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A B S T R A C T

Stable carbon (δ13C) and oxygen (δ18O) isotope ratios were measured on the latewood α-cellulose of individual
oak (Quercus robur L, Q. petraea Liebl.) samples from living trees and historic building timbers. This represents
the type of material available to produce long tree-ring chronologies for north-western Europe including the UK
and Ireland. Results from the juvenile rings, those located closest to the pith, were compared with results from
equivalent sections (representing the same calendar years) from independent master isotope chronologies that
do not contain any juvenile wood, allowing any juvenile offsets and trends to be separated from those caused by
environmental change. Oak timbers from archaeological sources are often relatively short (< 100 years).
Therefore, removing the first 50 rings, as is typical for Pinus sp., would severely constrain the material available
for chronology construction. The aim of this study was to determine the magnitude and duration of juvenile
effects, including the detection of trends, offsets and their influence upon signal strength. The results show
clearly that juvenile effects for oak from central England are very small and short-lived and that removing
merely the first five rings closest to the pith is sufficient to avoid them. This result greatly increases the potential
for building long and well-replicated stable isotope chronologies using archived oak samples from historic
building timbers, allowing high-resolution climate reconstructions to be produced for the highly-populated re-
gions, where oak is abundant and which are currently under-represented in regional palaeoclimate re-
constructions.

1. Introduction

In the climatically-temperate, low-altitude, mid-latitude regions of
Europe, where deciduous oak trees (Quercus robur L, Q. petraea Liebl.)
are common, ring widths have been measured and cross-dated to pro-
duce very long dendrochronologies, principally for archaeological
dating and radiocarbon calibration (Baillie, 1973; Pilcher et al., 1984;
Kelly et al., 1989; Becker, 1993; Friedrich et al., 2004). Although the
series from which they are compiled share common environmental in-
formation that permits dendrochronological cross-dating, the absence
of a single, stable, growth-limiting climate variable means that un-
fortunately, climate signals preserved in the ring widths are generally
weak, difficult to characterise and rarely meet the strict calibration and
verification criteria required for the reliable reconstruction of past cli-
mate (NRC, 2006; McCarroll et al., 2015). Stable isotopes of carbon and
oxygen within the latewood cellulose of oak tree-rings, however, have
been shown to contain stronger climate signals than tree-ring width

(Loader et al., 2008). It has therefore been argued that it may be pos-
sible to use stable isotopes to reconstruct past changes in both: summer
sunshine and/or temperature (Etien et al., 2009; Hilasvuori and
Berninger, 2010); and the oxygen isotope ratios of summer rainfall,
which in some areas are strongly correlated with total summer rainfall
amount (Masson-Delmotte et al., 2005; Danis et al., 2006; Rinne et al.,
2013; Young et al., 2015; Labuhn et al., 2016). Reliable reconstructions
of past climate from samples collected and archived across the dis-
tribution of oak could therefore greatly improve regional and hemi-
spheric-scale palaeoclimate reconstructions, which are currently
strongly biased towards high-latitude and high-altitude sites
(Luterbacher et al., 2016; Wilson et al., 2016).

The climate of the past few hundred years can be reconstructed
using samples taken from living oak trees. However, extending records
back further requires the use of oak building timbers and sub-fossil
material. Oak building timbers are relatively abundant in the historic
building and archaeological records and many have already been cored
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and securely dated (e.g. Miles, 2006). Cores can, with great care, be
sub-sampled for isotopic analysis by removing a thin slice whilst re-
taining the original measurement surface as a dendrochronological ar-
chive. In order to obtain true annual resolution, stable isotope analysis
is conducted on the latewood rather than the whole ring (McCarroll
et al., 2017), because in ring-porous species such as oak the earlywood
is formed primarily from reserves. Although there are long, slow-grown
series of oak available for extensive periods, the rings are often very
narrow with little latewood, presenting a serious challenge for the de-
velopment of stable isotope chronologies.

An important consideration when using a combination of living
trees and building timbers to develop isotope chronologies is the effect
of juvenile wood, which in this context refers to the inner rings, closest
to the pith. In the living trees, which are cored at breast height, the
rings near the pith were formed when the tree was young. In timbers,
where the vertical position on the tree cannot be defined, the age of the
tree when the near-pith rings formed is unknown.

Growth or response to environmental variables of juvenile wood
may be atypical when compared to more mature rings (Loader et al.,
2007). In developing isotope chronologies for palaeoclimate re-
construction it is common practice to exclude the inner rings to avoid
potential ‘juvenile effects’ (Tans and Mook, 1980; Loader et al., 2003;
Sidorova et al., 2009; Hafner et al., 2014; Kress et al., 2014; Liu et al.,
2014; Young et al., 2015). The number of rings excluded from analysis
is commonly set at 30 (Labuhn et al., 2014) or even as high as 50
(Gagen et al., 2008). Applying such a protocol to build short chron-
ologies using living oak trees, with hundreds of rings, is not proble-
matic. It would, however, be a serious constraint for the construction of
isotope chronologies from historic oak building timbers, which rarely
contain so many suitable rings. Analysis would be restricted to the
largest timbers or would rely on combining many short fragments from
smaller timbers, an approach which is highly resource-intensive. Given
such restrictions, many of the best-replicated historic tree-ring archives
would struggle to provide sufficient usable material to build robust
chronologies beyond the last few hundred years.

1.1. The ‘juvenile effect’ in tree-ring stable isotopes

Some of the earliest studies of stable isotopes in tree-rings reported
anomalous values in the rings closest to the pith (Craig, 1954; Jansen,
1962). Typically, a rising trend in carbon isotope values and increasing
inter-series coherence with tree-ring number (cambial age) has been
observed (Freyer, 1979a, 1979b; Francey, 1981; Freyer and Belacy,
1983; Leavitt and Long, 1985). Studies that have focussed specifically
on juvenile effects or age-related trends have tended to concentrate on
stable carbon isotopes (e.g. Bert et al., 1997; Duquesnay et al., 1998;
Arneth et al., 2002; Raffalli-Delerce et al., 2004; Li et al., 2005; Gagen
et al., 2007, 2008; Buhay et al., 2008; Daux et al., 2011; Young et al.,
2011a; Helama et al., 2015). A more limited body of research has also
been undertaken on stable oxygen isotopes (e.g. Raffalli-Delerce et al.,
2004; Treydte et al., 2006; Young et al., 2011a; Labuhn et al., 2014;
Kilroy et al., 2016) and hydrogen isotopes (Mayr et al., 2003).

The majority of detailed studies investigating non-climatic, age-re-
lated trends have been conducted on conifers, growing slowly in re-
gions close to their ecological limits. Gagen et al. (2008), for example,
studied the juvenile effect in carbon isotopes in Scots pine trees (Pinus
sylvestris L.) growing at the boreal treeline, north of the Arctic Circle in
Fennoscandia and concluded that a non-climatic trend was detectable
for up to 50 years. Evidence from deciduous trees is sparse, however,
Labuhn et al. (2014) and Raffalli-Delerce et al. (2004) report juvenile
trends in Quercus spp., although the latter was only in one from a sample
of four trees. Duquesnay et al. (1998) identified juvenile trends in Beech
(Fagus sylvatica L), Daux et al. (2011) found no juvenile effect in carbon
isotopes of larch trees (Larix decidua Mill) in France and this conclusion
has been supported by measurements on larch in the UK (Kilroy et al.,
2016).

Although there is very limited information available on the nature
and duration of juvenile effects in oaks, it has become common practice
to assume that they exist and sample accordingly. Measuring the stable
isotopes in all available rings and applying curve-fitting methods to
remove age trends is a realistic option (Buhay et al., 2008; Gagen et al.,
2008), however, it has not been widely adopted. One of the great ad-
vantages of stable isotopes in tree-rings is that, in many cases, they
appear to contain no long-term trends and thus require no statistical de-
trending, thereby avoiding the potential loss of low-frequency climate
signals that can apply to other tree-ring proxies (Gagen et al., 2007;
Young et al., 2011a; Loader et al., 2013). De-trending by statistical
curve-fitting to remove juvenile effects would remove this advantage.
Measuring the isotope values and discarding those that are identified as
juvenile (Raffalli-Delerce et al., 2004; Li et al., 2005; Gagen et al., 2007;
Labuhn et al., 2014) also is not an attractive option, given the effort and
cost involved in isotope analysis, and cannot be applied when wood
from several trees is pooled prior to isolation of cellulose and mass
spectrometry. The most common approach, for all species, is to simply
not use the rings close to the pith. However, given the large uncertainty
in the length of the juvenile effect, ranging from absent (Daux et al.,
2011; Kilroy et al., 2016), about 20 years (Arneth et al., 2002; Raffalli-
Delerce et al., 2004; Daux et al., 2011), around 30 to 50 years (Bert
et al., 1997; Duquesnay et al., 1998; Li et al., 2005; Gagen et al., 2007,
2008; Labuhn et al., 2014), or even potentially much longer (Treydte
et al., 2006; Esper et al., 2010; Helama et al., 2015), there is little clear
guidance available on how many ‘juvenile’ rings should be avoided.

The purpose of this study is to investigate potential juvenile effects
in oak, using a combination of living oak trees and historic building
timbers that typify the material available to produce long isotope
chronologies for the central England region of the UK. The central aim
is to define the number of juvenile rings that need to be removed in
order to produce reliable chronologies for palaeoclimate reconstruc-
tion. The isotope ratios of carbon and oxygen obtained from the late-
wood cellulose of individual samples, that contain the earliest formed
tree rings, are compared with ‘master chronologies’ produced by com-
bining the wood of several samples that have had the earliest rings
removed, prior to isolation of cellulose and mass spectrometry. By
compiling the differences in behaviour of individual samples from their
equivalent parts of the master chronology it is possible to exclude the
effects of environmental change, isolating only potential juvenile ef-
fects, allowing their magnitude and duration to be clearly defined.

2. Methods

The trees and historic building timbers used to produce the in-
dividual test series were sampled from across an area of central England
(covering approximately 15,000 km2, from c.520N–510N, 20We10W).
The ten test series are single cores from ten different trees and timbers.
The master chronologies were constructed using trees and historic
building timbers from sites across the UK (Supplementary Fig. 1). The
average location of the master sites is 51.90N, 1.60W and the average of
the test trees is 51.60N, 1.130W, which is a difference of c. 50 km.

Living trees were cored at a height of 1.2 m using standard methods
and building timbers were obtained as sub-sampled cores from the
Oxford Dendrochronology Laboratory archive. For the archived mate-
rial, a softwood mount was glued to one edge of the core. A 1 mm thick
slice was sawn from the top to preserve an archive record of the core
and the newly sawn surface was sanded with progressively finer
sanding belts on a bench-mounted linisher. Calendar dates were then
marked off at decade intervals on the mount and the sample was again
sectioned to about 4 mm thickness and re-sanded on the leading edge in
preparation for stable isotope analysis.

All wood material was cross-dated (Stokes and Smiley, 1968) and
compared with regional chronologies to assign precise ages. The late-
wood of each tree-ring was removed using a scalpel under a microscope
as thin slivers (c.40 μm thick). Samples were purified to α-cellulose
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using standard methods (Green, 1963; Loader et al., 1997), homo-
genised and then freeze dried for 48 h at −50 °C < 50 mbar. Between
0.30 and 0.35 mg of α-cellulose were weighed into silver capsules for
pyrolysis over glassy carbon at 1400 °C and simultaneous measurement
of carbon and oxygen isotope ratios using a Flash HT elemental analyser
interfaced with a Thermo Delta V isotope ratio mass spectrometer. The
analytical precision determined from a standard laboratory α-cellulose
(Sigma Aldrich UK (No. C-8002 Lot. 92F-0243)) was 0.15‰ for δ13C
and 0.3‰ for δ18O (σn-1 n = 10) (Loader et al., 2016). This method has
been shown to provide a precise and cost effective approach to carbon
and oxygen isotopic analysis of cellulose (Young et al., 2011b).

Test samples were processed individually. The master chronologies
comprise the chronology described by Young et al. (2015) supple-
mented with the latewood of 10 trees, all from Central England, which
was pooled and processed prior to the isolation of cellulose. Between CE
1700 and 2012 the master chronologies have a minimum sample depth
of 13 trees and an average sample depth of 32 trees (Supplementary
Fig.2). Each sample was ultrasonically homogenised to ensure a well-
mixed and representative cellulose product of combined material from
multiple trees (Laumer et al., 2009). Carbon and oxygen isotope ratios
are reported in per mille (‰) using the usual delta (δ) notation relative
to the VPDB (δ13C) and VSMOW (δ18O) standards (Coplen, 1995). Prior
to statistical analyses the carbon isotope ratios were corrected for
changes in the isotope ratios in atmospheric carbon dioxide by simple
addition as described by McCarroll and Loader (2004). Carbon isotopes
from UK oaks do not appear to require any further correction for the
direct effect of increases in the amount of carbon dioxide in the at-
mosphere (McCarroll et al., 2009; Young et al., 2012). Oxygen isotope
values require no numerical pre-treatment.

Identifying the magnitude and duration of the juvenile effect in
individual trees is difficult because the effect of tree age cannot easily
be separated from the effect of environmental changes that may have
occurred when rings close to the pith were formed. A common ap-
proach, therefore, is to take several trees and arrange them according to
cambial age, rather than calendar year and examine the average be-
haviour. The rationale behind this approach is that averaging by ring
number rather than calendar year effectively removes the influence of
environmental change. However, this is only true if the sample is suf-
ficiently large and comprises trees of very different age (Esper et al.,
2002; Gagen et al., 2008). Such a sampling scheme should result in a
mean curve that rises (or falls) during the juvenile phase (where pre-
sent) and subsequently remains perfectly flat. In reality it is difficult to
obtain a sample that is sufficiently large and disparate in age. There-
fore, even in the best-replicated studies, the average retains some
variability that is an artefact of environmental change. In such cir-
cumstances it remains difficult to separate, with confidence, the effects
of age and environment.

In this study the problems of sample size and heterogeneity of age
structure are overcome by adopting a novel approach, based on com-
paring isotope series from ten individual trees or timbers with master

chronologies for both carbon and oxygen isotopes. Critically, the master
chronologies were produced entirely from wood that is non-juvenile so
that the average isotope results from the individual juvenile trees may
be compared with those from the equivalent sections of the master
chronologies. The isotope series from each individual juvenile tree can
now be compared with the master chronology by calendar age
(Supplementary Figs. 2, 3 and 4). The advantage is that the influence of
environmental changes is present in both the individual series and the
equivalent master chronology segment, but only the individually-
measured trees contain juvenile wood. Differences between the in-
dividual trees and their equivalent sectors of the master chronologies
can then be compiled to produce sets of data that represent the average
difference in behaviour of juvenile and non-juvenile wood compared
over the same calendar years, effectively isolating the effect of tree age
from environmental change.

This approach is applied here to investigate three potential pro-
blems of juvenile wood and specifically to define how many juvenile
rings need to be removed to ensure that a mean isotope record is not
influenced by juvenile effects. The three potential problems of trends,
offsets and signal strength are addressed.

3. Results

Summary statistics for the individual stable isotope time series are
presented in Table 1 and the full data sets are included in the Supple-
mentary material (Tables 1 to 4). The average behaviour of the in-
dividual trees when aligned by cambial age (ring number) and of the
equivalent sections of the master chronology (controls) are presented in
Fig. 1. It is clear that the oxygen isotope results from the individual
(juvenile) samples and controls are very similar, even for the rings very
close to the pith. The mean carbon isotope ratios of the first five rings
are slightly higher than the control but the control values lie very close
to or within the 95% confidence intervals around the mean.

Rising or falling trends that last for up to a few decades are to be
expected in any of the palaeoclimate proxies derived from tree rings,
including stable isotopes, because the environmental (climatic) controls
are not constant through time. Here, trends due to environmental
changes are separated from juvenile trends by comparing the average
behaviour of the isotope ratios in the juvenile wood with the average
behaviour in the equivalent sections of the master chronology.

For each individual tree, and equivalent section of the master
chronology, simple linear trends were examined using the relationship
between stable isotope ratio and ring number (Pearson's correlation
coefficient). 30-year and 20-year correlation windows were applied,
starting with ring 1, adjacent to the pith, and then shifted sequentially
by one year until the end of the segment. For example, a tree that has a
50-year segment length has the correlation measurement repeated 21
times using the 30-year window and 31 times using the 20-year
window. If there are strong juvenile effects that persist for more than
two or three decades (e.g. Daux et al., 2011), statistically significant

Table 1
A summary of ten tree-ring δ13C and δ18O series sampled from oak trees and historical building timbers (Quercus robur L, Q. petraea Liebl.) from Central England, UK.

Tree code Location Living or timber Series length (years) Calendar period (AD) δ13C (‰) δ18O (‰)

Mean Range Mean Range

BAD83 Baddesley Clinton Timber 50 1711–1760 −24.88 2.75 28.01 3.37
HVL3 Ludgershall Timber 50 1721–1770 −24.29 3.05 29.13 3.42
HN10a Oakhouse Drive Cottages Timber 41 1726–1766 −24.78 2.85 28.74 3.60
MM51 Mapledurham Mill Timber 50 1740–1789 −24.24 3.49 28.77 4.27
MAP1 Mapledurham Living 50 1761–1810 −23.28 2.67 30.35 4.73
OOP1 Blenheim Park Living 40 1791–1830 −24.85 3.45 28.63 3.13
MAP71 Mapledurham Living 50 1816–1865 −24.50 3.37 29.42 4.88
MAP78 Mapledurham Living 49 1824–1873 −24.57 1.89 29.34 4.14
HWK110 Hardwick Estate Living 50 1838–1887 −24.80 2.01 28.91 4.58
BDM01 Broadmoor Living 50 1958–2007 −24.89 3.57 30.56 5.11
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trends would be expected in the early windows for the individual trees
but not in those of the master chronology controls.

The average correlation coefficients for the individual trees and the
master chronology segments, which here act as a control, are plotted in
Fig. 2, with 95% confidence limits. Although the average absolute
correlation coefficient for the individual (juvenile) trees is slightly
higher than the control for both isotopes in the earliest windows, none
of the mean values are statistically significant and even the largest
difference, between the first 20-year window for carbon (r = − 0.32,
p = 0.17) and the equivalent control (r = 0.05, p = 0.83) is not sta-
tistically significant (z-test for two correlation coefficients, z = −1.11,
p = 0.27). The most consistent trends occur in the carbon isotope

ratios, where the earliest correlation windows give mean correlation
coefficients that are negative and 95% confidence limits that fall below
zero. When the windows are shifted, so that just the first three or four
rings are excluded, the correlation coefficients are close to zero and
thereafter they follow closely the correlation profile of the control. In
the earliest windows the oxygen isotopes give low positive correlation
coefficients, but they are far from statistically significant.

These results suggest that two or three-decade long juvenile trends
do not occur in either isotope series. The first few rings of the carbon
isotope series tend to be slightly but consistently higher (approximately
1‰), which imparts a negative trend when they are included, but ex-
cluding just the two or three rings closest to the pith is sufficient to
remove the effect entirely, bringing age-related trends in these samples
very close to zero. If the correlation coefficients are replaced with the
slope coefficients the results are nearly identical (Supplementary
Fig. 5).

If juvenile tree-rings have isotope ratios that are anomalously low or
high, the inclusion of juvenile rings in a mean (or pooled) chronology
could result in an offset in the mean isotope ratios. To test this, isotope
results obtained from each individual tree are compared with the
equivalent sections of the master chronology. Isotopic off-sets between
individual trees are expected (Leavitt and Long, 1984; Leavitt, 2010), so
isotope ratios of individual trees are not expected to have the same
mean as the master chronology. The important question is whether the
magnitude of any offset changes systematically with ring number,
which would be the expectation if there was a strong juvenile effect.
This is tested by comparing the difference between ring 1 and the
equivalent calendar year in the master chronology with the average
difference for the remainder of the series, then repeating this procedure
for each consecutive ring up to ring 30. The results for all ten trees can
then be compiled to show the average behaviour of the juvenile rings,
together with 95% confidence limits around the mean.

The results show that the carbon isotope ratios in the five youngest
rings of the individual trees are slightly offset (less depleted) relative to
the equivalent sectors of the master, but in all but one case (ring 5) the
95% confidence limits cross zero (Fig. 3). The oxygen isotope results
show a small negative offset in rings 1 to 3 and 6 to 8 but throughout
the series the 95% confidence limits cross zero, so the offsets are not
statistically significant. For both isotopes it is clear that the variability
of the offsets, as shown by the 95% confidence limits, declines over the
first few years. These results indicate that average juvenile offsets in
both isotopes are very small, variable and short-lived.

Although studies of the juvenile effect in tree-ring isotopes are

Fig. 1. Mean isotope ratios of the ten individual trees (filled circles, solid line) aligned by
ring number, with 95% confidence limits (grey lines), compared with the mean of the ten
equivalent sections of the master chronology (open circles, dashed line). Note that the
variability of the mean of the master chronology segments is muted because each segment
effectively represents the mean of at least ten trees (pooled).

Fig. 2. Mean correlation coefficients (Pearson's r) for 20-
year and 30-year windows run sequentially through the
isotope series. Test series (ten-tree mean) are filled circles
joined by solid lines, with solid grey 95% confidence limits
around the mean. Equivalent master series controls (ten-
series mean) are open circles with dashed lines. The hor-
izontal dashed black lines represent the positive and ne-
gative critical values for a correlation coefficient (two tail,
p = 0.05).
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normally confined to the impact on slope and offset, the availability of a
master chronology allows us to consider whether the potential signal
quality is also affected. When tree-ring isotope values are compiled to
produce a mean chronology (by measuring individual values or by
pooling), the aim is to enhance the common environmental signal
whilst cancelling some of the individual noise. A stronger correlation
between individual trees will lead to a stronger common signal (Wigley
et al., 1984).

A running 20-year correlation (Pearson's r) was calculated between
each tree and the equivalent section of the master, starting with rings
one to twenty and removing one juvenile ring at each step. The mean
correlation coefficient together with 95% confidence intervals is plotted
(Fig. 4) together with the critical threshold for statistical significance
(one tail p = 0.05). The results clearly show that the common signal in
oxygen is much stronger than in carbon. For oxygen the mean corre-
lation values are consistently high, and far exceed the critical value
even if no rings are removed. For carbon isotopes, removing four rings
is sufficient to raise the mean correlation above the critical threshold.

4. Discussion and conclusions

The inner rings of trees and timbers are often avoided when de-
veloping stable isotope chronologies, due to concerns that juvenile ef-
fects might cause spurious trends or offsets in the mean chronology or
that the climate signal might be weakened. Our results suggest that for
the oak material studied here, sourced from central England and com-
prising both living trees and historic building timbers, these concerns
are unwarranted. Juvenile effects in both carbon and oxygen isotopes
appear to be very small in magnitude and very short in duration.

In contrast to work on treeline conifers (Gagen et al., 2008), we find
no evidence for juvenile trends or offsets that persist for decades. For

the carbon isotopes, in the oak trees we studied, it is only the first four
or five rings that show any evidence of a juvenile offset or trend, and
even that is negligible (< 0.5‰ on average). For the oxygen isotopes,
juvenile trends and offsets are similarly small and last for, at most, ten
years. The ‘juvenile’ effects in oaks from the central England region
appear to be so negligible that they would effectively have no effect on
mean isotope chronologies produced for palaeoclimatic reconstruction,
when averaged with 10–20 trees of mixed age. Avoiding the first five
rings, closest to the pith, is certainly sufficient to avoid any detectable
influence in a mean chronology based on ten trees.

The decline in carbon isotope ratios in the rings closest to the pith is
particularly unexpected, and in the opposite direction to that which
would occur, for example, due to recycling of respired carbon dioxide
(Schleser and Jayasekera, 1985), or to increasing hydraulic resistance
with rising tree height (McDowell et al., 2002). Declining δ13C implies a
trend towards less fractionation, which means rising internal con-
centrations of CO2, which might be caused by either a rise in stomatal
conductance or a decline in photosynthetic rate (or both). The slight
rise in δ18O would imply a slight increase in evaporative enrichment, so
rising stomatal conductance seems the most likely driver. In this case
the cause of rising stomatal conductance would have to be a fall in
hydraulic resistance rather than a rise in air humidity, because the
latter would cause oxygen isotope ratios to decline. One possible ex-
planation is that water supply to the leading branch, at the highest
point on the tree, is slightly constricted but that with the addition of just
a few rings the extra hydraulic resistance is relieved. Experiments are
now underway to test this hypothesis, which cannot be tested using the
data collected for the present study.

The results presented here suggest that it is possible to build reliable
stable isotope chronologies using a combination of living trees and
building timbers sourced from across much of the central England re-
gion of the UK, without the constraint of avoiding large numbers of

Fig. 3. Mean difference between each ring and the equivalent ring in the master chron-
ology expressed relative to the average of those differences for the rest of the sequence.
For a 50-year sequence, for example, the point at ring number ten represents the mean
differences of the tenth ring in each individual sample from the equivalent rings (same
calendar year) in the master chronology expressed relative to the average difference
between each sample and the equivalent master segment for rings 11 to 50. The dashed
lines are 95% confidence limits around the mean.

Fig. 4. Mean running 20 yr correlation between each tree and the equivalent section of
the master chronology. Dotted lines are the 95% confidence limits around the mean. The
horizontal dashed line is the one-tail critical value for significance of Pearson's correlation
coefficient with a sample size of twenty.
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rings close to the pith. Avoiding the first five rings is sufficient. This
greatly reduces the work required to source, date and prepare the ar-
chaeological building timber samples required to extend well replicated
isotope records beyond the last few hundred years, when living trees
are available. Building long and well-replicated isotope chronologies
will facilitate the production of high-resolution palaeoclimate re-
constructions from oaks in England. We recommend that similar tests
be applied to oak timber archives, collected for archaeological dating
purposes, elsewhere across the temperate climatic regions of the low-
altitude mid-latitudes, where deciduous oak trees, and people, are
abundant but reliable palaeoclimate records are currently sparse.
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