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Abstract

The stochastic dynamic stability analysis of lartedacomposite curved panels under non-
uniform partial edge loading is studied using Bnilement analysis. The system input
parameters are randomized to ascertain the stechfast buckling load and zone of
resonance. Considering the effects of transversarstieformation and rotary inertia, first
order shear deformation theory is used to modelctimaposite doubly curved shells. The
stochasticity is introduced in Love’s and Donnelf®ory considering dynamic and shear
deformable theory according to the Sander’s fipptraximation by tracers for doubly curved
laminated shells. The moving least square methamiployed as a surrogate of the actual
finite element model to reduce the computationait.cbhe results are compared with those
available in the literature. Statistical resulte @resented to show the effects of radius of
curvatures, material properties, fibore parametangl non-uniform load parameters on the

stability boundaries.

Keywords. Composite curved panel; Stochastic dynamic stgbiMoving least square

method
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applications. It has improved the performance atidbility of structural system due to its
mechanical advantages of specific modulus and petiength over monolithic materials,
improved fatigue, impact resistance, and desigxiligty. Such structures subjected to in-
plane periodic forces may lead to parametric resomabecause of certain random
combinations in the values of uncertain parameféh& instability may occur below the
stochastic critical load of the structure under poessive loads over wide ranges of
resonance frequencies. Specially the aerospacetsgs such as skin panels in wings,
fuselage, submarine hulls and civil application peactical importance of stability analysis
of doubly curved panels/open shells subjected terain non-uniform loading condition.
Traditionally, structural analysis is formulated thvideterministic behavior of material
properties, loads and other system parameters. Howthe real-life structures employed in
aerospace, naval, civil, and mechanical applicatane always subjected to intrusive uncer-
tainties. The inherent sources of such uncertantigeal structural problems can be due to
randomness in material properties, loading conustiggeometric properties and other random
input parameters. As an inevitable consequencehef uncertainties in these system
parameters, the response of structural systemaimithys exhibit some degree of uncertainty.
The traditional deterministic analysis based oneaact reliable model would not help in
properly accounting the variation in the responsd #herefore, the analysis based on
deterministic material properties may vary sigmifidy from the real behaviour. The
incorporation of randomness of input parameterdlesathe prediction of the performance
variation in the presence of uncertainties and noggortantly their sensitivity for targeted

testing and quality control. In order to provideefus and accurate information about the safe
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life engineering structural systems. It is alsouisgf to quantify uncertainties and robustness
associated with a computational model. Hence, tamtification of uncertainties plays a key
role in establishing the credibility of a numericabdel. Therefore, the development of an
efficient mathematical model possessing the capabal quantify the uncertainties present in
the structures is extremely essential in orderdoueately assess the laminated composite
structures.

Structural elements under in-plane periodiccds may undergo unstable transverse
vibrations, leading to parametric resonance, dueettain combinations of the values of in-
plane load parameters and natural frequency ofsvexse vibration. Several means of
combating parametric resonance such as dampingibration isolation may be inadequate
and sometimes dangerous with reverse results (Evamewski, 1965). A number of
catastrophic incidents can be traced to parametstability and is often studied in the
spectrum of determination of natural frequency andical load of structures. The
stochasticity in the measurement of natural freqigs, critical load and ultimately the
excitation frequencies during parametric resonaae of great technical importance in
studying the instability behavior of dynamic sysgemlany authors addressed the parametric
instability characteristics of laminated composilat panel subjected to uniform loads
(lwatsubo et al., 1973; Moorthy and Reddy, 1990eiChnd Yang, 1990; Patel et al., 2009;
Kochmann and Drugan, 2009; Singha and Daripa, 260®; et al., 2013). In contrast,
Bolotin (1964) and Yao (1965) studied the parametsonance subjected to periodic loads.
Stochastic principal parametric resonance of coftgdaminated beam is numerically

investigated by Lan et al. (2014). The influencéd¢ransverse shear (Andrzej et al., 2011)
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and Birman, 1988) and stiffened panel (Sepe e2@lg). Further studies are also carried out
for modelling mesoscopic volume fraction stochastifluctuations in  fiber
reinforced composites (Guilleminot et al., 2008y dar parametric instability of graphite-
epoxy composite beams under excitation (Yeh and, RQ64). Free vibration and dynamic
stability analysis of rotating thin-walled compasibeams (Saraviaa et al., 2011) and
nonlinear thermal stability of eccentrically stiffed functionally graded truncated conical
shells are recently reported (Duc and Cong, 2015hn contrast, many numerical
investigations are carried out using response sgirfaethods such as moving least square
(MLS) method and other methods for structural asialyChoi et al., 2004; Wu et al., 2005;
Park and Grandhi, 2014; Shu et al., 2007; Kangl.et2810). Some researchers studied
specifically on the moving least squares (MLS) agpnation for the regression analysis
(Lancaster and Salkauskas, 1981; Breitkpf et28lQ5) instead of the conventional least
squares (LS) approximation in conjunction to tradial response surface method (RSM)
techniques (Mukhopadhyay et al., 2015, Dey etfill5a). Several studies are carried out on
uncertainty quantification for dynamic responsestiictures including different surrogate
based analyses of composite beams, plates and gBalirouy et al.,, 2013; Dey et al.,
2015(b-d), 2016(a-f), 2018; Mukhopadhyay et al.@0ONaskar et al.,2017). Few articles
have reported the critical comparative assessmemifierent surrogate models for their
performance in dynamic analyses of composite latem¢Dey et al.,2017; Mukhopadhyay et
al.,2017).

To the best of authors’ knowledge, no literaturee@orted on uncertainty quantification

of parametric instability of doubly curved compesghells. The application of stochastic
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design and control of the system. The applicatiomaving least square method in this realm
as a computationally efficient surrogate of expemdinite element method has not been
investigated yet. Even though the perturbation watis an efficient way of stochastic
analysis for relatively simpler structures (Kamin&013; Gadade et al., 2016), this intrusive
method can be mathematically quite cumbersome donptex problems like stochastic
dynamic stability analysis of composite laminafBse main drawback of this method is that
it can obtain only the statistical moments (not #drgire probability distribution) of the
stochastic output quantity of interest. If the matof the output distribution is known to be
Gaussian, the probability distribution can be alsdiusing the first two moments. However,
the nature of distribution of the output parametesy not be known a priori in most
engineering problems. Monte Carlo simulation, oa tither hand, can obtain the entire
probabilistic description of the stochastic outparameter. The main lacuna of traditional
Monte Carlo simulation is its computational intemsiess. A surrogate based Monte Carlo
simulation approach, as followed in this paperpva#l us to quantify the probabilistic
descriptions in a computationally efficient mannkr.the present study, a moving least
square based approach is employed in conjunctitim fimite element formulation to figure
out the random eigenvalue problem and quantify gh&babilistic characteristics of the
responses related to dynamic stability of compoksiteinates. The numerical results are
shown for first random buckling load and stochaitimdamental resonance frequencies with

individual and combined variation of the stochastjut parameters.

2. Importance of stochastic dynamic stability analysisin composite laminates
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vehicles, marine structures are always suffered peodic wave forces etc. Structural
components subjected to in-plane periodic forcedergo an unstable dynamic response
known as dynamic instability or parametric instéfpibr parametric resonance. Parametric
resonance, may occur for certain combinations tdirahfrequency of transverse vibration,
the frequency of the in-plane forcing functions dhd magnitude of the in-plane load. A
number of flight accidents can be traced due tcarpatric instability of structures. In
comparison to the principal resonance, the paramestability can take place not only at a
single excitation frequency but even for small &t@n amplitudes and combination of
frequencies. The difference between good and ba@ton regimes of a structure under in-
plane periodic loads can be found from dynamicainisity region (DIR) spectra. The
computation of these spectra is usually studiederm of natural frequencies and static
buckling loads. The parametric instability has tas@ophic effect on structures near critical
regions of parametric instability. Hence, the pagtiio resonance characteristics of structures
are of great technical importance for understanding dynamic characteristics under

periodic loads.

As discussed in the preceding paragraph, strucanesubjected to dynamic loads
more often than static loads. Dynamic load meaadadad varies with time. Periodic loading
is one type of dynamic loading. This type of loatwrs in repeated periods or cycles like
sine and cosine functions. Structures subjected-pdane periodic loads can be expressed in
the form as suggested by Bolotin (1964(t) = Ps + P; cos@t , wherePs is the static portion
of P(t), P is the amplitude of the dynamic portion Bft) and 2 is the frequency of

excitation. It can be noted here that the quastRieP;, Q possess random values in practical
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Laminated composites being a complex structurahfand susceptible to different forms of
uncertainty, the compound effects of stochasticetmarying loading and structural and
material uncertainties associated with composi#éeshe crucial in the intended performance

for various engineering applications.

3. Governing equations

In the present study, a layered graphite-gpmmposite laminated simply supported
shallow doubly curved shell is considered with khiesst, intensity of loadingC, principal
radii of curvatureR, , R, along x- and y-direction, respectively and thauaaf curvaturdR,y
in X-y plane, as furnished in Figure 1. Using Haamls principle (Meirovitch, 1992) for free
vibration of composite shell structure subjectethtplane loads, the equation of equilibrium

can be expressed as

[M(@][d] +([K ()] - F(@) [K (@) {at =0 1)
where M (&) , K (@) and K (@) are mass, elastic stiffness and geometric stiéfmeatrices,
respectively. Herew is used to denote the element of probability spddesrefore, any

guantity expressed as a function &f is a random quantity (can be a scalar, vector or a

matrix). The in-plane loafiF(c )( )l periodic and can be expressed in the stochfastic
(Patel et al., 2009)

F(w)(t) = F(w) + F (w)Cost (2)
where F () and F, (@) are the random static portion and the amplitude¢hef dynamic

portion of stochastic in-plane load, respectivelfie static buckling load of elastic shell

F, (@) is the measure of the magnitudefofw and F, (@)



equation of motion can be expressed by employingon (2) as

[M(@]1d] +([K.(@)] - a(@) Fy (@) [K,(@)] = B@) F, (@) [Ky(@)] cost){q} =0  (4)

) I VO T e

Fig. 1 Laminated composite curved panel

It can be noted that the matrices involved in eiguaf4) are stochastic in nature. Depending
on the degree of stochasticity, each element ofrtatices is random in nature. The solution
of equation (4) would obtain different results fach of the realizations of a Monte Carlo
simulation depending on the respective set of inpatameters. Thus probabilistic
distributions can be obtained based on the resdltifferent realizations following a non-
intrusive methodThis stochastic equation (4) indicates second odifézrential equations
with periodic Mathieu-Hill type coefficients. Thermation of zone of instability arises from
Floquet’s theory which establishes the existengeeniodic solutions. The periodic solutions
of period T and Z derive the limiting bounds of the dynamic instapiregions (where

T =2n/ Q). The significant stochastic importance lies ie fimiting bounds of primary

instability regions with period 2 (Chen and Yang, 1990) wherein the solution can be

represented as the trigonometric series form



expressed by equating the coefficientsSof(Q2t 4P Cos (L2t /2) as

[Ke(@)] - a(@) Fo (@) [Ky ()] = B(@) F, (@) [Ky ()] - %[M]}{q} =0 (6)

The above equation (6) represents an eigenvalugegmofor known values ofr(« ,) B(«)
andF, (w) as for2,q; = Ofor j=1,2,3.... Here the two conditions under a pém minus

sign represents the two limiting bounds of the dyitainstability region. The eigenvalues

(Q2,) provide the boundary frequencies of the instgbikegions for specific values ofand

S and the reference stochastic static buckling isasbmputed accordingly (Ganapathi et al.,
1999) and in contrast, exact solution for doublyved shells can also be carried out
(Chaudhuri and Abuarja, 1988). An eight-noded cdrigmparametric element is employed

with five degrees of freedom,v,w, &, and 6, per node. The present study employs the

first order shear deformation theory and the stwearection coefficient for the nonlinear
distribution of the thickness shear strains throtlghtotal thickness. The displacement field
along mid-plane is assumed to be straight befodeaftier deformation, but it is not necessary

to remain normal after deformation. The displaceincemponents can be expressed as
u(xy,2)=u(xy) + z6,(xy)
V(xy,2)=v(xy)+z6,(xY) 7)
W(X,y,2) =w(x,y)
where the rotations of the mid-plane surface amresented byd, and &,. Here the
displacement components in they, z directions at any point and at the mid-plane s@fare

denoted as1, v, W, andu, v andw, respectively. Thus the integrated relationshiptifie

composite curved shell can be represented as

9



where A, B;, D;(wherei, j=1,2,6)and S, (wherei, j=4,5) are the extension-bending

j ’
coupling, bending and transverse shear stiffnesspectively. The shear correction factor

(=5/6) is incorporated i§,in the numerical calculation. In the present analyshear

deformable Sander’'s kinematic relation (Bathe, 199@xtended for doubly curved shells.
The strain displacement equations of linear natarebe obtained as

~ _0u w
£, (@)="0 + — + 2k

x R@

5(5)):@+—W + zk
Ty T R@ T

~. Ou ov
nyu(w):a—y + ™ + ZK,, 9

~ 0w \Y;
w)=— + 6 - C =
Vil oy 'R, ()

y

X

~ 0w u
Ww=— +6 - C——
where
aey
; X and Kk, =—
oX y

- _06, 06, 1 ( 1 1 J{av auJ
Ky(@W) = —>+— +-C, —~ "5 = || 30 "5
Y dy ox 2 R(w) R/(w)/\ox oy

Here the formulation can be derived to shear dedbten Love’s first approximation and

(10)

Donnell’s theories from tracersC( and C,). Considering nonlinearity in strain, the element

geometric stiffness matrix for doubly curved shels be expressed as

~ 1fou . ow Y o1favy 1fow u ) 1.|(e8.) (06,
En (@)= = + — = +—(—] s U )2y (—j o (11)
o 2 0x  R(w) 2\ ox 2| x R () 2 ox ox

10




~ [au w Jau (av w Jav [aw u ](aw % ]
Y@= — +* —= |t |t o= === ==
” {GX R(w))oy [0y R(w))ox (ox R(w))dy R(w)
155 )
+z +
ox )\ oy ox )\ oy

The overall stochastic stiffness and mass matriees[K ()], [Kg(&‘))] and [M(« )] are

obtained by assembling the corresponding elemetriaes by using skyline technique. The
element mass and stiffness matrices of composékssire computed wherein the geometric
stiffness matrix is obtained as the function oplane stress distribution in the element due to
applied edge loading. Due to non-uniformity in gteess field, plane stress analysis is carried
out by using the finite element formulation. The bk shear locking is avoided by
employing the reduced integration technique foralenent matrices. The subspace iteration

method (Bathe, 1990) is utilized to solve the ststic eigenvalue problems.

4. Moving least square method

In general, the polynomial regression model® ghe large errors in conjunction to
non-linear responses while give good approximatiorgmall regions wherein the responses
are less complex. Such features are found advantagehile implementing the method of
moving least squares (MLS). Moreover, the leastasgjunethod gives a good result to
represent the original limit state but it createprablem if anyone like to fit a highly
nonlinear limit function with this technique becauthis technique uses same factor for
approximation throughout the space of interest. f@a@me this problem, the moving least
square method is introduced. In this method, a ktedinterpolation function or limit state

function is employed to the response surface antesextra support points are also generated

11
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particular distribution such as normal or lognorwih limit state function of these random
variables. To avoid the curse of dimensionality malthg with random input variables,
response surface methods (RSM) can be utilisethdease the computational efficiency.
These methods approximate an implicit limit statecfion as a response surface function
(RSF) in an explicit form, which is evaluated foset of selected design points throughout a
number of deterministic structural analyses. RSMraximates an implicit limit state
function as a RSF in explicit form. It selects exypental points by an axial sampling scheme
and fits these experimental points using a secaxéropolynomial without cross terms
expressed as

k k k k

Y =Fo+ DEX + 2 2EX% *+ LAX 12)

i= i=1 i .
where B,, B, B; and g, are the unknown coefficients of the polynomial étpra The least
squares approximation commonly used in the coneeraltiRSM allots equal weight to the
experimental points in evaluating the unknown doedihts of the RSF. The weights of these
experimental points should consider the proximitythe actual limit state function so that
MLS enables a higher weight to yield a more aceucattput. The approximated RSF can be

defined in terms of basis functioibsx (ahd the coefficient vectaa x(ap

L() =b(¥)" a(x) (13)
The coefficient vectoa X )s expressed as a function of the random variabkesconsider

the variation of the coefficient vector accordingtihe change of the random variable at each

iteration. The local MLS approximation atis formulated as (Kang et al., 2010)

12
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b(x)—[lxl.....xnx xn] (15)
The vector of unknown coefficients x (i3 determined by minimizing the error between the

experimental and approximated values of the litaitesfunction. This error is defined as
St 600 - Lol = @a-Ly
Err(x) _EW(X_ X)IL(X,x)— L(x)| =(Ba-L) W(x) (Ba-L) (16)

where L = [LOOL(% Jreveere oo L)L B = [B0Q)D )reveeeee. b(x)] T and

W(X) = diag.[wl(xl = X)W, (X, = X )yeevven . W (X — x)]. Here @+1) is the number
of sampling points andntt1) is the number of basis functions. Now for minimiaat of

error with respect ta x( ,)0(Err)/0a =0transforming the coefficient of vectar x (as

a(x) =(B"W(x)B)™ B"W(x)L (17)
The approximated response surface function is oddaiom equation (14) as

L(x) =b(x)" (BT W(x)B)™ B" W(x)L (18)

5. Random input representation

The random input parameters such as ply-a@iem angle, radius of curvatures,
material properties (both longitudinal and transeeglastic modulus, shear modulus, Poisson
ratio, mass density), load, load factors (bothist@id dynamic) and combined variation of
all these parameters are considered for composiblg curved shells considering layer-
wise stochasticity. It is assumed that the unifoendom distribution of input parameters
exists within a certain band of tolerance with thaean values. The following cases are
considered in the present study:

(a) Variation of plyerientation angle only: 6(w) ={4, 86, 6,....... 6...68}

13
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(d) Variation of intensity of load only: {F(e )}
(e) Variation of static load factqr(cc )and dynamic load factdiB(«c )}
() Combined variation of ply orientation angledinas of curvatures, material properties
(namely, elastic moduli, shear moduli, Poissonts rand density), applied load and load
factors (static and dynamic): {6,R,P,F.,a,B(« )
In the present studyt 5° variation for ply orientation angle; 10% volatility in material
properties (as per industry standard), applied lead load factors, respectively are
considered from their respective deterministic galwnless otherwise specified. Figure 2
presents a flowchart of the stochastic dynamic ilggabanalysis using MLS method
(surrogate based Monte Carlo simulation) as folebwe the present study. A brief
description of the Monte Carlo simulation methogrsvided in the following paragraphs.

Uncertainty quantification is part of modern sturel analysis problems. Practical

structural systems are faced with uncertainty, gonby, and variability constantly. Even
though one might have unprecedented access toriatmn due to the recent improvement in
various technologies, it is impossible to accuyapekdict future structural behaviour during
its service life. Monte Carlo simulation, a compi#ted mathematical technique, lets us
realize all the possible outcomes of a structuyatesn leading to better and robust designs
for the intended performances. The technique was fised by scientists working on the
atom bomb; it was named after Monte Carlo, the Moneesort town renowned for its
casinos. Since it's introduction in World War Ihig technique has been used to model a

variety of physical and conceptual systems acroteht fields such as engineering,

14



Identification and definition of input parameters
e.g.6(&), R(@),P(a), F (&) a(a), Bla )

y

FE formulation to calculate random buckling load aegbnance frequencies

Com {12 o)

1”2

Selection of design points based on Sobol sequsaropling

Mapping frequency responses using FEM

Construct surrogate model using MLS method
L(x) =b(x)" (BT W(x)B)™ B" W(x)L

Model verification by Scatter plot and PDF check

MCS using MLS method

Statistical analysis for variation of buckling
load and resonance frequency

Fig. 2 Flowchart of stochastic dynamic stability analysssng MLS method
finance, project management, energy, manufactureggarch and development, insurance,
oil and gas, transportation and environment.

Monte Carlo simulation furnishes a range of prospecoutcomes along with their
respective probability of occurrence. This technigegforms uncertainty quantification by
forming probabilistic models of all possible resuéiccounting a range of values from the
probability distributions of any factor that hahément uncertainty. It simulates the outputs

15
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it can provide a converged result depicting thérithgtions of possible outcome values of the
response quantities of interest. Each set of samgplealled an iteration or realization, and
the resulting outcome from that sample is recordedthis way, Monte Carlo simulation
provides not only a comprehensive view of what ddwdppen, but how likely it is to happen
i.e. the probability of occurrence.

The mean or expected value of a functib(x) of a n dimensional random variable

vector, whose joint probability density functiongisen by (x), can be expressed as

M =E[ f(x)] =j f (x)ep(x) dx (19)

ot =var[1(9]=[(1 (-4 ) o(x)x 20)

The above multidimensional integrals, as shown inaggn (19) and (20) are difficult to
evaluate analytically for many types of joint dépdunctions and the integrand function
f (X) may not be available in analytical form for the [geom under consideration. Thus the
only alternative way is to calculate it numericalljhe above integral can be evaluated using
MCS approach, whereiN sample points are generated using a suitable saygtheme in
the n-dimensional random variable space. Theamples drawn from a dataset must follow

the distribution specified by(x) . Having theN samples fox, the function in the integrand
f (x) is evaluated at each of thesampling pointsx of the sample sex ={x1, ............ xN} :

Thus, the integral for the expected value takesdhm of averaging operator as shown below

16
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o; =Var[f(x)]=Ni_12N:(f()q)_luf)2 (22)

i-1

Thus the statistical moments can be obtained uailgute force Monte Carlo simulation
based approach, which is often computationally weignsive due the evaluation of function

f (x) corresponding to the-sampling pointsx , whereN ~ 1C’. The noteworthy fact in this

context is the adoption of surrogate based MontdoGamulation approach in the present
study that reduces the computational burden ofitioacl (i.e. brute force) Monte Carlo

simulation to a significant extent.

6. Resultsand Discussion

The present study considers a simply supportedl&yared graphite-epoxy angle-ply
(45°/-45°/45°/-45°) and cross-ply (0°/90°/0°/9@9mposite doubly curved shallow shells. In
finite element formulation, an eight noded isopagtin quadratic element is considered. For
graphite-epoxy composite shells, the deterministitdues of geometric properties are
considered ak =1 m,b= 0.5 m,t = 0.005 m,C = 0.5,R,= R, = 10, (for spherical shell),
a = 0.5, = 0.5 and the material properties are assumdg; as141 GPaE; = 9.23 GPa,
Gi2= Gi3= 5.95 GPaG,3= 2.96 GPap = 1580 Kg/mi, v = 0.3. Table 1 presents the non-
dimensional buckling loads for the simply supporgdgly-curved cylindrical composite
(0°/90°) panel for differenb/R, ratios (Baharlou and Leissa, 1987). Table 2 prasém
convergence study of non-dimensional fundamentalirab frequencies of three layered
graphite-epoxy untwisted composite plates (Qatu lagidsa, 1991). A close agreement with

benchmarking results are obtained in conjunctiofdtex 4), (8 x 8) and (10x 10) mesh

17
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insightful to understand the structural behaviduilaoger structures. For example, fuselage of
aircraft consists of a cylindrical shell stiffenég circumferential frames and longitudinal
stringers. Tests on full scale structure showed #tacent panels across a frame vibrate
independently of one another, with the frames gc#is rigid boundaries (Clarson and Ford,
1962). Hence, in compliance of the same, the ptesemly considers a simple example
problem of a small component of laminated compasiteved shells as a representative case
to map the zone of dynamic instability due to stmtit variations on input parameters
wherein the moving least square (MLS) model is @ygdl to reduce the computational time
and cost compared to Monte Carlo Simulation (MG®8wever, in future, an extended work
of the present study can be carried out to dedh wie role of components in the overall
stability of the whole large complex structuralteys.

Table 1 Non-dimensional buckling loads for the simply sogpd singly-curved cylindrical

composite (0°/90°) panel with= 0.25 mb = 0.25 m#=0.0025 ma/R, = 0,E; = 2.07 x 18"
N/m? E, = 5.2 x 18 N/m?, Gy, = 2.7 x 18 N/, vy, = 0.25.

Structure bR=0.1 bR=0.2 bR=0.3
Present method 17.612 32.5027 57.117
Baharlou and Leissa (1987) 17.49 32.17 56.62

The moving lease square based approach is validatid original Monte Carlo
simulation considering random variations of inpatgmeters within upper and lower bounds
(tolerance zone). Figure 3 presents the scattérgiach establishes the accuracy of present
MLS model with respect to original finite elemenbdel corresponding to stochastic first

buckling load for combined variation of ply-orietitan angle, radius of curvatures, material
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Struct Present FEM| Present FEM| Present FEM| Qatu and Leissa
ructure (4 x 4) (8 x 8) (10 x 10) (1991)
Plate 0.4600 0.4581 0.4577 0.4607

Spherical Shell 1.3507 1.2977 1.2941 1.3063

Table 3 Non-dimensional fundamental frequencies=@, & \/(p/Eztz)] for the simply
supported four layered cross-ply (0°/90°/90°/0°nposite with E;1/Ezp = 25,63 = 0.2,
G12=G13= 0.9, v12 = 0.25.

Analvsi a/t=100 a/t=10
nalysis Plate SphericalR/b=1) Plate SphericaR(b=1)
Present FEM 15.187 126.320 12.228 16.146
Reddy (1984) 15.184 126.330 12.226 16.172
Chandrashekhara
(1989) 15.195 126.700 12.233 16.195
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Fig. 3 Scatter plot for stochstic buckling loads correspng to FE model and MLS model
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corresponding to given values of input variablestead of time-consuming deterministic
finite element analysis. The probability densityndtion is plotted as the benchmark of
bottom line results. The variations of materialgedies, load intensity and factors are scaled
in the range between the lower and the upper [joierance limit) as £10% with respective
mean values while for ply orientation angle as mitk5° fluctuation (as per standard of
composite manufacturing industry) with respectivedministic values. Due to paucity of
space, only a few important representative resudurnished.

A sample size of 64 is considered in case of imdial variation of stochastic input
parameters while due to higher number of inputaldes for combined random variation, the
subsequent sample size of 512 is found to meetdheergence criteria in the present MLS
method. The sampling size of 10,000 is considepedifect MCS with 10,000 finite element
(FE) iteration. In contrast, comparatively muchskErsnumber of actual FE iteration (equal to
number of design points required to construct timeogagte model) is carried out in case of
MLS method. The surrogate model is formed employitigS method, on which the full
sample size of direct MCS is conducted. Hencegctmputational time and effort expressed
in terms of FE calculation is significantly reduceaimpared to full scale direct MCS. This
provides an efficient and economic way to simulliee uncertainties in buckling load and
resonance frequencies (both upper bound and loaend) for dynamic stability analysis.
The scatter plot is also presented for validatibthe present MLS model with original FE
model with respect to resonance frequencies (fueda) of lower bound [Figure 4(a)] and
upper bound [Figure 4(b)] corresponding to combinvadation of ply-orientation angle,

radius of curvatures, material properties, loaddldactors (both static and dynamic). The
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are shown in Table 4 for samples of direct MCS kii$ model.

Table 4 Confidence interval boundaries for mean and stahdawiation of buckling load
(KN/m) for samples of direct MCS and MLS model

Confidence MLS MCS
interval (%) Mean SD Mean SD
95 | Min 1.35240x18 1.64351x16 1.35869x10 1.48764x1H
Max 1.36893x10 1.68972x16 1.36460x10 1.52946x16
97 | Min 1.35205%x18 1.64110x16 1.35837x10 1.48545x16
Max 1.36928x10 1.69226x16 1.36492x10 1.53176x16
99 | Min 1.35137x18 1.63645x16 1.35776x10 1.48124x16
Max 1.36996x10 1.69718x16 1.36553x10 1.53621x16
135 - B 160~ mﬂ”*r
130+ 79"; 155~
% 125 élsm
E 120F z 2145—
110- bsy‘ 135
%50 105 110 115 o 125 B0 135 140 145 Phsme Bs w0 s 10 155 10l 1
FE Model FE Model
(a) (b)

Fig. 4 Scatter plot for (a) lower bound and (b) upper lbwi fundamental resonance
frequencies corresponding to combined variation

The MLS model is validated extensively for differéaaminate configurations as well as
different forms of stochasticity (individual and mbined) so that the computationally
efficient surrogate is ensured to obtain accurasults in the uncertainty analysis. The

combined variations of stochastic input paramdtarboth MCS as well as present MLS
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Table5 Stochastic buckling load (first) and resonancguencies (first and second) with error due to irhlig
supported angle-ply (45°/-45°/45°/-45°) composjpeesical shells considering L=1 m, b=0.5 m0.005 m, c:

G1=G15=5.95 GPaG,:=2.96 GPap=1580 Kg/nf, v=0.3

Para- Buckling Load (first) Resonance frequency (First) es
meter Value MCS MLS Err % Upper bound Lower bound Upper
MCS MLS Err % MCS MLS | Err% | MCS MLS

_ | Max | 128291.9 127596.5 0.54 137.13 136{76 0.27 114.565.371 -0.71| 154.4% 154.¢
6(a) Min 88701.2 85767.6 3.31 102.14 10113 0.99 77.68 76.3670 | 126.19| 124.¢
Mean | 114559.3 114586.8 -0.02 119.50 11945 0.04 94.37 .3594 0.02 | 143.71 143.

SD 7812.6 7718.3 1.21 6.68 6.66 0.3( 7|30 71.36 -0.82 .834 4.

R(«) | Max | 122779.8 1227352  0.04 123.17 123|12 0.04 97.61 5997.0.02 | 153.27| 153.1
Min | 117567.8 117573.0  0.00 117.25 117(26 -0.01 91.12 .1291 0.00 | 135.49| 135./

Mean | 119910.8 119919.8 -0.01 119.94 11996 -0.02 94.084.099 -0.01| 144.22 144.:

SD 1202.1 1199.9 0.18 1.41 1.40 0.71 1/55 154 0|65 3.74 3.

P(«) | Max | 131650.3 1314429 0.16 131.05 13091 0.1 108.323.170 0.15| 157.51| 157.
Min | 108278.9 108146.1 0.12 109.54 11003 -0.45 85.33 .4335-0.12| 131.57 132.:

Mean | 119787.4 119748.1  0.03 119.92 11989 0.03 94.01 9893.0.03 | 144.11| 144«

SD 5678.4 57284 -0.88 4.11 4.10 0.24 3J35 3.31 119 5.10 5.0

F(«) | Max | 157639.4 157447.1  0.12 120.36  120|38 -0.02 96.25 .2896-0.03| 143.98 144.(
Min | 119790.2 119692.4  0.08 119.81  119{79 0.01 98.94 9293.0.02 | 143.45| 143.

Mean | 137767.5 137644.Y  0.09 120.08 120j08 -0.01 95.11 .1195 0.00 | 143.71| 143.

SD 12653.6 12272.1 3.01 0.37 0.27 0.00 0/89 0.87 2.25 0.26 0.:

= Max | 177886.5 180808.1 -1.64 140.77  139/61 0.82 114j08217.94| 3.38 169.30 165.¢
B Min 101954 101032.5 0.90 103.79 104]23 -0.42 77.42 8/B.2.11| 124.71 124.]
g:-. Mean | 137164.4 137238.2  -0.05 120.20 120{18 0.2 95.27 .2895-0.01| 144.03 143.¢
5 SD 14468.9 11919.0 17.62 5.40 5.44 -0.74 5.32 5.23 9 1.6 6.58 6.60

24



T T T T T T T
140
160
— Upper Bound
% Upper bound — Lower Bound

» : : ______________ . — lower bound _g 130
) “ ey <
g 120 I £ 120
: 3 >* -
S ., s 2
g -{ S =2 P
5} 100 o ekt o O P
8 i & 110 T
o “~ Q o
< ~TJ T % P
3 . T g
g " = T 5 '
g S 1005z
5] 8 g T e
@ . SN
= ~~T1 {0 T S

& .8

40

| | 1
I 1 1 I 1 1 0 02 0.4
0 0.2 0.4 0.6 0.8 1
Static Load Factor («) Dynamic I

(@)

Fig. 7 Effect of static load factor and dynamic load facdo stochastic resonance frequencies (fundame
orientation angle, radius of curvatures, mateniapprties, loading for simply supported angle-@dg°(-45°/45°/

25



E —e—10% MCS (LB)
= 0.08F ~5-10% MLS (LB)
Z 10% MCS (UB)
g 006- o ~510% MLS (UB)
e 8l o 159% MCS (LB)
= @ —F-15%MLS (LB)
,% 0.04r 5%@*‘*&;&5 —e—15% MCS (UB)
F'é ' 15% MLS (UB)
B 002t ! 1
B e o o e Ly Y £ __IE::"'______________:‘::_____::.;___ T e 1)
40 60 80 100 120 140 160

Fundamental resonance frequency

Fig. 8 Effect of percentage variation (5%, 10% and 156&6)dombined variations of input
parameters on resonance frequencies (fundamemtal¥inply supported angleply (45°/-
45°/45°/-45°) composite spherical shells

method are carried out corresponding to both apyl€45°/-45°/45°/-45°) and cross-ply
(0°/90°/0°/90°) composite spherical shells. Dugaindom variation of input parameters, the
elastic stiffness of the laminated composite platefound to be varied, which in turn
influence the stochastic output irrespective ofifeate configuration. Table 5 presents the
comparative results of Monte Carlo simulation (MG8) present MLS method for first
buckling load and resonance frequencies (upper dama lower bound) due to individual
and combined variations of ply-orientation angkdius of curvatures, material properties,
intensity of load and load factors of a simply soped angle-ply (45°/-45°/45°/-45°)
composite shallow spherical shells. The influentestatic load factor and dynamic load
factor on stochastic resonance frequencies duentdined variation of ply-orientation angle,
radius of curvatures, material properties, loadorgangle-ply (45°/-45°/45°/-45°) composite
spherical shells are furnished in Figure 7. Ithserved that the width of the instability zone
increases with the increase of static and dynaoad factors. Based on the rate of increment

of the region of instability, it can be inferrecatithe dynamic load factop) is more sensitive
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stochasticities are considered: 5%, 10% and 15%ati@rs in the stochastic input parameters
with respect to their respective deterministic ealu Figure 8 presents the validation in
resonance frequencies (fundamental) using MLS moaeesponding to different degree of
stochasticities (5%, 10% and 15%) for combinedatamn of input parameters considering
simply supported angle-ply spherical shells. Tigare clearly depicts the increase in sparsity
of resonance frequency (fundamental) due to ineréagercentage of varitions of random
input parameters. The figure also affirms that fr®posed MLS based uncertainty
guantification algorithm for composites producestejwsatisfactory results for different
degree of stochasticities in input parameters vagipect to direct Monte Carlo simulations.
Depending on the geometry of doubly curved shallspmparative study is carried out
for cylindrical, hyperbolic paraboloid and sphefishells as furnished in Figure 9 for both
stochastic buckling load and random resonance émgjas (fundamental) due to combined
variation of for cross-ply (0°/90°/0°/90°) compa@sghells. The zone of resonance frequencies
(fundamental) maps the different instability regiofor different shell geometries. It is
observed that the resonance frequency (fundameddaleases with reduction of curvatures
from spherical shell to hyperbolic paraboloid shiellhile single cylindrical shell shows the
least stiffness compared to the other two. In odernddress the influence of degree of
shallowness R/a = R/b = 5, 10, 20) of the doubly curved shells, a sighé shell is
considered to portray the instability regions asiithed in Figure 10. It is identified that
there is an increase of instability resonance feegies with the decrease in radius of
curvature along x and y directions (i.Bs,andR, values). The significant effects of degree of

orthotropy on stochastic buckling load and resordrequency (fundamental) due to
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(first) and (b) resonance frequencies (fundamemtad to combined variation of for simply
supported cross-ply (0°/90°/0°/90°) composite siglaéshells

combined variation of ply-orientation angle, radaiurvatures, material properties, loading
for cross-ply composite spherical shells are furedsin Figure 11. As the static parameter is
increased, the dynamic instability zone tend tdt sbwards lower frequencies and become
stipper. The effect of degree of orthotropy is sddfor Ei/E, ratio = 15, 30, 45, by

randomizing the other parameters. The study stamwacrease of random resonance

28



Probability densi

o
2
T

Probability density

o
=4

o
2
T

0.005

2

2 25 3
Buckling Load (KN/m)

(@)

i £

i AN
A,
rF&\— mhﬂﬂ\\w

80

100 120

110 160 180 200 220 240 260

Resonance frequency (fundamental)

(b)

Fig. 11 Effect of degree of orthotropy on stochastic (@)kding load (first) and (b) resonance
frequencies (fundamental) due to combined variation simply supported cross-ply
(0°/90°/0°/90°) composite spherical shells

ccec (UB)
-SCSC (UB)
-SSSS (UB) |

—— CCCC (LB)
005 —o— SCSC (LB)

| sossl —— SSSS B

©
T

T
Probability density function

Probability density function

0015

el
15 2 25 3 80 100
Buckling Load (KN/m) x10°

() (b)

Fig. 12 Effect of boundary end condition (CCCC, SCSC, §S@86stochastic (a) buckling
load and (b) resonance frequency (fundamental) tdueombined variation for cross-ply
(0°/90°/0°/90°) composite spherical shells

ko A0
180 200 220

120 140 160
Resonance frequency (fundamental;

frequencies due to increase in degree or orthotrdpye boundary conditions of the
composite shells are observed to have a signifigafiuence on the dynamic instability
regions. The influence of different boundaries (@CGCSC, SSSS where C — clamped, S-
Simply supported) is investigated for stochastickiing load and first resonance frequencies
(lower and upper bounds) due to combined variabbrply-orientation angle, radius of

curvatures, material properties, loading for crplgseomposite spherical shells by
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frequencies (fundamental) for combined variation $onply supported cross-ply spherical

shells

probability density function as furnished in Figurgé. This study shows that the stochastic

resonance frequencies are found minimum for sinsplyported and maximum for clamped

edges due to the restraint at the edges while SB&@dary condition is found to be

intermediate for both stochastic buckling load &l ws zone of resonance frequencies.

The effect of individual variations and combinedriggon of different random

parameters for angle-ply composite spherical stoelistochastic first buckling load are
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Fig. 15 Relative coefficient of variance (RCV) of bucklingad and first resonance
frequencies (FRF) and second resonance frequef8®r¥s) due to individual variation of ply
orientation angle, radius of curvatures, materialpprties, loading and combined variation
for simply supported angle-ply (45°/-45°/45°/-48®mposite spherical shells.

furnished in Figure 13 wherein the maximum sparsitpuckling load is observed for only
variation of load-intensity among all the individysarameters. Figure 14 represents the
influence of aspect ratio (AR = a/b) on stochasitickling load and resonance frequency
(fundamental) due to combined variation of ply-ot&ion angle, radius of curvatures,
material properties, loading for cross-ply compwspherical shells. Because of the shear
deformation, it is found that the width of instatlyilregion narrows down. It is also found that
as the aspect ratio (a/b) increases, the resorfeempgencies also increase and the width of
instability zone becomes wider. In the present \stutle relative coefficient of variance
(RCV) (normalized mean to standard deviation ratioe to individual and combined

variations is quantified for angle-ply laminate fasnished in Figure 15. On the basis of

individual variation of input parameters, ply origtmon angle is found to be comparatively
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7. Conclusions

This study illustrates an efficient stosti@ dynamic stability analysis of laminated
composite curved panels considering non-uniformtigdaedge loading. The ranges of
variation in first stochastic buckling load and damental resonance frequencies are
analyzed considering both individual and combingdclsasticity of input parameters.
Novelty of the present study includes an efficistiichastic dynamic stability analysis with
random non-uniform loading. Moving least squarehmndtis employed in conjunction with
stochastic finite element analysis following a notusive approach to achieve the
computational efficiency. After utilizing the sugate modelling approach, the number of
finite element simulations is found to be signifidg reduced compared to original Monte
Carlo simulation without compromising the accuradyresults. The computational time is
reduced to (1/157) times (for individual variaticar)d (1/20) times (for combined variation)
of Monte Carlo simulation. The stochastic instapiliegions are found to shift to lower
frequencies with increase in static load factorvdhg wider random instability regions
indicating destabilization effect on the dynamiabdlity characteristics of composite
spherical shells. It is observed that the zonetadlstic instability has significant influence
due to variation in degree of orthotropy, aspetibrand boundary condition. The width of
stochstic instability region increases with ther@gase of degree of orthotropy and aspect
ratio. The ply orientation angle is found to be mesensitive, while the least sensitive
parameters are observed as loading parameter ¢fmmance frequencies) and radius of
curvatures (for buckling load) compared to otheapeeters considered in this analysis.

Laminated composites being a complex structurahfand susceptible to different

forms of uncertainty, the compound effects of s&stic time varying loading and structural
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sensitive parameters are to be considered in ddsigaperational safety and serviceabilty
point of view. The numerical results obtained iis tstudy provide a comprehensive idea for
design and control of laminated composite curvedgda. The effiecient moving least square
based approach of uncertainty quantification caaxtended further to other computationally

intensive analyses of composite structures.
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Stochasticity in composite system properties (structural and material attributes) as well
as loading is considered.

. A surrogate based approach is adopted to achieve computational efficiency in the
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