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Abstract 

The stochastic dynamic stability analysis of laminated composite curved panels under non-

uniform partial edge loading is studied using finite element analysis. The system input 

parameters are randomized to ascertain the stochastic first buckling load and zone of 

resonance. Considering the effects of transverse shear deformation and rotary inertia, first 

order shear deformation theory is used to model the composite doubly curved shells. The 

stochasticity is introduced in Love’s and Donnell’s theory considering dynamic and shear 

deformable theory according to the Sander’s first approximation by tracers for doubly curved 

laminated shells. The moving least square method is employed as a surrogate of the actual 

finite element model to reduce the computational cost. The results are compared with those 

available in the literature. Statistical results are presented to show the effects of radius of 

curvatures, material properties, fibre parameters, and non-uniform load parameters on the 

stability boundaries.  

 

Keywords: Composite curved panel; Stochastic dynamic stability; Moving least square 

method 
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1. Introduction 

     The use of composite materials have gained immense popularity over the past few 

decades  for the design of structures in aerospace, automotive, civil and other engineering 

applications. It has improved the performance and reliability of structural system due to its 

mechanical advantages of specific modulus and specific strength over monolithic materials, 

improved fatigue, impact resistance, and design flexibility. Such structures subjected to in-

plane periodic forces may lead to parametric resonance because of certain random 

combinations in the values of uncertain parameters. The instability may occur below the 

stochastic critical load of the structure under compressive loads over wide ranges of 

resonance frequencies. Specially the aerospace structures such as skin panels in wings, 

fuselage, submarine hulls and civil application has practical importance of stability analysis 

of doubly curved panels/open shells subjected to uncertain non-uniform loading condition. 

Traditionally, structural analysis is formulated with deterministic behavior of material 

properties, loads and other system parameters. However, the real-life structures employed in 

aerospace, naval, civil, and mechanical applications are always subjected to intrusive uncer-

tainties. The inherent sources of such uncertainties in real structural problems can be due to 

randomness in material properties, loading conditions, geometric properties and other random 

input parameters. As an inevitable consequence of the uncertainties in these system 

parameters, the response of structural system will always exhibit some degree of uncertainty. 

The traditional deterministic analysis based on an exact reliable model would not help in 

properly accounting the variation in the response and therefore, the analysis based on 

deterministic material properties may vary significantly from the real behaviour. The 

incorporation of randomness of input parameters enables the prediction of the performance 

variation in the presence of uncertainties and more importantly their sensitivity for targeted 

testing and quality control. In order to provide useful and accurate information about the safe 
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and reliable design of structures, it is essential to incorporate these uncertainties into account 

for modeling, design and analysis procedure. The steady development of powerful com-

putational technologies in recent years has led to high-resolution numerical models of real-

life engineering structural systems. It is also required to quantify uncertainties and robustness 

associated with a computational model. Hence, the quantification of uncertainties plays a key 

role in establishing the credibility of a numerical model. Therefore, the development of an 

efficient mathematical model possessing the capability to quantify the uncertainties present in 

the structures is extremely essential in order to accurately assess the laminated composite 

structures. 

      Structural elements under in-plane periodic forces may undergo unstable transverse 

vibrations, leading to parametric resonance, due to certain combinations of the values of in-

plane load parameters and natural frequency of transverse vibration. Several means of 

combating parametric resonance such as damping and vibration isolation may be inadequate 

and sometimes dangerous with reverse results (Evan-Iwanowski, 1965). A number of 

catastrophic incidents can be traced to parametric instability and is often studied in the 

spectrum of determination of natural frequency and critical load of structures. The 

stochasticity in the measurement of natural frequencies, critical load and ultimately the 

excitation frequencies during parametric resonance are of great technical importance in 

studying the instability behavior of dynamic systems. Many authors addressed the parametric 

instability characteristics of laminated composite flat panel subjected to uniform loads 

(Iwatsubo et al., 1973; Moorthy and Reddy, 1990; Chen and Yang, 1990; Patel et al., 2009; 

Kochmann and Drugan, 2009; Singha and Daripa, 2009; Kim et al., 2013). In contrast, 

Bolotin (1964) and Yao (1965) studied the parametric resonance subjected to periodic loads. 

Stochastic principal parametric resonance of composite laminated beam is numerically 

investigated by Lan et al. (2014). The influences of transverse shear (Andrzej et al., 2011) 
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and rotary inertia (Ratko et al., 2012) on dynamic instability are studied for cross-ply 

laminated plates. The parametric dynamic stability analysis is numerically investigated for 

composite beam (Meng-Kao and Yao, 2004), plates (Dey and Singha, 2006) or shells (Bert 

and Birman, 1988) and stiffened panel (Sepe et al., 2016). Further studies are also carried out 

for modelling mesoscopic volume fraction stochastic fluctuations in fiber 

reinforced composites (Guilleminot et al., 2008) and for parametric instability of graphite-

epoxy composite beams under excitation (Yeh and Kuo, 2004). Free vibration and dynamic 

stability analysis of rotating thin-walled composite beams (Saraviaa et al., 2011) and 

nonlinear thermal stability of eccentrically stiffened functionally graded truncated conical 

shells are recently reported (Duc and Cong, 2015).  In contrast, many numerical 

investigations are carried out using response surface methods such as moving least square 

(MLS) method and other methods for structural analysis (Choi et al., 2004; Wu et al., 2005; 

Park and Grandhi, 2014; Shu et al., 2007; Kang et al., 2010). Some researchers studied 

specifically on the moving least squares (MLS) approximation for the regression analysis 

(Lancaster and Salkauskas, 1981; Breitkpf  et al., 2005) instead of the conventional least 

squares (LS) approximation in conjunction to traditional response surface method (RSM) 

techniques (Mukhopadhyay et al., 2015, Dey et al., 2015a). Several studies are carried out on 

uncertainty quantification for dynamic response of structures including different surrogate 

based analyses of composite beams, plates and shells (Sarrouy et al., 2013; Dey et al., 

2015(b-d), 2016(a-f), 2018; Mukhopadhyay et al.,2016; Naskar et al.,2017). Few articles 

have reported the critical comparative assessment of different surrogate models for their 

performance in dynamic analyses of composite laminates (Dey et al.,2017; Mukhopadhyay et 

al.,2017). 

To the best of authors’ knowledge, no literature is reported on uncertainty quantification 

of parametric instability of doubly curved composite shells. The application of stochastic 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

5 

 

non-uniform loading on the structural component can significantly alter the global dynamic 

quantities of interests such as resonance frequency, buckling loads and dynamic stability 

region (DSR). Thus it is imperative to consider the effect of stochasticity for robust analysis, 

design and control of the system. The application of moving least square method in this realm 

as a computationally efficient surrogate of expensive finite element method has not been 

investigated yet. Even though the perturbation method is an efficient way of stochastic 

analysis for relatively simpler structures (Kaminski, 2013; Gadade et al., 2016), this intrusive 

method can be mathematically quite cumbersome for complex problems like stochastic 

dynamic stability analysis of composite laminates. The main drawback of this method is that 

it can obtain only the statistical moments (not the entire probability distribution) of the 

stochastic output quantity of interest. If the nature of the output distribution is known to be 

Gaussian, the probability distribution can be obtained using the first two moments. However, 

the nature of distribution of the output parameter may not be known a priori in most 

engineering problems. Monte Carlo simulation, on the other hand, can obtain the entire 

probabilistic description of the stochastic output parameter. The main lacuna of traditional 

Monte Carlo simulation is its computational intensiveness. A surrogate based Monte Carlo 

simulation approach, as followed in this paper, allows us to quantify the probabilistic 

descriptions in a computationally efficient manner. In the present study, a moving least 

square based approach is employed in conjunction with finite element formulation to figure 

out the random eigenvalue problem and quantify the probabilistic characteristics of the 

responses related to dynamic stability of composite laminates. The numerical results are 

shown for first random buckling load and stochastic fundamental resonance frequencies with 

individual and combined variation of the stochastic input parameters.  

2. Importance of stochastic dynamic stability analysis in composite laminates 
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Engineering structures are often subjected to periodic loads. For examples, aerospace 

structures are subjected to wind load, rotating machine systems are usually exerted a periodic 

unbalanced inertia force, bridges are frequently subjected to the cyclic loads from the running 

vehicles, marine structures are always suffered the periodic wave forces etc. Structural 

components subjected to in-plane periodic forces undergo an unstable dynamic response 

known as dynamic instability or parametric instability or parametric resonance. Parametric 

resonance, may occur for certain combinations of natural frequency of transverse vibration, 

the frequency of the in-plane forcing functions and the magnitude of the in-plane load. A 

number of flight accidents can be traced due to parametric instability of structures. In 

comparison to the principal resonance, the parametric instability can take place not only at a 

single excitation frequency but even for small excitation amplitudes and combination of 

frequencies. The difference between good and bad vibration regimes of a structure under in-

plane periodic loads can be found from dynamic instability region (DIR) spectra. The 

computation of these spectra is usually studied in term of natural frequencies and static 

buckling loads. The parametric instability has a catastrophic effect on structures near critical 

regions of parametric instability. Hence, the parametric resonance characteristics of structures 

are of great technical importance for understanding the dynamic characteristics under 

periodic loads. 

As discussed in the preceding paragraph, structures are subjected to dynamic loads 

more often than static loads. Dynamic load means the load varies with time. Periodic loading 

is one type of dynamic loading. This type of load occurs in repeated periods or cycles like 

sine and cosine functions. Structures subjected to in-plane periodic loads can be expressed in 

the form as suggested by Bolotin (1964) : P(t) = Ps + Pt cosΩt , where Ps is the static portion 

of P(t), Pt  is the amplitude of the dynamic portion of P(t) and Ω is the frequency of 

excitation. It can be noted here that the quantities Ps, Pt, Ω possess random values in practical 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 

 

systems. This, in turn, makes the time varying periodic load P(t) random in nature. The 

present paper aims to account such stochastic character of the time varying load along with 

other sources of stochasticity for a comprehensive probabilistic analysis of the system. 

Laminated composites being a complex structural form and susceptible to different forms of 

uncertainty, the compound effects of stochastic time varying loading and structural and 

material uncertainties associated with composites can be crucial in the intended performance 

for various engineering applications.  

3. Governing equations 

      In the present study, a layered graphite-epoxy composite laminated simply supported 

shallow doubly curved shell is considered with thickness t, intensity of loading C, principal 

radii of curvature Rx , Ry along x- and y-direction, respectively and the radius of curvature Rxy 

in x-y plane, as furnished in Figure 1. Using Hamilton’s principle (Meirovitch, 1992) for free 

vibration of composite shell structure subjected to in-plane loads, the equation of equilibrium 

can be expressed as  

 0}{))]~([)~()]~([(][)]~([ =−+ qKFKqM ge ωωωω &&  (1) 

 
where )~(ωM , )~(ωeK  and )~(ωgK  are mass, elastic stiffness and geometric stiffness matrices, 

respectively. Here ω%  is used to denote the element of probability space. Therefore, any 

quantity expressed as a function of ω%  is a random quantity (can be a scalar, vector or a 

matrix). The in-plane load )])(~([ tF ω  is periodic and can be expressed in the stochastic form 

(Patel et al., 2009) 

 tCosFFtF ts Ωωωω )~()~())(~( +=  (2) 

 
where )~(ωsF  and )~(ωtF  are the random static portion and the amplitude of the dynamic 

portion of stochastic in-plane load, respectively. The static buckling load of elastic shell 

)~(ωcrF  is the measure of the magnitude of )~(ωsF  and )~(ωtF  
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          )~()~()~( ωωαω crs FF =           )~()~()~( ωωβω crt FF =  (3) 

 
where )~(ωα  and )~(ωβ  are known as static and dynamic load factors, respectively. The 

equation of motion can be expressed by employing equation (2) as 

0}{)cos)]~([)~()~()]~([)~()~()]~([(][)]~([ =−−+ qtKFKFKqM gcrgcre Ωωωωβωωωαωω &&  (4) 

  

 

Fig. 1 Laminated composite curved panel 

It can be noted that the matrices involved in equation (4) are stochastic in nature. Depending 

on the degree of stochasticity, each element of the matrices is random in nature.  The solution 

of equation (4) would obtain different results for each of the realizations of a Monte Carlo 

simulation depending on the respective set of input parameters. Thus probabilistic 

distributions can be obtained based on the results of different realizations following a non-

intrusive method. This stochastic equation (4) indicates second order differential equations 

with periodic Mathieu-Hill type coefficients. The formation of zone of instability arises from 

Floquet’s theory which establishes the existence of periodic solutions. The periodic solutions 

of period T and 2T derive the limiting bounds of the dynamic instability regions (where 

Ωπ /2=T ). The significant stochastic importance lies in the limiting bounds of primary 

instability regions with period 2T (Chen and Yang, 1990) wherein the solution can be 

represented as the trigonometric series form 
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Considering this in equation (4) and first term of the above series, the equation (4) can be 

expressed by equating the coefficients of )2/( tSin Ω  and )2/( tCos Ω  as  

0}{][
4

)]~([)~()~()]~([)~()~()]~([
2

=







−±− qMKFKFK gcrgcre

Ωωωωβωωωαω  (6) 

The above equation (6) represents an eigenvalue problem for known values of )~(ωα , )~(ωβ  

and )~(ωcrF  as for 0=jj qΩ  for j=1,2,3…. Here the two conditions under a plus and minus 

sign represents the two limiting bounds of the dynamic instability region. The eigenvalues 

( jΩ ) provide the boundary frequencies of the instability regions for specific values of α and 

β and the reference stochastic static buckling load is computed accordingly (Ganapathi et al., 

1999) and in contrast, exact solution for doubly curved shells can also be carried out 

(Chaudhuri and Abuarja, 1988). An eight-noded curved isoparametric element is employed 

with five degrees of freedom u ,v , w , xθ  and yθ  per node. The present study employs the 

first order shear deformation theory and the shear correction coefficient for the nonlinear 

distribution of the thickness shear strains through the total thickness. The displacement field 

along mid-plane is assumed to be straight before and after deformation, but it is not necessary 

to remain normal after deformation. The displacement components can be expressed as 

),(),(),,( yxzyxuzyxu xθ+=  

),(),(),,( yxzyxvzyxv yθ+=  

),(),,( yxwzyxw =  

(7) 

where the rotations of the mid-plane surface are represented by xθ  and yθ . Here the 

displacement components in the x, y, z directions at any point and at the mid-plane surface are 

denoted as u , v , w , and u , v  and w , respectively. Thus the integrated relationship for the 

composite curved shell can be represented as 
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where ijA , ijB , ijD (where i, j=1,2,6) and ijS (where i, j=4,5)  are the extension-bending 

coupling, bending and transverse shear stiffness, respectively. The shear correction factor 

(=5/6) is incorporated inijS in the numerical calculation. In the present analysis, shear 

deformable Sander’s kinematic relation (Bathe, 1990) is extended for doubly curved shells. 

The strain displacement equations of linear nature can be obtained as 
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Here the formulation can be derived to shear deformable Love’s first approximation and 

Donnell’s theories from tracers (1C  and 2C ). Considering nonlinearity in strain, the element 

geometric stiffness matrix for doubly curved shells can be expressed as 
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The overall stochastic stiffness and mass matrices i.e., )]~([ ωeK , )]~([ ωgK  and )]~([ ωM  are 

obtained by assembling the corresponding element matrices by using skyline technique. The 

element mass and stiffness matrices of composite shells are computed wherein the geometric 

stiffness matrix is obtained as the function of in-plane stress distribution in the element due to 

applied edge loading. Due to non-uniformity in the stress field, plane stress analysis is carried 

out by using the finite element formulation. The possible shear locking is avoided by 

employing the reduced integration technique for the element matrices. The subspace iteration 

method (Bathe, 1990) is utilized to solve the stochastic eigenvalue problems. 

4. Moving least square method  

     In general, the polynomial regression models give the large errors in conjunction to 

non-linear responses while give good approximations in small regions wherein the responses 

are less complex. Such features are found advantageous while implementing the method of 

moving least squares (MLS). Moreover, the least square method gives a good result to 

represent the original limit state but it creates a problem if anyone like to fit a highly 

nonlinear limit function with this technique because this technique uses same factor for 

approximation throughout the space of interest. To overcome this problem, the moving least 

square method is introduced. In this method, a weighted interpolation function or limit state 

function is employed to the response surface and some extra support points are also generated 
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over least square method to represent perfectly the nonlinear limit surface. In stochastic 

analysis, uncertainties can be expressed as a vector of random variables, 

T
nxxxxx ],.........,,[ 321= , characterized by a probability density function (PDF) with a 

particular distribution such as normal or lognormal with limit state function of these random 

variables. To avoid the curse of dimensionality in dealing with random input variables, 

response surface methods (RSM) can be utilised to increase the computational efficiency. 

These methods approximate an implicit limit state function as a response surface function 

(RSF) in an explicit form, which is evaluated for a set of selected design points throughout a 

number of deterministic structural analyses. RSM approximates an implicit limit state 

function as a RSF in explicit form. It selects experimental points by an axial sampling scheme 

and fits these experimental points using a second order polynomial without cross terms 

expressed as 

∑ ∑ ∑ ∑
= = > =

+++=
k

i

k

i

k

ij

k

i
iiijiijiio xxxxxy

1 1 1

2)( ββββ  (12) 

where oβ , iβ , ijβ  and iiβ are the unknown coefficients of the polynomial equation. The least 

squares approximation commonly used in the conventional RSM allots equal weight to the 

experimental points in evaluating the unknown coefficients of the RSF. The weights of these 

experimental points should consider the proximity to the actual limit state function so that 

MLS enables a higher weight to yield a more accurate output. The approximated RSF can be 

defined in terms of basis functions )(xb  and the coefficient vector )(xa as 

)()()(
~

xaxbxL T=  (13) 

The coefficient vector )(xa  is expressed as a function of the random variables x to consider 

the variation of the coefficient vector according to the change of the random variable at each 

iteration. The local MLS approximation at x  is formulated as (Kang et al., 2010)  
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)()(),(
~

xaxbxxL T
ii =  (14) 

where ix  denotes experimental points and the basis functions )(xB are commonly chosen as 

[ ]T

nn xxxxxb 22
1 ..........1)( =  (15) 

The vector of unknown coefficients )(xa  is determined by minimizing the error between the 

experimental and approximated values of the limit state function. This error is defined as 

[ ] )()()()(),(
~

)()(
1

2
LBaxWLBaxLxxLxxwxErr

n

i

T
iii −−=−−=∑

=
 (16) 

where  [ ]T
nxLxLxLL )(..........),(),( 21= , [ ]T

nxbxbxbB )(..........),(),( 21= and  

[ ])(..........),(),(.)( 2211 xxwxxwxxwdiagxW nm −−−= . Here (n+1) is the number 

of sampling points and (m+1) is the number of basis functions. Now for minimization of 

error with respect to )(xa , 0)( =∂∂ aErr transforming the coefficient of vector )(xa  as 

LxWBBxWBxa TT )())(()( 1−=  (17) 

The approximated response surface function is obtained from equation (14) as 

LxWBBxWBxbxL TTT )())(()()(
~ 1−=  (18) 

5. Random input representation 

      The random input parameters such as ply-orientation angle, radius of curvatures, 

material properties (both longitudinal and transverse elastic modulus, shear modulus, Poisson 

ratio, mass density), load, load factors (both static and dynamic) and combined variation of 

all these parameters are considered for composite doubly curved shells considering layer-

wise stochasticity. It is assumed that the uniform random distribution of input parameters 

exists within a certain band of tolerance with their mean values. The following cases are 

considered in the present study: 

(a) Variation of ply-orientation angle only:                    }..............{)~( 321 li θθθθθωθ =  
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(b) Variation of radius of curvatures only:                 )}~(,)~({)~( ωωω yx RRR =  

(c) Variation of material properties only:  

      )}~(),~(),~(),~(),~(),~(),~({)~( 13231221 ωρωµωωωωωω GGGEEP =  

(d) Variation of intensity of load only:  })~({ ωF  

(e) Variation of static load factor )}~({ ωα  and dynamic load factor )}~({ ωβ  

(f) Combined variation of ply orientation angle, radius of curvatures, material properties 

(namely, elastic moduli, shear moduli, Poisson's ratio and density), applied load and load 

factors (static and dynamic):     )~}(,,,,,{ ωβαθ FPR  

In the present study, ± 5º variation for ply orientation angle, ± 10% volatility in material 

properties (as per industry standard), applied load and load factors, respectively are 

considered from their respective deterministic values unless otherwise specified. Figure 2 

presents a flowchart of the stochastic dynamic stability analysis using MLS method 

(surrogate based Monte Carlo simulation) as followed in the present study. A brief 

description of the Monte Carlo simulation method is provided in the following paragraphs.  

Uncertainty quantification is part of modern structural analysis problems. Practical 

structural systems are faced with uncertainty, ambiguity, and variability constantly. Even 

though one might have unprecedented access to information due to the recent improvement in 

various technologies, it is impossible to accurately predict future structural behaviour during 

its service life. Monte Carlo simulation, a computerized mathematical technique, lets us 

realize all the possible outcomes of a structural system leading to better and robust designs 

for the intended performances. The technique was first used by scientists working on the 

atom bomb; it was named after Monte Carlo, the Monaco resort town renowned for its 

casinos. Since it’s introduction in World War II, this technique has been used to model a 

variety of physical and conceptual systems across different fields such as engineering,  
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Fig. 2 Flowchart of stochastic dynamic stability analysis using MLS method 

finance, project management, energy, manufacturing, research and development, insurance, 

oil and gas, transportation and environment. 

Monte Carlo simulation furnishes a range of prospective outcomes along with their 

respective probability of occurrence. This technique performs uncertainty quantification by 

forming probabilistic models of all possible results accounting a range of values from the 

probability distributions of any factor that has inherent uncertainty. It simulates the outputs 

Model verification by Scatter plot and PDF check  

Construct surrogate model using MLS method 

LxWBBxWBxbxL TTT )())(()()(
~ 1−=     

Identification and definition of input parameters 
e.g., )~(),~(,)~(,)~(),~(),~( ωβωαωωωωθ FPR  

Statistical analysis for variation of buckling 
load and resonance frequency   

FE formulation to calculate random buckling load and resonance frequencies 

Selection of design points based on Sobol sequence sampling 

FEM 
Code 

Input Output 

MCS using MLS method 

Mapping frequency responses using FEM  
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over and over, each time using a different set of random values from the probability 

distribution of stochastic input parameters. Depending upon the nature of stochasticity, a 

Monte Carlo simulation could involve thousands or tens of thousands of recalculations before 

it can provide a converged result depicting the distributions of possible outcome values of the 

response quantities of interest.  Each set of samples is called an iteration or realization, and 

the resulting outcome from that sample is recorded.  In this way, Monte Carlo simulation 

provides not only a comprehensive view of what could happen, but how likely it is to happen 

i.e. the probability of occurrence.  

The mean or expected value of a function ( )f x  of a n dimensional random variable 

vector, whose joint probability density function is given by ( )x , can be expressed as 

( ) ( ) ( )f E f x f x x dxµ φ
Ω

= =   ∫
 

(19) 

Similarly the variance of the random function ( )f x is given by the integral below, 

( ) ( )( ) ( )22
f fVar f x f x x dxσ µ φ

Ω

= = −   ∫
 

(20) 

The above multidimensional integrals, as shown in equation (19) and (20) are difficult to 

evaluate analytically for many types of joint density functions and the integrand function 

( )f x  may not be available in analytical form for the problem under consideration. Thus the 

only alternative way is to calculate it numerically. The above integral can be evaluated using 

MCS approach, wherein N sample points are generated using a suitable sampling scheme in 

the n-dimensional random variable space. The N samples drawn from a dataset must follow 

the distribution specified by ( )xϕ . Having the N samples for x, the function in the integrand 

( )f x is evaluated at each of the N-sampling points ix  of the sample set { }1,............, Nx xχ = . 

Thus, the integral for the expected value takes the form of averaging operator as shown below 
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( ) ( )
1

1 N

f i
i

E f x f x
N

µ
=

= =   ∑
 

(21) 

Similarly, using sampled values of MCS, the equation (20) leads to 

( ) ( )( )22

1

1

1

N

f i f
i

Var f x f x
N

σ µ
−

= = −   − ∑
 

(22) 

Thus the statistical moments can be obtained using a brute force Monte Carlo simulation 

based approach, which is often computationally very intensive due the evaluation of function 

( )if x corresponding to the N-sampling points ix , where N ~ 103. The noteworthy fact in this 

context is the adoption of surrogate based Monte Carlo simulation approach in the present 

study that reduces the computational burden of traditional (i.e. brute force) Monte Carlo 

simulation to a significant extent. 

6. Results and Discussion 

The present study considers a simply supported four layered graphite-epoxy angle-ply 

(45°/-45°/45°/-45°)  and cross-ply (0°/90°/0°/90°) composite doubly curved shallow shells. In 

finite element formulation, an eight noded isoparametric quadratic element is considered. For 

graphite-epoxy composite shells, the deterministic values of geometric properties are 

considered as L = 1 m, b = 0.5 m, t = 0.005 m, C = 0.5, Rx = Ry = 10, (for spherical shell),      

α = 0.5, β = 0.5 and the material properties are assumed as E1 = 141 GPa, E2 = 9.23 GPa,    

G12 = G13 = 5.95 GPa, G23 = 2.96 GPa, ρ = 1580 Kg/m3, ν = 0.3. Table 1 presents the non-

dimensional buckling loads for the simply supported singly-curved cylindrical composite 

(0°/90°) panel for different b/Ry ratios (Baharlou and Leissa, 1987). Table 2 presents the 

convergence study of non-dimensional fundamental natural frequencies of three layered 

graphite-epoxy untwisted composite plates (Qatu and Leissa, 1991). A close agreement with 

benchmarking results are obtained in conjunction to (4 ×  4), (8 ×  8) and (10 ×  10) mesh 
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size. Table 3 presents the non-dimensional natural frequencies for simply-supported 

symmetric cross-ply composite plates and spherical shells (Reddy, 1984; Chandrashekhara, 

1989). It can be noted here that, analysis of small constituent components is worthwhile and 

insightful to understand the structural behaviour of larger structures. For example, fuselage of 

aircraft consists of a cylindrical shell stiffened by circumferential frames and longitudinal 

stringers. Tests on full scale structure showed that adjacent panels across a frame vibrate 

independently of one another, with the frames acting as rigid boundaries (Clarson and Ford, 

1962). Hence, in compliance of the same, the present study considers a simple example 

problem of a small component of laminated composite curved shells as a representative case 

to map the zone of dynamic instability due to stochastic variations on input parameters 

wherein the moving least square (MLS) model is employed to reduce the computational time 

and cost compared to Monte Carlo Simulation (MCS). However, in future, an extended work 

of the present study can be carried out to deal with the role of components in the overall 

stability of the whole large complex structural system. 

Table 1 Non-dimensional buckling loads for the simply supported singly-curved cylindrical 
composite (0°/90°) panel with a = 0.25 m, b = 0.25 m, t=0.0025 m, a/Rx = 0, E1 = 2.07 × 1011 
N/m2, E2 = 5.2 × 109 N/m2, G12 = 2.7 × 109 N/m2, ν12 = 0.25. 
 

Structure b/Ry=0.1 b/Ry=0.2 b/Ry=0.3 

Present method 17.612 
 

32.5027 57.117 

Baharlou and Leissa (1987) 17.49 32.17 56.62 

 

The moving lease square based approach is validated with original Monte Carlo 

simulation considering random variations of input parameters within upper and lower bounds 

(tolerance zone). Figure 3 presents the scatter plot which establishes the accuracy of present 

MLS model with respect to original finite element model corresponding to stochastic first 

buckling load for combined variation of ply-orientation angle, radius of curvatures, material  
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Table 2 Convergence study for non-dimensional frequencies [ω=ωn L

2 √(ρ/E1t
2)]  without in-

plane load of doubly curved (45°/–45°/45°) angle ply composite with a/b = 1, b/t = 100, b/Ry 
= 0.5, E1 = 138 GPa, E2 = 8.96 GPa, G12 = 7.1 GPa, ν12 = 0.3. 
 

Structure 
Present FEM 

(4 ×  4) 

 

Present FEM 
(8 ×  8) 

 

Present FEM 
(10 ×  10) 

8) 

Qatu and Leissa 
(1991) 

 Plate 0.4600 0.4581 0.4577 0.4607 

Spherical Shell 1.3507 1.2977 1.2941 1.3063 

 

Table 3 Non-dimensional fundamental frequencies [ω=ωn a2 √(ρ/E2t
2)] for the simply 

supported four layered cross-ply (0°/90°/90°/0°) composite with  E11/E22 = 25, G23 = 0.2E22, 
G12 = G13 = 0.5E22, ν12 = 0.25. 
 

Analysis 
a/t=100 a/t=10 

Plate Spherical (R/b=1) Plate Spherical (R/b=1) 

Present FEM 15.187 126.320 12.228 16.146 

Reddy (1984) 15.184 126.330 12.226 16.172 

Chandrashekhara  
(1989) 

15.195 126.700 12.233 16.195 

 

 

 
 

Fig. 3 Scatter plot for stochstic buckling loads corresponding to FE model and MLS model 
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properties (both longitudinal and transverse elstic modulus, shear modulus, poisson ratio, 

mass density), load, load factors (both static and dynamic). The present MLS surrogate model 

is used to determine the first stochastic buckling load and resonance frequencies 

corresponding to given values of input variables, instead of time-consuming deterministic 

finite element analysis. The probability density function is plotted as the benchmark of 

bottom line results. The variations of material properties, load intensity and factors are scaled 

in the range between the lower and the upper limit (tolerance limit) as ±10% with respective 

mean values while for ply orientation angle as within ±5º fluctuation (as per standard of 

composite manufacturing industry) with respective deterministic values. Due to paucity of 

space, only a few important representative results are furnished.   

A sample size of 64 is considered in case of individual variation of stochastic input 

parameters while due to higher number of input variables for combined random variation, the 

subsequent sample size of 512 is found to meet the convergence criteria in the present MLS 

method. The sampling size of 10,000 is considered for direct MCS with 10,000 finite element 

(FE) iteration. In contrast, comparatively much lesser number of actual FE iteration (equal to 

number of design points required to construct the surroagte model) is carried out in case of 

MLS method. The surrogate model is formed employing MLS method, on which the full 

sample size of direct MCS is conducted. Hence, the computational time and effort expressed 

in terms of FE calculation is significantly reduced compared to full scale direct MCS. This 

provides an efficient and economic way to simulate the uncertainties in buckling load and 

resonance frequencies (both upper bound and lower bound) for dynamic stability analysis. 

The scatter plot is also presented for validation of the present MLS model with original FE 

model with respect to resonance frequencies (fundamental) of lower bound [Figure 4(a)] and 

upper bound [Figure 4(b)] corresponding to combined variation of ply-orientation angle, 

radius of curvatures, material properties, load, load factors (both static and dynamic). The 
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probability density function (PDF) is plotted as the benchmark results due to individual and 

combined variation as depicted in Figure 5 and Figure 6, respectively. The confidence 

interval boundaries (95%, 97% and 99%) for mean and standard deviation of buckling load 

are shown in Table 4 for samples of direct MCS and MLS model. 

Table 4 Confidence interval boundaries for mean and standard deviation of buckling load 
(KN/m) for samples of direct MCS and MLS model  

Confidence 
interval (%) 

MLS MCS 

Mean SD Mean SD 

95 Min 1.35240×105 1.64351×104 1.35869×105 1.48764×104 

Max 1.36893×105 1.68972×104 1.36460×105 1.52946×104 

97 Min 1.35205×105 1.64110×104 1.35837×105 1.48545×104 

Max 1.36928×105 1.69226×104 1.36492×105 1.53176×104 

99 Min 1.35137×105 1.63645×104 1.35776×105 1.48124×104 

Max 1.36996×105 1.69718×104 1.36553×105 1.53621×104 

 

 

  

(a) (b) 

Fig. 4 Scatter plot for (a) lower bound and (b) upper bound of fundamental resonance 
frequencies corresponding to combined variation 
 

The MLS model is validated extensively for different laminate configurations as well as 

different forms of stochasticity (individual and combined) so that the computationally 

efficient surrogate is ensured to obtain accurate results in the uncertainty analysis. The 

combined variations of stochastic input parameters for both MCS as well as present MLS  
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Only theta variation Only material properties variation Only radius of curvature variation 

   
(a) (c) (e) 

   
   

   
(b) (d) (f) 

   Fig. 5 Probability density function obtained by original Monte Carlo Simulation (MCS) and Moving Least Square (MLS) with respect to buckling 
load (first) and fundamental resonance frequencies [Upper Bound(UB), Lower Bound(LB)] due to individual variation of ply orientation angle, 
material properties and radius of curvatures for angle –ply (45°/-45°/45°/-45°) composite spherical shells 
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Laminate Buckling Load (first) Resonance frequencies (Upper and Lower bound) 

Angle–ply 
(45°/-45°/ 
45°/-45°) 

 
 

 (a) (b) 
   

Cross–ply 
(0°/90°/ 
0°/90°) 

  
 (c) (d) 
   

Fig. 6 Probability density function obtained by original Monte Carlo Simulation (MCS) and Moving Least Square (MLS) with respect to (a) buckling 
load (first) and (b) fundamental resonance frequencies [Upper Bound(UB), Lower Bound(LB)] due to combined variation for simply supported 
angle–ply and cross-ply composite spherical shells 
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Table 5  Stochastic buckling load (first) and resonance frequencies (first and second) with error due to individual and combined variation of simply 
supported angle-ply (45°/-45°/45°/-45°) composite spherical shells considering L=1 m, b=0.5 m, t=0.005 m, c=0.5, Rx=Ry=10 m, E1=E2=141 GPa, 
G12=G13=5.95 GPa, G23=2.96 GPa, ρ=1580 Kg/m3, ν=0.3  
 

Para-
meter 

Value 
Buckling Load (first) Resonance frequency (First) Resonance frequency (Second) 

MCS MLS Err % Upper bound Lower bound Upper bound Lower bound 

MCS MLS Err % MCS MLS Err % MCS MLS Err % MCS MLS Err % 

)~(ωθ
 

Max 128291.9 127596.5 0.54 137.13 136.76 0.27 114.56 115.37 -0.71 154.45
66 

154.68 -0.14 137.22
72 

137.78
22 

-0.40 

Min 88701.2 85767.6 3.31 102.14 101.13 0.99 77.68 76.36 1.70
% 

126.19
99 

124.61 1.26 103.34
65 

101.25
63 

2.02
% Mean 114559.3 114586.8 -0.02 119.50 119.45 0.04 94.37 94.35 0.02

% 
143.71 143.68 0.02 124.66 124.73 -0.06 

SD 7812.6 7718.3 1.21 6.68 6.66 0.30 7.30 7.36 -0.82 4.83 4.86 -0.62 6.53 6.48 0.77
%  

)~(ωR
 

Max 122779.8 122735.2 0.04 123.17 123.12 0.04 97.61 97.59 0.02
% 

153.27
91 

153.15 0.08 129.41
23 

129.37
34 

0.03
% Min 117567.8 117573.0 0.00 117.25 117.26 -0.01 91.12 91.12 0.00

% 
135.49

01 
135.42 0.05 121.05

11 
120.99

95 
0.04
% Mean 119910.8 119919.8 -0.01 119.94 119.96 -0.02 94.08 94.09 -0.01 144.22

07 
144.25 -0.02 125.37

95 
125.38

27 
0.00 

SD 1202.1 1199.9 0.18 1.41 1.40 0.71 1.55 1.54 0.65
% 

3.74 3.71 0.80 1.78 1.78 0.00
%  

)~(ωP
 

Max 131650.3 131442.9 0.16 131.05 130.91 0.11 103.32 103.17 0.15
% 

157.51
67 

157.29 0.14 137.57 137.23 0.25
% Min 108278.9 108146.1 0.12 109.54 110.03 -0.45 85.33 85.43 -0.12 131.57

95 
132.32 -0.56 114.05 114.24 -0.17 

Mean 119787.4 119748.1 0.03 119.92 119.89 0.03 94.01 93.98 0.03
% 

144.11
47 

144.07 0.03 125.41 125.36 0.04
% SD 5678.4 5728.4 -0.88 4.11 4.10 0.24 3.35 3.31 1.19

% 
5.10 5.08 0.39 4.56 4.51 1.10

%  

)~(ωF
 

Max 157639.4 157447.1 0.12 120.36 120.38 -0.02 96.25 96.28 -0.03 143.98
63 

144.01 -0.02 126.43 126.42 0.01
% Min 119790.2 119692.4 0.08 119.81 119.79 0.01 93.94 93.92 0.02

% 
143.45

01 
143.43 0.01 125.31 125.34 -0.02 

Mean 137767.5 137644.7 0.09 120.08 120.08 -0.01 95.11 95.11 0.00
% 

143.71
82 

143.71 0.01 125.90 125.90 0.00
% SD 12653.6 12272.1 3.01 0.27 0.27 0.00 0.89 0.87 2.25

% 
0.26 0.26 0.00 0.31 0.30 3.23

%  

{θ
,R

,P
,F

,α
,β

} Max 177886.5 180808.1 -1.64 140.77 139.61 0.82 114.082
5 

117.94 3.38 169.30
19 

165.86 2.03 146.10 149.01
55 

-2.00

Min 101954 101032.5 0.90 103.79 104.23 -0.42 77.42 78.28 -1.11 124.71
83 

124.71 0.01 106.07 107.45 -0.30 

Mean 137164.4 137238.2 -0.05 120.20 120.18 0.02 95.27 95.28 -0.01 144.03
35 

143.99 0.03 125.86 125.87 -0.01 

SD 14468.9 11919.0 17.62 5.40 5.44 -0.74 5.32 5.23 1.69 6.58 6.60 -0.30 6.09 6.02 1.15 
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                                        (a)                                                                                                                                  (b) 
 
Fig. 7 Effect of static load factor and dynamic load factor on stochastic resonance frequencies (fundamental) due to combined variation of ply-
orientation angle, radius of curvatures, material properties, loading for simply supported angle-ply (45°/-45°/45°/-45°) composite spherical shells  
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Fig. 8 Effect of percentage variation (5%, 10% and 15%) for combined variations of input 
parameters on resonance frequencies (fundamental) for simply supported angleply (45°/-
45°/45°/-45°) composite spherical shells  
 

method are carried out corresponding to both angle-ply (45°/-45°/45°/-45°) and cross-ply 

(0°/90°/0°/90°) composite spherical shells. Due to random variation of input parameters, the 

elastic stiffness of the laminated composite plate is found to be varied, which in turn 

influence the stochastic output irrespective of laminate configuration. Table 5 presents the 

comparative results of Monte Carlo simulation (MCS) and present MLS method for first 

buckling load and resonance frequencies (upper bound and lower bound) due to individual 

and combined variations of ply-orientation angle, radius of curvatures, material properties, 

intensity of load and load factors of a simply supported angle-ply (45°/-45°/45°/-45°) 

composite shallow spherical shells. The influence of static load factor and dynamic load 

factor on stochastic resonance frequencies due to combined variation of ply-orientation angle, 

radius of curvatures, material properties, loading for angle-ply (45°/-45°/45°/-45°) composite 

spherical shells are furnished in Figure 7. It is observed that the width of the instability zone 

increases with the increase of static and dynamic load factors. Based on the rate of increment 

of the region of instability, it can be inferred that the dynamic load factor (β) is more sensitive 
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to resonance frequencies than static load factor (α). Further to explore the effect of degree of 

stochasticity on resonance frequency and the capability of the proposed MLS based approach 

for higher degree of variations in the stochastic input parameters, three different degree of 

stochasticities are considered: 5%, 10% and 15% variations in the stochastic input parameters 

with respect to their respective deterministic values.  Figure 8 presents the validation in 

resonance frequencies (fundamental) using MLS model corresponding to different degree of 

stochasticities (5%, 10% and 15%) for combined variation of input parameters considering 

simply supported angle-ply spherical shells. The figure clearly depicts the increase in sparsity 

of resonance frequency (fundamental) due to increase in percentage of varitions of random 

input parameters. The figure also affirms that the proposed MLS based uncertainty 

quantification algorithm for composites produces quite satisfactory results for different 

degree of stochasticities in input parameters with respect to direct Monte Carlo simulations. 

Depending on the geometry of doubly curved shells, a comparative study is carried out 

for cylindrical, hyperbolic paraboloid and spherical shells as furnished in Figure 9 for both 

stochastic buckling load and random resonance frequencies (fundamental) due to combined 

variation of for cross-ply (0°/90°/0°/90°) composite shells. The zone of resonance frequencies 

(fundamental) maps the different instability regions for different shell geometries. It is 

observed that the resonance frequency (fundamental) decreases with reduction of curvatures 

from spherical shell to hyperbolic paraboloid shells while single cylindrical shell shows the 

least stiffness compared to the other two. In order to address the influence of degree of 

shallowness (Rx/a = Ry/b = 5, 10, 20) of the doubly curved shells, a spherical shell is 

considered to portray the instability regions as furnished in Figure 10. It is identified that 

there is an increase of instability resonance frequencies with the decrease in radius of 

curvature along x and y directions (i.e., Rx and Ry values). The significant effects of degree of 

orthotropy on stochastic buckling load and resonance frequency (fundamental) due to  
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(a)                                                                            (b) 
 
Fig. 9 Effect of shell geometry (Cylindrical, Hyperbolic  paraboloid and Spherical) on 
stochastic (a) buckling load (first) and (b) resonance frequencies (fundamental) due to 
combined variation of for simply supported cross-ply (0°/90°/0°/90°) composite curved shells 
 
 
 

    
 

(a)                                                                      (b) 
 
Fig. 10 Effect of degree of shallowness (DOS) (Rx/a=Ry/b) on stochastic (a) buckling load 
(first) and (b) resonance frequencies (fundamental) due to combined variation of for simply 
supported cross-ply (0°/90°/0°/90°) composite spherical shells 
 
 

combined variation of ply-orientation angle, radius of curvatures, material properties, loading 

for cross-ply composite spherical shells are furnished in Figure 11. As the static parameter is 

increased, the dynamic instability zone tend to shift towards lower frequencies and  become 

stipper. The effect of degree of orthotropy is studied for E1/E2 ratio = 15, 30, 45, by 

randomizing the other parameters.  The study shows an increase of random resonance  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

29 

 

        

(a)                                                                    (b) 

Fig. 11 Effect of degree of orthotropy on stochastic (a) buckling load (first) and (b) resonance 
frequencies (fundamental) due to combined variation for simply supported cross-ply 
(0°/90°/0°/90°) composite spherical shells  
 
 
 

               

(a)                                                                     (b) 
 
Fig. 12 Effect of boundary end condition (CCCC, SCSC, SSSS) on stochastic (a) buckling 
load and (b) resonance frequency (fundamental) due to combined variation for cross-ply 
(0°/90°/0°/90°) composite spherical shells  

frequencies due to increase in degree or orthotropy. The boundary conditions of the 

composite shells are observed to have a significant influence on the dynamic instability 

regions. The influence of different boundaries (CCCC, SCSC, SSSS where C – clamped, S-

Simply supported) is investigated for stochastic buckling load and first resonance frequencies 

(lower and upper bounds) due to combined variation of ply-orientation angle, radius of 

curvatures, material properties, loading for cross-ply composite spherical shells by  
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Fig. 13 Stochastic buckling load for combined variation for simply supported cross-ply 
spherical shells 
 
 
 

    

(a)                                                                     (b) 
 
Fig.14 Effect of aspect ratio (AR) on stochastic (a) buckling load and (b) resonance 
frequencies (fundamental) for combined variation for simply supported cross-ply spherical 
shells 

probability density function as furnished in Figure 11. This study shows that the stochastic 

resonance frequencies are found minimum for simply supported and maximum for clamped 

edges due to the restraint at the edges while SCSC boundary condition is found to be 

intermediate for both stochastic buckling load as well as zone of resonance frequencies.   

The effect of individual variations and combined variation of different random 

parameters for angle-ply composite spherical shells on stochastic first buckling load are  
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Fig. 15 Relative coefficient of variance (RCV) of buckling load and first resonance 
frequencies (FRF) and second resonance frequencies (SRF) due to individual variation of ply 
orientation angle, radius of curvatures, material properties, loading and combined variation 
for simply supported angle-ply (45°/-45°/45°/-45°) composite spherical shells. 
 

furnished in Figure 13 wherein the maximum sparsity of buckling load is observed for only 

variation of load-intensity among all the individual parameters. Figure 14 represents the 

influence of aspect ratio (AR = a/b) on stochastic buckling load and resonance frequency 

(fundamental) due to combined variation of ply-orientation angle, radius of curvatures, 

material properties, loading for cross-ply composite spherical shells. Because of the shear 

deformation, it is found that the width of instability region narrows down. It is also found that 

as the aspect ratio (a/b) increases, the resonance frequencies also increase and the width of 

instability zone becomes wider. In the present study, the relative coefficient of variance 

(RCV) (normalized mean to standard deviation ratio) due to individual and combined 

variations is quantified for angle-ply laminate as furnished in Figure 15. On the basis of 

individual variation of input parameters, ply orientation angle is found to be comparatively 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

32 

 

most sensitive, while loading parameter (for resonance frequencies) and radius of curvature 

(for buckling load) are found to have lesser sensitivity. 

7. Conclusions 

         This study illustrates an efficient stochastic dynamic stability analysis of laminated 

composite curved panels considering non-uniform partial edge loading. The ranges of 

variation in first stochastic buckling load and fundamental resonance frequencies are 

analyzed considering both individual and combined stochasticity of input parameters. 

Novelty of the present study includes an efficient stochastic dynamic stability analysis with 

random non-uniform loading. Moving least square method is employed in conjunction with 

stochastic finite element analysis following a non-intrusive approach to achieve the 

computational efficiency. After utilizing the surrogate modelling approach, the number of 

finite element simulations is found to be significantly reduced compared to original Monte 

Carlo simulation without compromising the accuracy of results. The computational time is 

reduced to (1/157) times (for individual variation) and (1/20) times (for combined variation) 

of Monte Carlo simulation. The stochastic instability regions are found to shift to lower 

frequencies with increase in static load factor showing wider random instability regions 

indicating destabilization effect on the dynamic stability characteristics of composite 

spherical shells. It is observed that the zone of stochstic instability has significant influence 

due to variation in degree of orthotropy, aspect ratio and boundary condition. The width of 

stochstic instability region increases with the increase of degree of orthotropy and aspect 

ratio. The ply orientation angle is found to be most sensitive, while the least sensitive 

parameters are observed as loading parameter (for resonance frequencies) and radius of 

curvatures (for buckling load) compared to other parameters considered in this analysis.  

Laminated composites being a complex structural form and susceptible to different 

forms of uncertainty, the compound effects of stochastic time varying loading and structural 
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and material uncertainties associated with composites are crucial for the intended 

performance in various applications. It is found that stochastic variations of input parameters 

has significant impact on dynamic instability of composite shell structures and thus such 

sensitive parameters are to be considered in design for operational safety and serviceabilty 

point of view. The numerical results obtained in this study provide a comprehensive idea for 

design and control of laminated composite curved pamels. The effiecient moving least square 

based approach of uncertainty quantification can be extended further to other computationally 

intensive analyses of composite structures. 
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1. Stochastic dynamic stability analysis of composite structures is performed. 

2. Importance of dynamic stability analysis for stochastic systems is highlighted. 

3. Stochasticity in composite system properties (structural and material attributes) as well 

as loading is considered. 

4. A surrogate based approach is adopted to achieve computational efficiency in the 

stochastic analysis. 


