of 12-13-3-1 proved to be more efficient. 



 

Figure 2. MAE for Different Nodes for Model I (UTS&YS) 

  

Figure 3. MAE for Different Nodes for Model II (%Elongation) 

Similarly, Figure 3 points out the best model from the models developed with varying 
nodes in both single and double hidden layer topology. The MAE values of the ANN models to 
predict the elastic percentage of the aluminum alloys of various grades before and after hydrogen 
charging are shown in Figure 3. It gives a clear image which obeys the statement of Hornik et al 
that a model with single hidden layer with optimized hidden nodes is more appropriate to make 
an efficient ANN model [38]. From the Figure 3, network topology of the ANN model trained 
with back propagation algorithm is viewed to be 12-11-1. 



	

	

	 	

	

	 	 	

	

	

	

	 	

	

	

Figure 4. Schematic diagram of model I (UTS&YS) 

  

	

	

	

	

	

	

	

	

	

 

 

Figure 5. Schematic diagram of Model II (%Elongation) 
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 MAE based valuation of the various models has been carried out to establish the best 
topology based ANN model, and to find out the ability of the model to accurately predict the 
UTS, YS and percent elongation. Evaluation of the ability of the feed forward back propagation 
ANN model with network topology 12-13-3-2 to predict the UTS is done through scatter 
diagram and shown in Figure 6. It can be clearly viewed from the figure that the model has the 
ability to be trained to predict as per the given inputs. The same model also predicted the YS for 
the trained data with high correlation as shown in Figure 7. This proved that the developed feed 
forward back propagation ANN model with 12-13-3-2 network topology can be a good support 
in judging the UTS and YS after hydrogen charging the aluminum alloys of various grades. 

 The scatter diagram for the evaluation of model that predicts the UTS and YS (Model I) 
has been used to confirm its accuracy in prediction. The same process must be carried out for 
Model II which predicts the percent elongation of the aluminum alloys to evaluate the computing 
accuracy. The scatter diagram, Figure 8 showcases the accuracy of the 12-11-1 ANN model in 
predicting the percent elongation of the aluminum alloys after charging. It is clearly visible from 
the figure that most of the experimental values and the predicted values are very close. 

		

Figure 6. Scatter diagram for UTS  

 



	

Figure 7. Scatter diagram for YS  

	

Figure 8. Scatter diagram for Percent Elongation  

Table 3. Inputs for the validation of the developed model 

Al Cu Mg Mn Fe Li Zr Zn Temp Time 
Strain 
Rate 

Current 
Density 

92.5 4.46 1.44 0.6 0.13 0 0 0.2 150 48 10-3 10 
93.6 1.3 1.1 0.09 0.012 2.59 0.13 0.2 25 0 10-3 0 
94.31 2.1 1.1 0.05 0.04 1.8 0.1 0.2 150 10 10-3 7 
93.4 4.4 0.5 0.8 0.6 0 0 0.2 45 10 10-3 8 



Even though validating the models through scatter diagram is a valid method, to study the 
efficiency of the model a set of unknown data that has not used for the training process is 
provided to the developed model. This gives a clear view of the efficiency of the model. The 
inputs that have been provided to the models are as provided in Table 3. 

 It can be clearly understood from Table 4 that developed models have the capability to 
predict the mechanical properties with high accuracy. Table 4 gives a strong comment on the 
potential of the models developed in this research both for predicting the UTS, YS and the 
percent elongation of the hydrogen charged aluminum alloys. It can be clearly noted from Table 
3 that the inputs delivered to both the Model I and II are of different aluminum alloys. From this 
it can be stated that the models developed have the capability to predict the tensile properties of 
various aluminum grades which falls under the probabilistic distribution of the trained data.	

 The results from the validation proved that the hence developed ANN models can be 
preferred for further prediction process. The R –value plays a major role in proclaiming the 
accuracy of an analytical model. R-Value is a statistical term which showcases a linear 
correlation between the desired value and the predicted value. In this study the R-value of the 
model developed is calculated for the outputs so as to understand the accuracy of the developed 
model. 

Table 4. Desired and predicted outputs along with its error% 
Ultimate Tensile Strength Yield Strength % Elongation 

ANN Model with topology 12-13-3-2 (Model I) ANN Model with topology 12-
13-3-2 (Model II) 

Desired Predicted Error 
% Desired Predicted Error 

% Desired Predicted Error 
% 

392 383 2.3 362 371 2.49 1.7 1.71 0.59 
350 366 4.6 305 319 4.59 4.55 4.63 1.76 
402 398 1 329 329 0.02 19.5 19.60 0.51 
408 406 0.49 348 350 0.57 7.6 7.65 0.66 



	

Figure 9. Correlation between the observed and predicted UTS and YS values 

 The R-value in Figure 9 represents the linear correlation between the experimental and 
ANN predicted YS and UTS which showcased a value of 0.99. This value denotes that Model I, 
a feed forward artificial neural network with topology 12-13-3-2 trained with back propagation 
algorithm can predict the UTS and YS for the given chemical composition and process 
parameters which lie under the probabilistic distribution of the trained value. Thus it can be 
stated that the developed model can be able to predict the UTS and YS of the hydrogen charged 
aluminum alloys which comes under the probabilistic distribution with better accuracy than other 
traditional methods by extrapolating and interpolating accordingly 

 



Figure 10. Correlation between the observed and predicted % elongation values 

	 The R-value of Model II, an ANN model to predict the percent elongation of aluminum 
alloys charged with hydrogen was computed. The model with network topology 12-11-1 
showcased an R Value of 0.9932 which clearly gives an idea of the high accuracy of the 
predictions made by this developed model. It can be clearly stated that the feed forward ANN 
model with network topology 12-11-1 has the capability to predict the percent elongation of the 
aluminum alloys with high efficiency for the inputs which lies under the probabilistic 
distribution of the trained data. 

  

From the above it has been made clear that the model can be employed to model the tensile 
properties of aluminum alloys after hydrogen charging. The models, Model I and Model II were 
made to predict the UTS, YS and percent elongation respectively for 2 series aluminum alloys of 
grade 2024. The brief input data is provided in Table 5 [1]. The data used for testing the models 
was different from the data used to train them.  

 

 The models provided the results shown in table 6 which shows a good correlation 
between the experimentally validated values and ANN predicted values. Even though one of the 
UTS values showcased a high deviation in the predicted value when considered with the desired 
value, the other reading produced by the model has a good confidence with desired values. 

Table 5. Inputs for the testing of the developed model 

Al Cu Mg Mn Fe Li Zr Zn Temp Time 
Strain 
Rate 

Current 
Density 

92.5 4.46 1.44 0.6 0.13 0 0 0.2 150 0 10-3 10 

92.5 4.46 1.44 0.6 0.13 0 0 0.2 150 7 10-3 10 
92.5 4.46 1.44 0.6 0.13 0 0 0.2 150 24 10-3 10 

Table 6. Desired and predicted outputs along with its  error% 
Ultimate Tensile Strength Yield Strength % Elongation 

ANN Model with topology 12-13-3-2 (Model I) ANN Model with topology 
12-13-3-2 (Model II) 

Desired Predicted Error 
% Desired Predicted Error 

% Desired Predicted Error 
% 

430 372 13.5 290 287 1.04 7.2 7.19 0.14 

359 359 0 289 290 .04 3.4 3.44 1.18 

355 355 0 316 316 0 1.7 1.68 1.18 



Hence these models can be effectively considered for the study on the mechanical properties of 
aluminum alloys which undergoes through the hydrogen charging process. 

Conclusions  
 A feed forward back propagation algorithm based ANN model was employed in this 
research to predict the tensile properties of aluminum alloys of varying grades after hydrogen 
charging. The chemical compositions of the aluminum alloys along with the processing 
parameters were considered for training the model as input and the tensile properties which 
includes UTS, YS and percent elongation as the target outputs. The results are as below: 

i) The developed ANN models were able to create a strong relationship between the 
input and target parameters.	

ii) ANN models, Model I and Model II were developed to predict the strength 
(UTS&YS) and percent elongation respectively.	

iii) Model I; an ANN model with double hidden layer  yields the least mean absolute 
error value at the network topology 12-13-3-2 and showcased a high accuracy in 
predicting the tensile properties for the given inputs	

iv) Model II, developed in this study to predict the percent elongation of the 
hydrogen charged aluminum alloys, yielded a network topology of 12-11-1 which 
made accurate predictions. 

v) The scatter diagram for evaluating the computing ability of both the models 
proved promising 

vi) Values predicted by ANN model and the desired experimental values showcased 
high correlation to each other. 

vii) Verification and testing of both the model with the unknown input values proved 
successful and hence the developed models can be used for other research purpose 
on hydrogen charging of aluminum alloys. 
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