
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in:

International Journal of Finance & Economics

                                                  

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa35093

_____________________________________________________________

 
Paper:

Cook, S. & Watson, D. (2017).  Mean and variance equation dynamics: Time deformation, GARCH, and a robust

analysis of the London housing market. International Journal of Finance & Economics, 22(4), 304-318.

http://dx.doi.org/10.1002/ijfe.1589

 

 

 

 

 

 

 

_____________________________________________________________
  
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

 

Permission for multiple reproductions should be obtained from the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

http://www.swansea.ac.uk/library/researchsupport/ris-support/ 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/96641638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa35093
http://dx.doi.org/10.1002/ijfe.1589
http://www.swansea.ac.uk/library/researchsupport/ris-support/ 


 

Mean and variance equation dynamics: Time

deformation, GARCH and a robust analysis of the

London housing market

August 31, 2017

ABSTRACT

The potential relationship between time deformation and generalised autoregressive conditional
heteroscedasticity (GARCH) is examined. Despite time deformation and GARCH being mean and
variance equation phenomena respectively, they are argued herein to share a common motivation
relating to the examination of changes in the temporal evolution of time series processes. Via
extensive simulation analysis, a close connection between the two concepts is established. It is
found that the presence of GARCH can result in the spurious detection of time deformation,
particularly when examining the heavy-tailed distributions and volatile data typically considered
in empirical �nance. It is shown that although the application of heteroskedasticity corrected
covariance matrix estimators often increases, rather than corrects, the detected oversizing of the
tests of time deformation, the application of GARCH �lters does provide a solution to size distortion.
The �ndings of the experimental analysis are drawn upon to provide a robust empirical examination
of the London housing market where evidence of overwhelming and widespread nonlinearity is
detected in the form of time deformation. The implications of these �ndings for the conduct of
future, and the interpretation of previous, research are discussed.
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1 Introduction

Changes in the nature of the evolution of �nancial and economic variables have long been of interest

to empiricists in both �nance and economics. Following Engle (1982), Bollerslev (1986) and Taylor

(1986), the notions of autoregressive conditional heteroscedasticity (ARCH) and generalised ARCH

(GARCH) have come to occupy prominent positions within �nance as means of examining such

changes in the form of movements in the volatility of a series. Within economics, consideration of

changes in the evolution of variables has often occurred in connection with the business cycle where

a long history exists depicting, typically, a contrast between the rapid movement of series during

cyclical downturns and their slow steady growth during recovery periods (see Burns and Mitchell,

1946; Hicks, 1950; Keynes, 1936). A particular example of this form of analysis is provided by the

studies of Stock (1987, 1988) where the notion of time deformation has been introduced to consider

the possibility that variables evolve on an operational time scale rather than the calendar time

scale from which observations are drawn, thereby permitting the capture of potentially di�ering

speeds of evolution of a series through time. The resulting diagnostic tests associated with this

concept consider the relationship between the change in a series and indicator functions capturing

the operational-calendar time transformation noted above, thus allowing the increasingly popular

issue of nonlinear adjustment to be explored. Alternatively expressed, the above depiction of the

contrasting stances adopted in economics and �nance presents a situation in which the changes in

evolution of a series are explored via consideration of the mean equation by the former discipline,

but via the variance equation within the latter.

The aim of the present study is to explore the link between mean equations and variance equa-

tions within the context of the temporal evolution of time series via examination of the relationship

between time deformation and GARCH. Surprisingly, such a relationship has yet to be considered

despite the prominence of the notions within their respective disciplines, the similarity of their

underlying motivations and previous research employing a near shared language when considering

their respective behaviour.1 To consider this potential relationship, the present study examines

1As an example of this latter issue, Lamoureux and Lastrapes (1990) consider issues of temporal precedence and
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the �nite-sample properties of diagnostic tests of time deformation in the presence of GARCH.

This analysis permits examination of the possibility that volatility in the variance equation can

appear as spurious time deformation in the mean equation. It is shown that this mean-variance

equation spillover e�ect can occur and that its e�ects can be very substantial in the form of se-

vere size distortion of the diagnostic test of time deformation. The analysis proceeds to explore

whether the application of appropriate GARCH �lters can overcome this noted size distortion

by removing conditional volatility to produce correctly sized tests. A comprehensive simulation

analysis is conducted to examine these issues with a range of GARCH speci�cations (including

heavy-tailed processes) considered in conjunction with the use of alternative variance-covariance

estimators commonly employed in empirical research. The results obtained show the ability of

prior GARCH �ltering to permit the application of robust tests of time deformation. The analysis

concludes by complementing the above simulation analysis with an empirical examination of time

deformation in the London housing market. Aside from providing a vehicle for an empirical analysis

of the issues considered theoretically via simulation analysis, the London housing market warrants

attention for a variety of additional reasons including the extension of literatures concerning the

volatility of house prices, the examination of a ripple e�ect in UK housing market and the role of

housing in the recent �nancial crisis. With regard to the volatility of house prices, the examination

of the London market herein adds to previous studies such as Dole and Tirtiroglu (1997), Crawford

and Fratantoni (2003) and Lin and Fuerst (2014) which have considered the U.S. and Canada re-

spectively.2 Turning to the ripple e�ect (see, inter alia, MacDonald and Taylor 1993; Meen 1999,

Cook and Watson 2016), the underlying hypothesis that movements in the UK housing market are

driven by the London submarket emphasises the importance of understanding and examining its

properties. Finally, recent research such as Miles (2011) and Barros et al. (2015) has illustrated the

importance of housing markets in the recent �nancial crisis with the implications of their volatility

for mortgage defaults and pre-payment, portfolio management, property taxation revenues, the

di�erential speeds of information ows in relation to ARCH, both of which are clearly related to time deformation.
2In addition to these empirical studies examining the presence of volatility clustering in house prices, the work of

Case and Shiller (1988, 1989, 1990) has sought to explain underlying causes for this behaviour.
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probability of losses at a level beyond that associated with modern portfolio theory and the pricing

of mortgage-backed securities all noted.3 The prominence of the London market and the extent

of capital ows within it emphasise further in its obvious importance to the analysis of all of these

issues. Drawing upon the insights o�ered by the simulation analysis and portmanteau nonlinearity

testing, the results presented provide robust evidence of extensive time deformation within this

submarket; a �nding which has clear implications for subsequent analyses of this market and the

interpretation of previous analyses.

2 Time deformation

Following Stock (1987), time deformation can be considered as a distinction between the calendar

time (t) from which observations on a series are drawn and the operational time scale (s) on which

the series evolves. Stock (1987) links operational and calendar time via the function g (�) with

s = g (t). As a result, an observed series of interest xt can be related to a latent process � (s)

evolving in operational time via xt = � (g (t)).

To model the time scale transformation from operational to calendar time, the approach em-

ployed by Stock (1987) is based upon the use of the Heaviside indicator function to allow for

the possibility that variables evolve at di�erent speeds during di�erent phases of the business

cycle.4 Two forms of indicator are considered. The �rst of these, zt, referred to as cyclical expan-

sion/contraction, is given as:

zt =

(
1 if �yt � 0
0 if �yt < 0

(1)

where yt is the variable of interest under examination. The second form of indicator, z�t , referred

to as cyclical expansion/contraction, is given as:

3Earlier discussion of the impact of housing markets upon these issues is provided by Crawford and Rosenblatt
(1995), Foster and Van Order (1984) and LaCour et al. (2002).

4The use of the Heaviside indicator function is common in analysis of nonlinearity or asymmetry, being employed
in studies such as, inter alia, Neftci (1984) and Granger and Lee (1989).
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z�t =

(
1 if �yt � �y
0 if �yt < �y

(2)

Therefore the two indicator functions relate to positive/negative growth and growth above/below

the average respectively. Although the analysis of Stock (1988) shows the estimation of time de-

formation models to be computationally demanding, diagnostic testing for the presence of the

non-linear transformation between operational and calendar time is relatively straightforward. For

unit root processes, the relevant diagnostic testing equations for cyclical and cyclical growth ex-

pansion/contraction are as given:

�yt = �+ ��yt�1 +
kX
i=1

�iz t�i +
kX
i=1

�i zt�i�yt�i + �t (3)

�yt = �� + ���yt�1 +
kX
i=1

��i z
�
t�i +

kX
i=1

��i z
�
t�i�yt�i + �t (4)

where:

zt�i = zt�i � z (5)

z�t�i = z�t�i � z� (6)

z =

TX
i=1

zt�i (7)

z� =
TX
i=1

z�t�i (8)

Diagnostic testing of time deformation is then undertaken by consideration of the signi�cance of the

terms involving the time scale transformation indicator functions via the following null hypotheses

of no time deformation:

H0 : �i = �i = 0 8i in (3) (9)

H0 : ��i = �
�
i = 0 8i in (4) (10)
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The resulting test statistics associated with the above nulls of (9) and (10) are denoted here as F and

FG respectively and are referred to as examining time deformation and growth time deformation.

The notion of (growth) time deformation is clearly a mean equation phenomenon. However,

given its reference to di�erential speeds of evolution of series, it has close parallels with the variance

equation concepts of ARCH and GARCH which consider variation in the movement of series also.5

This connection is alluded to in the work of Clark (1973) where time deformation is discussed

in connection with the mixtures of distributions hypothesis which has been used to explain the

emergence of (G)ARCH behaviour in time series. More recently, this potential link has appeared

implicitly and indirectly in the research of Lamoureux and Lastrapes (1990) where reference is made

to varying speeds of informational ows and their impact on the evolution of �nancial data. In this

research, trading volume is treated as weakly exogenous mixing variable to represent di�erential

speeds of information ow.6 Given the apparent similarity in the motivations underlying time

deformation and GARCH, and the previous research implicitly and indirectly drawing parallels

between them, it is perhaps surprising that there has yet to be a formal examination of their

potential linkages. In the following section, this issue is addressed by the examination of the impact

of GARCH behaviour on the properties of diagnostic tests of time deformation. Alternatively

expressed, it is examined whether apparent time deformation can emerge as a result of the presence

of GARCH.

5The prominence of GARCH in �nancial analysis is clear from studies such as, inter alia, Anderson and Bollerslev
(1998) and Engle and Patton (2001).

6Volume is treated as weakly exogenous in the sense of Engle et al. (1983). Despite recognising the uncertainty
surrounding the use of volume following studies such as Ross (1987), Lamoureux and Lastrapes (1990) employ volume
as a variance equation regressor showing its capture of varying informational ows to render ARCH coe�cients
insigni�cant.
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3 Simulation analysis

3.1 Experimental Design

To explore the impact of the conditional volatility in the variance equation upon the detection of

time deformation in the mean equation, the following data generation process (DGP) is employed:

yt = yt�1 + wt t = 1; :::; T (11)

h2t = �0 + �1w
2
t�1 + �2h

2
t�1 (12)

wt = htvt (13)

vt �
(
N(0; 1) or,

GED(r)
(14)

The DGP of (11)-(14) de�nes a variable denoted as yt which is a unit root process exhibiting

conditional volatility in the form of a GARCH(1,1) speci�cation. The above tests of time defor-

mation are subsequently applied to this series of interest yt. With regard to technicalities, the

initial value of the unit root process yt is set to zero (y0 = 0) without loss of generality while the

initial value of the conditional variance is set equal to one (h0 = 1) with the �rst 400 observations

of the generated GARCH process discarded prior to its use in the generation of yt. Considering

the variance equation, empirical realistic values of the GARCH parameters f�1; �2g are considered

which correspond to near integration (�1 + �2 = 0:99), with �0 = 1� �1 � �2.7 The precise values

of f�1; �2g employed are informed by those observed in empirical research for data of di�ering

frequencies (see, inter alia, Drost and Nijman 1993; Engle and Patton 2001) and are f�1; �2g =

f0:05; 0:94g ; f0:10; 0:89g ; f0:15; 0:84g ; f0:20; 0:79g ; f0:30; 0:69g.

To ensure the simulation analysis matches empirical research further, two additional consider-

ations are incorporated in the experimental design. First, alternative speci�cations are employed

for the error process vt. Given the frequent observation of heavy tails in �nancial data and their

attendant implications (see, inter alia, Bali and Demiritas 2006; Cook 2009; Deo 2000; Granger

and Orr, 1972; Harvey 2013; Loretan and Phillips 1994; Resnick 2006; So et al. 2008), di�erent

distributions are employed for vt in (14). In addition to the generation of vt as a pseudo i.i.d.

7In this paper the less empirically realistic, or relevant, cases of degenerate GARCH (�0 = 0) and integrated
GARCH (�1 + �2 = 1) are not considered.
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N(0; 1) process, the generalised error distribution (GED) is utilised to generate heavy-tailed distri-

butions. Following its introduction into empirical �nance by Nelson (1991), the GED has proved

popular in empirical research and is employed in the present analysis using alternative values for

the tail parameter (r) determining the thickness of the tails. More speci�cally, the three values

r = f0:5; 1:0; 1:5g are employed. The chosen values of r < 2 provide distributions with heavier tails

than the Normal distribution (for which r = 2) and reect those noted in empirical research.8

The second feature incorporated to allow the simulation design to more closely reect empirical

research is the use of alternative variance-covariance matrix estimators in the application of the

time deformation tests. In addition to the standard OLS variance-covariance estimator, the het-

eroscedasticity corrected variance-covariance matrix estimators (HCCMEs) of White (1980) and

Newey-West (1987) are employed.9 Such a development of the experimental design is warranted

given the tendency of investigators to utilise such estimators. Previously the test statistics for

time deformation and growth time deformation were denoted as F and FG respectively. To denote

utilisation of the White and Newey-West HCCMEs, the subscripts `w' and `n' respectively are

included to produce six test statistics
�
F; Fw; Fn; F

G; FGw ; F
G
n

�
for consideration, where the absence

of a subscript indicates use of the standard OLS covariance matrix estimator.10

The empirical rejection frequencies of the above six tests are considered at the 5% nominal

level of signi�cance for a range of sample sizes T = f100; 250; 500; 1000g over 100,000 simulations

for each of the experimental designs above. As a result, the size distortion of the tests and hence

potential spurious time deformation as a result of the presence of GARCH are examined.

3.2 Standardised residuals and GARCH �ltering

The above experimental framework permits consideration of time deformation e�ectively acting

as a proxy for unconsidered GARCH. To consider this issue more closely, the properties of the

8For example, the selected values for � correspond closely to those noted for ination rate data for a number of
economies in Cook (2009).

9Obviously the Newey-West (1987) estimator corrects for serial correlation in addition to heteroskedasticity.
10It should be noted that a decision is required concerning the value of k in equations in (3) and (4). It can be seen

that k determines the degree of augmentation of the testing equations. A value of k = 4 is chosen for the simulation
analysis.
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F -tests of (growth) time deformation are considered for not only for yt but for GARCH �ltered

versions of yt also. That is, the generated series yt is �ltered using a GARCH(1,1) model to

produce a standardised residual
�bvt = bh�1t bwt�. Applying diagnostic tests of time deformation

to the standardised residual series permits examination of the extent to which time deformation

disappears once the volatility in the series generated by the GARCH process is removed. As the

residual series is stationary, diagnostic testing of time deformation requires the application of testing

equations of an alternative form to those of (4) and (5) above which are appropriate for examination

of unit root processes. Following Stock (1987), the appropriate speci�cations for time deformation

testing equations when considering the non-trending stationary standardised residual series are as

below:

bvt = � + �bvt�1 + �X
i=1

�i zt�i +
�X
i=1

i zt�i bvt�i + et (15)

bvt = �� + ��bvt�1 + �X
i=1

��i z
�
t�i +

�X
i=1i

� z�t�i bvt�i + et (16)

where:

zt =

(
1 if �bvt � 0
0 if �bvt < 0 (17)

z�t =

(
1 if �bvt � �bv
0 if �bvt < �bv (18)

zt�i = zt�i � z (19)

z�t�i = z
�
t�i � z� (20)

z =

TX
i=1

zt�i (21)
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z� =
TX
i=1

z�t�i (22)

and the null hypotheses of no time deformation are given as:

H0 : �i = i = 0 8i in (15) (23)

H0 : ��i = 
�
i = 0 8i in (16) (24)

4 Simulation Results

The results obtained from the simulation analysis outlined above are reported in Tables One to

Eight. To ease consideration of the wealth of results generated, �ndings for the series of interest

(yt) and the standardised residuals (bvt) are considered separately.
4.1 Size distortion when examining yt

Considering the results obtained for a unit root process exhibiting GARCH behaviour as provided

in Tables One to Four, it can be seen that spurious rejection of the null of no time deformation

occurs frequently. From closer inspection, it can be seen that time deformation tests is dependent

upon a number of factors included in the experimental design, namely the values of the GARCH

coe�cients, the thickness or heaviness of the underlying error distribution, the sample size and

variance-covariance matrix estimator employed. With regard to the �rst factor, higher values of

the volatility parameter (�1) result in greater oversizing of the time deformation tests irrespective

of the sample size, type of error distribution or sample size considered. To illustrate this, consider

the empirical size of the Fw test for a sample of T = 250 and an underlying error vt distributed

as GED(1:5) as �1 increases from 0.01 to 0.30. The resulting empirical sizes noted during this

progression are 7.54%, 8.32%, 9.65%, 12.66% and 15.41%, this illustrating a steady increase in size

distortion.
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Considering the e�ects of the underlying error distribution, these are not as straightforward to

interpret as those for the GARCH parameters. More precisely, while heavier tailed distributions,

ceteris paribus, have a general tendency to result in greater size distortion with oversizing reducing

when moving from the GED(0:5) distribution to the N(0; 1), this is not always the case. In particu-

lar, the results under application of White's HCCME show oversizing to be reduced when in mnay

cases when heavier tailed distributions are considered. Turning to the other factors or design param-

eters in the simulation analysis, namely the sample size and the covariance matrix, their e�ects are

more complicated in nature. For example, the ordering of the F and FG by size across covariance

matrix estimators changes when di�erent error series, GARCH coe�cients and sample sizes are con-

sidered. While for smaller values of the volatility parameter the OLS covariance matrix estimator

results in a test with less size distortion leading to a test size ordering of F < Fw < Fn (and similarly

FG < FGw < F
G
n ), this does not hold for greater values of �1 nor does it continue as the sample size

increases where it can be seen that the performance of tests employing the OLS estimator worsens as

that of the tests utilising the White and Newey-West estimators improves. That is, while increased

size distortion is noted under application of the standard OLS estimator as the sample size increases,

the bene�ts of the HCCMEs become apparent under such circumstances. To illustrate these issues,

consider the tests of time deformation for the following four sets of design parameters: f�1; T; vtg =

f0:05; 250; GED (0:5)g ; f0:05; 250; GED (1:5)g ; f0:30; 1000; GED (0:5)g ; f0:05; 1000; GED (1:5)g.

The empirical percentage sizes for fF; Fw; Fng under these combinations of design parameters are

found to be f12:40; 7:63; 18:55g, f7:46; 8:32; 14:30g, f67:99; 12:76; 25:33g and f11:52; 6:30; 8:67g re-

spectively. These results show the test using the OLS estimator is the best performing test only

when considering a smaller sample, small value of the volatility parameter and a thinner tailed error

distribution. Similarly, the worsening performance of the test employing the OLS estimator when

the sample size increases is apparent (7.46% to 11.52% when the only change is from T = 250 to

T = 1000). Conversely, the sizes of tests under the HCCMEs improve under these circumstances.

[ TABLES ONE TO FOUR ABOUT HERE ]
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In summary, the results show the time deformation tests to exhibit size distortion in the presence

of GARCH, resulting in spurious rejection. When employing the standard OLS covariance matrix

estimator, this oversizing can be very substantial and is found to increase with the sample size,

the value of the volatility parameter and the heaviness of the tails of the error distribution. These

are problematic �ndings for empirical research where the time deformation tests will often be

employed without incorporation of an HCCME using relatively small samples of observations for

series exhibiting higher levels of volatility- in short, the combination of circumstances under which

the tests can be seen to su�er substantial size distortion. While the use of HCCMEs does result

in reduced size distortion in many instances, it does not eradicate oversizing and its bene�ts are

more apparent for larger samples, with thinner tailed distributions and lower levels of volatility (as

measured by the volatility parameter �1). In other words, application of HCCMEs can be bene�cial

in some circumstances, especially White's HCCME rather than the Newey-West alternative, but

they are by no means a panacea. Indeed, in many cases the application of an HCCME can increase

size distortion, when perversely its application is motivated by a desire to increase robustness. The

obvious issue arising from the above analyses is simply how an investigator be con�dent in the

robustness of apparent time deformation in series which exhibit volatility in the form of GARCH.

The following section reviews the possible use of GARCH �ltering as a means of providing such

con�dence in combination with the results presented above.

4.2 Size distortion when examining bvt
The results obtained from application of tests of time deformation to the GARCH �ltered version of

the yt series are presented in Tables Five to Eight. The outstanding feature apparent in these tables

is that GARCH �ltering, or consideration of the standardised residual, returns the time deformation

tests to near correct size (i.e. the empirical sizes are very close to their nominal level) under use

of the standard OLS covariance matrix estimator. That is, prior estimation of a GARCH model

partials out the volatility causing size ination. Considering analogous results obtained under use

of HCCMEs, application of White's estimator is seen to result in oversizing, but this is marginal and
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reduces with the use of larger sample sizes. In contrast, application of the Newey-West HCCME is

found to result in poor test size, albeit that the results herein for the standardised residuals are not

of the magnitude observed when considering the series of interest (yt) itself. Considering the results

of Tables Five to Eight further, it can be seen that neither the heaviness of the underlying error

distribution (vt) nor the value of the volatility parameter (�1) inuence test size unduly. Again,

these results for the standardised residual are in contrast to the �ndings presented for the series

itself where both factors were found to be highly inuential in determining the size of the time

deformation tests.

[ TABLES FIVE TO EIGHT ABOUT HERE ]

5 Empirical analysis of the London housing market

5.1 Data

The house price data considered here are for the 32 boroughs of the London available from the

UK Land Registry.11 The data are monthly observations on the boroughs Barking, Barnet, Bexley,

Brent, Bromley, Camden, City of Westminster, Croydon, Ealing, En�eld, Greenwich, Hackney,

Hammersmith and Fulham, Haringey, Harrow, Havering, Hillingdon, Hounslow, Islington, Kens-

ington and Chelsea, Kingston upon Thames, Lambeth, Lewisham, Merton, Newham, Redbridge,

Richmond upon Thames, Southwark, Sutton, Tower Hamlets, Waltham Forest and Wandsworth

over the period January 1995 to March 2015. These data on the London housing market have

become the subject of recent attention in the literature where work such as Abbott and DeVita

(2012) has extended previous regional analysis at a more aggregated level to explore highly impor-

tant submarket dynamics.

5.2 Basic temporal properties of the house series

Before considering the application of portmanteau tests of nonlinearity and diagnostic tests of time

deformation to the house price series and their GARCH �ltered versions, the orders of integration

11The data set is available from http://landregistry.data.gov.uk/app/hpi
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of the series are examined.12 Denoting the natural logarithmic values of the house price series as

pit, with i = 1; :::; 32 indexing the alternative boroughs under examination, the integrated natures

of pit and �pit are considered to ensure the correct speci�cations of the time deformation testing

equations are employed. The method followed is a twofold approach. First, augmented Dickey-

Fuller (ADF) tests are applied to pit and �pit. Given the trending nature of pit, ADF tests for these

series are performed with a deterministic trend term included in the testing equation. Conversely,

a deterministic trend is not included in the testing equations employed for the non-trending �pit.

The resulting ADF test statistics are denoted herein as � . Following best practice, the degrees

of augmentation of the testing equations for the � statistics are determined using the modi�ed

Akaike Information Criterion (MAIC). Second, panel unit root testing is applied to exploit the

informational content o�ered by the cross-sectional dimension of the 32 regional series for both pit

and �pit. This analysis is undertaken using the W-statistic of Im et al. (IPS) (2003). In contrast

to panel unit root tests such as those of, inter alia, Breitung (2000) and Levin et al. (2002), the IPS

W-statistic has the advantage of avoiding the restrictive assumption of a common autoregressive

coe�cient for all series under the alternative. Application of the IPS tests is undertaken using the

same approaches adopted for the ADF tests with regard to the inclusion of deterministic trend

terms and the degree of augmentation of the testing equations.

From inspection of the unit root test results in Table Nine, it can be seen that the univariate

ADF test outcomes do not reject the null of a unit root in the house price series. In the interests

of brevity, the range of p-values associated with the tests are reported rather than each of the 32

values. Given the p-values range from just over 10% to just over 65%, the null is not rejected

for any series at conventional levels. This non-rejection of the unit root hypothesis is found to

occur also when using the IPS panel unit root test with a p-value of 99% observed. In light of the

12It is recognised that the voluminous literature on the properties of unit root tests has created something of a
mine�eld in which structural change, variance breaks, initial conditions, outliers, asymmetric and nonlinear alterna-
tives, the incorporation of of conditional volatility, and the allowance for explosive bubbles are but a few potentially
counteracting issues which can inuence the properties and behaviour of tests relative to those under `standard'
conditions. As such, the seminal univariate test and a preferred panel test o�ering increased power are considered
here despite a myriad of other tests being recognised as available. In essence, the testing of the unit root hypothesis
is not the focus of the current study but rather a stepping stone to the application of the subsequent analysis.

14



overwhelming rejection of the unit root null for the �pit series under both univariate and panel tests

(all percentage p-values being zero to 2 decimal places), it is concluded that the pit series are I(1).

As a consequence, time deformation testing equations of the form of (3) and (4) are appropriate

for the examination of London borough house prices.

5.3 Time Deformation in the London Housing Market

The results obtained from application of the time deformation and growth time deformation tests of

Stock (1987) to the London house price series are presented in Table Ten.13 Following the approach

adopted in the simulation analysis, each test is applied using the standard OLS covariance matrix

estimator and the HCCMEs of White (1980) and Newey-West (1987). The results presented show

an overwhelming presence of time deformation in the London housing market with evidence of both

forms of time deformation observed beyond the conventional 5% level of signi�cance for 29 of the 32

boroughs examined. The three exceptions to this are Ealing and Richmond where time deformation

but not growth time deformation is detected, and Wandsworth where growth time deformation but

not time deformation is detected. Alternatively expressed, 3 of the boroughs exhibit one form of

time deformation while the remaining 29 exhibit both forms. However, following the simulation

analysis above, it is clear that despite these �ndings indicating overwhelming evidence of time

deformation, such �ndings might arise spuriously as a result of GARCH being present in the series.

Given the series under examination are asset prices, it is to be expected that substantial GARCH

e�ects might be present. To explore this issue, GARCH(1,1) models were �tted to all series with

the results obtained showing strong GARCH e�ects to indeed be present.14 Following estimation

of the GARCH models, time deformation tests using testing equations of the form of (15) and (16)

were applied to the resulting standardised residuals. The results from obtained from application of

time deformation tests to the or GARCH �ltered series are reported in Table Eleven. The �ndings

13The time deformation tests are applied using a four period lag length for the augmented component of the testing
equations of (3) and (4). Alternative lag lengths were considered and quantitatively similar results were obtained.
However, given the potential dimension of the testing equation and the sample size available for the empirical analysis
(T = 243) results for models with four lags are reported.
14In the interests of brevity the speci�c values for the GARCH coe�cients for the 32 estimated GARCH models

are not reported. However, all models produced large signi�cant volatility and GARCH (i.e. �1 and �2) parameters.
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presented can be seen to be more conclusive than those for the house price series themselves as

time deformation is observed at the 5% level in every case considered. Indeed, for the 192 test

outcomes for the standardised residuals for the 32 regions, the maximum p-value observed is 4.14%

with the vast majority of p-values being zero to two decimal places.15 It can therefore be concluded

the extensive evidence of time deformation noted for the house price series is not spurious and

detected as a result of the GARCH behaviour present in the series, but rather reective of genuine

nonlinearity present in the data. These �ndings have a number of implications as they indicate

consideration of linear methods often employed may fail to detect relationships or portray an

misleading view of relationships detected. Instances where this may occur in the present context

relate to, inter alia, the examination of dynamic interrelationships between the boroughs and policy

analyses where empirical analysis of housing market interactions or base rate (and hence mortgage

rate) changes may be explored.

As a further check of the robustness of the results obtained, portmanteau nonlinearity testing

is undertaken for both the house prices series and their standardised residuals.

5.4 Portmanteau Nonlinearity Testing

As a means of further examining nonlinearity, the portmanteau BDS test of Brock et al. (1996) is

applied. The BDS test examines the null hypothesis that data are identically and independently

distributed using the correlation integral based upon the `histories' of the series considered.16 To

implement the test, values are required for the embedding dimension (m) and the distance param-

eter (�). Following standard practice, the values m = f2; 5g and �=� = 1, where � denotes the

standard deviation of the data under examination, are employed. Application of the test to the

house price series (pit) produced test statistics with percentage p-values of zero for all regions for

tests using both m = 2 and m = 5, thus clearly indicating the presence of nonlinearity in the data.

Subsequent application of the BDS test to the standardised residuals of, or GARCH �ltered, house

15Note that the �gure of 192 arises as a result of 2 tests of time deformation (non-growth and growth) being
considered for 32 regions using 3 covariance matrix estimators. That is, 192 = 2� 32� 3:
16In the interests of brevity, the structure of the BDS test is outlined here. Further details are available from a

range of sources including the seminal work of Brock et al. (1996).
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price series produced similar results indicating highly signi�cant and widespread nonlinearity. More

precisely, 58 of the 64 BDS test statistics possessed p-values of zero.17 Four of the remaining test

statistics (Greenwich and Hackney for both m = 2 and m = 5) had p-values between 0.02% to

1.97% indicating that while the p-values may be non-zero, the respective nulls are overwhelmingly

rejected nonetheless at conventionally considered levels of signi�cance. The �nal two statistics re-

late to Brent where the BDS test statistics have p-values of 22.27% and 0.34% for m = 2 and m = 5

respectively. Again, the null of is rejected overwhelmingly at conventional levels of signi�cance in

the latter case.

The results obtained from application of the BDS test to the house price series and their GARCH

�ltered forms has produced overwhelming evidence of nonlinearity for all of the 32 boroughs. How-

ever, to interpret fully the results obtained, consideration must be paid to the �ndings of the studies

of Brooks and Heravi (1999) and Brooks and Henry (2000) where the �nite-sample properties of

the BDS test are examined. In summary, these studies have shown the BDS to possess low power

when applied to series possessing nonlinear or asymmetric behaviour and, even more noticeably,

exceptionally low power when applied to GARCH-�ltered standardised residuals. These results

therefore reinforce the current �ndings for the London housing market as overwhelming rejection

has occurred in circumstances where there is an inherent bias against rejection. In combination

with the previous results for time deformation, the BDS test results show nonlinearity in the data

is detected and that it is not caused by GARCH behaviour as it remains after GARCH �ltering.

Beyond this, the current �ndings have shown the generic nonlinearity identi�ed by the BDS tests

takes the form of time deformation as evidenced by the results obtained using the diagnostic tests

of Stock (1987).

1764 test statistics arise as a result of employing the BDS twice (once for each of two values of m) to each of
the 32 London boroughs. Given the number of results, full details are not reported here in the interests of brevity.
Particularly as their clearcut nature makes discussion straightforward.
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6 Concluding remarks

This paper has considered the relationship between time deformation and GARCH. Despite clear

parallels between these two notions in terms of their focus on changes in the evolution of time series

processes and their apparent connection via issues such as the mixtures of distributions hypothesis of

Clark (1973), the potential relationship between them has not been considered formally in previous

research. The results of a comprehensive simulation analysis showed a clear connection between

the two notions with the presence of GARCH capable of generating spurious time deformation. It

was found that the oversizing was particularly apparent for heavy-tailed and more volatile GARCH

processes and that the use of the corrected covariance matrix estimators of either White (1980) or

Newey-West (1987) did not restore the tests to their correct (nominal) size. Importantly, it was

found that the degree of oversizing of time deformation tests employing the standard OLS covariance

matrix estimator did not diminish as larger sample sizes were considered, but rather size distortion

increased. In response to these �ndings, it was considered whether GARCH �ltering might provide

a solution to the problem of size distortion and the spurious detection of time deformation. The

results obtained showed GARCH �ltering to restore the correct size of time deformation testing

using the standard OLS covariance estimator across a range of GARCH processes and heavy (and

non-heavy) tailed error distributions. However, the application of corrected covariance matrix

estimators was seen to produce a less robust test in these circumstances. The analysis concluded

with an examination of the London housing market with pronounced time deformation detected in

all of its 32 boroughs. Using the results of the simulation analysis, the �nding of nonlinearity in the

form of time deformation was robust as it drew upon the issues of GARCH �ltering in particular.

The current analysis has a number of important implications. It has been shown that alter-

native concepts considering the temporal evolution of time series in �nance and economics are in

fact closely related. In addition, the fragility of testing for time deformation has been exposed and

evaluated while, importantly, a solution to this has been proposed and con�rmed. The message to

practitioners in light of these �ndings is clear: when considering time deformation for volatile series,
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the application of HCCMEs is not a solution to potential size distortion, but the consideration, and

addressing, of volatility is. Further to this, the empirical analysis has provided practitioners with

clear evidence of nonlinearity within the London housing market indicating the importance of con-

sidering methods other than standard linear, symmetric approaches when modelling relationships,

undertaking policy analyses or interpreting previous research.
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Table One: The �nite-sample sizes of tests of time deformation (T = 100; 250)

T = 100 T = 250

�1 : 0:01 0:05 0:1 0:20 0:30 0:01 0:05 0:1 0:20 0:30

(i) vt � ged(0:5)

F 4.82 7.03 10.38 16.32 20.49 5.97 12.40 20.55 32.00 38.47

Fw 7.95 9.52 11.47 14.69 17.06 5.99 7.63 9.50 12.49 14.73

Fn 21.58 23.87 26.70 30.95 33.60 15.52 18.55 21.83 26.60 29.57

(ii) vt � ged(1:0)

F 4.77 6.20 8.97 14.89 20.00 5.16 8.88 15.81 28.47 37.15

Fw 10.14 11.25 12.85 15.91 18.67 6.97 8.16 9.75 12.74 15.47

Fn 22.42 23.61 25.63 29.49 32.52 13.83 15.32 17.79 22.53 26.27

(iii) vt � ged(1:5)

F 4.90 5.84 7.93 13.29 18.15 5.03 7.46 12.73 24.39 33.77

Fw 11.32 12.19 13.63 16.67 19.22 7.54 8.32 9.65 12.66 15.41

Fn 22.67 23.51 25.02 28.45 31.31 13.25 14.30 16.25 20.53 24.19

(iv) vt � N(0; 1)

F 4.81 5.51 7.03 11.71 16.57 5.02 6.72 10.98 21.90 31.35

Fw 11.86 12.48 13.76 16.67 19.42 7.61 8.24 9.45 12.42 15.41

Fn 22.85 23.30 24.57 27.65 30.59 12.94 13.72 15.53 19.48 23.23

Notes: The �gures presented above are percentage empirical sizes of the tests of time deformation
associated with the null hypothesis of (9). Results relate to rejection at the 5% nominal level of
signi�cance. The tests are applied to series generated by the DGP of (11)-(14) under the use of
alternative covariance matrix estimators. All results were derived over 100,000 simulations of the
relevant experimental designs.
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Table Two: The �nite-sample sizes of tests of time deformation (T = 500; 1000)

T = 500 T = 1000

�1 : 0:01 0:05 0:1 0:20 0:30 0:01 0:05 0:1 0:20 0:30

(i) vt � ged(0:5)

F 7.22 19.32 31.77 46.62 53.92 8.51 27.64 44.62 60.88 67.99

Fw 5.57 7.10 8.68 11.34 13.42 5.42 6.55 7.98 10.49 12.76

Fn 12.62 15.76 19.20 24.08 27.17 10.17 13.09 16.52 21.87 25.33

(ii) vt � ged(1:0)

F 5.56 12.14 23.88 41.76 52.00 5.95 16.08 33.54 55.44 66.01

Fw 6.12 7.04 8.47 11.26 14.04 5.71 6.51 7.74 10.41 13.10

Fn 10.45 11.94 14.42 19.26 23.25 8.15 9.63 12.04 16.98 21.10

(iii) vt � ged(1:5)

F 5.15 9.10 18.53 36.61 48.12 5.47 11.52 25.88 49.42 62.14

Fw 6.23 6.89 8.06 10.90 13.71 5.71 6.30 7.29 9.81 12.42

Fn 9.69 10.71 12.74 17.12 21.10 7.78 8.67 10.42 14.84 18.79

(iv) vt � N(0; 1)

F 5.19 8.05 15.79 32.76 44.99 5.38 9.70 21.84 45.12 58.87

Fw 6.40 6.88 7.95 10.58 13.50 5.79 6.14 7.00 9.39 11.93

Fn 9.50 10.31 11.96 15.86 19.88 7.61 8.30 9.76 13.58 17.47

Notes: The �gures presented above are percentage empirical sizes of the tests of time deformation
associated with the null hypothesis of (9). Results relate to rejection at the 5% nominal level
of signi�cance. The tests are applied to series generated by the DGP of (11)-(14) under the use
of alternative covariance matrix estimators. All results were derived over 100,000 simulations of
relevant experimental designs.
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Table Three: The �nite-sample sizes of tests of growth time deformation (T = 100; 250)

T = 100 T = 250

�1 : 0:01 0:05 0:1 0:20 0:30 0:01 0:05 0:1 0:20 0:30

(i) vt � ged(0:5)

FG 4.83 7.20 10.83 16.93 21.27 6.10 12.69 20.88 32.58 39.22

FGw 9.18 10.74 12.99 16.59 19.31 6.44 8.16 10.15 13.48 15.97

FGn 23.17 25.68 28.79 33.41 36.35 16.13 19.49 23.08 28.28 31.32

(ii) vt � ged(1:0)

FG 4.75 6.22 9.09 15.12 20.17 5.16 8.93 15.85 28.57 37.30

FGw 10.14 11.37 13.06 16.31 19.07 7.10 8.24 9.73 12.77 15.70

FGn 22.36 23.73 25.85 29.77 33.01 13.84 15.35 17.78 22.77 26.65

(iii) vt � ged(1:5)

FG 4.83 5.79 7.89 13.36 18.31 5.06 7.40 12.61 24.52 33.88

FGw 11.13 12.08 13.60 16.56 19.30 7.53 8.28 9.61 12.56 15.40

FGn 22.72 23.54 25.06 28.51 31.58 13.25 14.28 16.22 20.55 24.46

(i) vt � N(0; 1)

FG 4.86 5.54 7.08 11.81 16.61 5.05 6.77 11.00 22.03 31.40

FGw 11.77 12.37 13.66 16.61 19.29 7.65 8.24 9.49 12.30 15.43

FGn 22.83 23.25 24.46 27.59 30.55 13.09 13.79 15.54 19.50 23.32

Notes: The �gures presented above are percentage empirical sizes of the tests of growth time
deformation associated with the null hypothesis of (10). Results relate to rejection at the 5%
nominal level of signi�cance. The tests are applied to series generated by the DGP of (11)-(14)
under the use of alternative covariance matrix estimators. All results were derived over 100,000
simulations of relevant experimental designs.
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Table Four: The �nite-sample sizes of tests of growth time deformation (T = 500; 1000)

T = 500 T = 1000

�1 : 0:01 0:05 0:1 0:20 0:30 0:01 0:05 0:1 0:20 0:30

(i) vt � ged(0:5)

FG 7.42 19.68 32.31 46.96 54.34 8.59 27.86 44.85 61.05 68.16

FGw 5.80 7.37 9.02 11.85 14.26 5.43 6.64 8.05 10.89 13.36

FGn 13.01 16.37 20.08 25.43 28.73 10.35 13.40 17.06 22.63 26.19

(ii) vt � ged(1:0)

FG 5.54 12.19 23.98 41.83 52.12 5.98 16.18 33.62 55.42 66.01

FGw 6.14 6.98 8.47 11.36 14.22 5.72 6.51 7.80 10.50 13.13

FGn 10.47 11.93 14.52 19.57 23.72 8.17 9.59 12.12 17.14 21.37

(iii) vt � ged(1:5)

FG 5.17 9.13 18.66 36.74 48.21 5.34 11.46 26.00 49.36 62.17

FGw 6.22 6.91 8.02 10.81 13.71 5.62 6.23 7.24 9.78 12.42

FGn 9.73 10.76 12.73 17.18 21.29 7.74 8.64 10.48 14.84 18.86

(iv) vt � N(0; 1)

FG 5.20 7.98 15.78 32.77 44.97 5.38 9.65 21.84 45.08 58.81

FGw 6.30 6.85 7.91 10.57 13.51 5.76 6.11 6.95 9.32 11.99

FGn 9.43 10.22 11.93 15.87 19.86 7.59 8.22 9.69 13.53 17.55

The �gures presented above are percentage empirical sizes of the tests of growth time deformation
associated with the null hypothesis of (10). Results relate to rejection at the nominal level of
signi�cance of 5%. The tests are applied to series generated by the DGP of (11)-(14) under the
use of alternative covariance matrix estimators. All results were derived over 100,000 simulations
of relevant experimental designs.
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Table Five: The �nite-sample sizes of tests of time deformation when applied to
GARCH �ltered series (T = 100; 250)

T = 100 T = 250

�1 : 0:01 0:05 0:1 0:20 0:30 0:01 0:05 0:1 0:20 0:30

(i) vt � ged(0:5)

F 3.80 4.14 4.39 4.66 4.86 4.18 4.49 4.78 4.97 5.10

Fw 7.02 7.33 7.67 7.83 8.00 5.30 5.38 5.47 5.39 5.46

Fn 20.64 20.98 21.46 21.99 22.26 14.18 14.31 14.34 14.54 14.58

(ii) vt � ged(1:0)

F 4.63 4.85 5.03 5.14 5.08 4.72 4.84 4.90 4.81 4.83

Fw 10.27 10.48 10.51 10.40 10.27 6.85 6.84 6.86 6.82 6.82

Fn 22.21 22.41 22.47 22.40 22.28 13.04 12.99 13.07 13.06 12.99

(iii) vt � ged(1:5)

F 5.02 5.18 5.28 5.31 5.22 5.03 5.20 5.25 5.07 4.90

Fw 12.05 12.00 12.06 11.87 11.81 7.44 7.51 7.51 7.40 7.34

Fn 23.11 23.19 23.24 23.17 23.07 12.95 13.01 13.02 12.92 12.78

(iv) vt � N(0; 1)

F 4.97 5.10 5.16 5.17 5.09 5.10 5.33 5.37 5.26 5.10

Fw 12.64 12.72 12.67 12.64 12.44 7.91 7.90 7.88 7.80 7.72

Fn 23.68 23.76 23.88 23.79 23.58 13.01 13.12 13.13 13.07 12.98

Notes: The �gures presented above are percentage empirical sizes of the tests of time deformation
associated with the null hypothesis of (23). Results relate to rejection at the 5% nominal level
of signi�cance. The tests are applied to series generated by the DGP of (11)-(14) subjected to
subsequent GARCH �ltering under the use of alternative covariance matrix estimators. All results
were derived over 100,000 simulations of relevant experimental designs.
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Table Six: The �nite-sample sizes of tests of time deformation when applied to
GARCH �ltered series (T = 500; 1000)

T = 500 T = 1000

�1 : 0:01 0:05 0:1 0:20 0:30 0:01 0:05 0:1 0:20 0:30

(i) vt � ged(0:5)

F 4.60 4.91 4.94 5.14 5.25 4.91 5.02 5.08 5.15 5.19

Fw 4.90 4.86 4.88 4.89 4.86 4.86 4.82 4.88 4.85 4.85

Fn 11.44 11.40 11.43 11.48 11.50 9.18 9.13 9.14 9.14 9.18

(ii) vt � ged(1:0)

F 5.02 5.04 4.97 4.92 4.98 5.07 4.97 4.96 4.96 5.01

Fw 5.97 5.93 5.91 5.87 5.84 5.54 5.49 5.50 5.52 5.47

Fn 9.83 9.80 9.80 9.74 9.69 7.81 7.74 7.78 7.77 7.73

(iii) vt � ged(1:5)

F 5.08 5.28 5.13 5.01 4.94 5.19 5.25 5.10 5.02 4.99

Fw 6.29 6.35 6.27 6.27 6.25 5.73 5.72 5.71 5.68 5.63

Fn 9.56 9.61 9.63 9.57 9.57 7.62 7.62 7.55 7.48 7.48

(iv) vt � N(0; 1)

F 5.13 5.36 5.25 5.04 4.96 5.10 5.24 5.11 4.97 4.95

Fw 6.37 6.38 6.39 6.38 6.28 5.68 5.76 5.66 5.64 5.64

Fn 9.47 9.42 9.43 9.38 9.33 7.41 7.39 7.36 7.33 7.31

Notes: The �gures presented above are percentage empirical sizes of the tests of time deformation
of associated with the null hypothesis of (23). Results relate to rejection at the 5% nominal level
of signi�cance. The tests are applied to series generated by the DGP of (11)-(14) subjected to
subsequent GARCH �ltering under the use of alternative covariance matrix estimators. All results
were derived over 100,000 simulations of relevant experimental designs.
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Table Seven: The �nite-sample sizes of tests of growth time deformation when applied
to GARCH �ltered series (T = 100; 250)

T = 100 T = 250

�1 : 0:01 0:05 0:1 0:20 0:30 0:01 0:05 0:1 0:20 0:30

(i) vt � ged(0:5)

FG 3.77 4.11 4.40 4.68 4.87 4.18 4.47 4.76 4.96 5.10

FGw 7.01 7.34 7.63 7.86 7.98 5.30 5.42 5.48 5.37 5.45

FGn 20.59 21.07 21.37 21.96 22.25 14.21 14.28 14.37 14.51 14.61

(ii) vt � ged(1:0)

FG 4.65 4.84 5.05 5.13 5.08 4.69 4.87 4.90 4.81 4.90

FGw 10.33 10.52 10.50 10.40 10.24 6.86 6.84 6.87 6.82 6.84

FGn 22.18 22.47 22.51 22.50 22.27 13.05 12.97 13.08 13.05 12.95

(iii) vt � ged(1:5)

FG 5.02 5.17 5.34 5.29 5.18 5.01 5.21 5.26 5.08 4.90

FGw 12.05 12.07 12.07 11.89 11.76 7.46 7.51 7.45 7.39 7.31

FGn 23.11 23.24 23.22 23.19 23.01 12.97 13.05 13.03 12.89 12.79

(iv) vt � N(0; 1)

FG 4.98 5.07 5.17 5.18 5.03 5.09 5.33 5.39 5.25 5.10

FGw 12.63 12.76 12.66 12.61 12.46 7.89 7.92 7.86 7.79 7.72

FGn 23.67 23.79 23.86 23.68 23.53 13.02 13.12 13.14 13.04 12.99

Notes: The �gures presented above are percentage empirical sizes of the tests of growth time
deformation associated with the null hypothesis of (24). Results relate to rejection at the nominal
level of signi�cance of 5%. The tests are applied to series generated by the DGP of (11)-(14)
subjected to subsequent GARCH �ltering under the use of alternative covariance matrix estimators.
All results were derived over 100,000 simulations of relevant experimental designs.
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Table Eight: The �nite-sample sizes of tests of growth time deformation when applied
to GARCH �ltered series (T = 500; 100)

T = 500 T = 1000

�1 : 0:01 0:05 0:1 0:20 0:30 0:01 0:05 0:1 0:20 0:30

(i) vt � ged(0:5)

FG 4.58 4.92 4.98 5.17 5.27 4.93 5.00 5.09 5.16 5.18

FGw 4.92 4.85 4.88 4.89 4.88 4.86 4.81 4.86 4.84 4.84

FGn 11.45 11.42 11.42 11.46 11.53 9.18 9.13 9.13 9.13 9.15

(ii) vt � ged(1:0)

FG 5.03 5.04 4.97 4.94 4.96 5.08 5.00 4.96 4.96 4.99

FGw 5.99 5.94 5.91 5.86 5.84 5.53 5.50 5.50 5.50 5.48

FGn 9.84 9.76 9.75 9.74 9.71 7.82 7.76 7.78 7.78 7.73

(iii) vt � ged(1:5)

FG 5.06 5.27 5.14 5.02 4.97 5.17 5.23 5.09 5.00 4.99

FGw 6.28 6.35 6.25 6.26 6.25 5.73 5.73 5.73 5.65 5.63

FGn 9.51 9.58 9.64 9.58 9.56 7.62 7.60 7.57 7.49 7.48

(iv) vt � N(0; 1)

FG 5.11 5.35 5.25 5.03 4.95 5.12 5.24 5.11 4.97 4.95

FGw 6.36 6.36 6.40 6.36 6.29 5.69 5.74 5.64 5.63 5.64

FGn 9.43 9.43 9.45 9.35 9.35 7.40 7.40 7.37 7.33 7.31

Notes: The �gures presented above are percentage empirical sizes of the tests of growth time
deformation of associated with the null hypothesis of (24). Results relate to rejection at the 5%
nominal level of signi�cance. The tests are applied to series generated by the DGP of (11)-(14)
subjected to subsequent GARCH �ltering under the use of alternative covariance matrix estimators.
All results were derived over 100,000 simulations of relevant experimental designs.
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Table Nine: Univariate and Panel Unit Root Tests

pit �pit

ADF � 10:58� 65:03 0:00

IPS W 99:43 0:00

Notes: The above tabulated values represent p-values associated with univariate (ADF) and panel
(IPS W) unit root test statistics obtained from analysis of London house prices.
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Table Ten: Time Deformation in London House prices

Borough FG FGw FGn FG FGw FGn

Barking and Dagenham 0.00 0.01 0.05 0.00 0.03 0.49

Barnet 0.84 2.04 1.60 1.04 1.10 4.23

Bexley 0.00 0.01 0.00 0.00 0.00 0.00

Brent 0.00 0.02 0.02 0.00 0.00 0.03

Bromley 0.11 13.70 12.36 0.01 0.38 0.94

Camden 2.47 1.60 0.08 0.00 0.00 0.02

City of Westminster 0.00 0.00 0.00 0.00 0.00 0.00

Croydon 0.01 0.56 1.10 0.00 0.07 0.52

Ealing 2.62 20.81 52.21 29.94 43.72 34.77

En�eld 0.04 0.49 1.30 0.16 0.02 0.06

Greenwich 0.11 0.68 0.80 0.25 2.00 1.40

Hackney 0.75 1.48 3.56 0.01 0.02 0.05

Hammersmith and Fulham 0.33 0.28 0.00 0.26 0.17 2.19

Haringey 0.00 0.03 0.14 0.00 0.00 0.00

Harrow 0.33 0.09 0.02 0.07 0.03 0.10

Havering 0.00 0.00 0.00 0.00 0.00 0.00

Hillingdon 0.09 0.86 3.33 0.10 0.90 6.60

Hounslow 0.00 0.06 0.00 0.00 0.24 0.45

Islington 0.29 4.90 0.27 0.22 2.62 0.70

Kensington and Chelsea 0.01 0.01 0.06 0.01 0.01 0.03

Kingston upon Thames 0.00 0.00 0.00 0.21 0.08 0.45

Lambeth 0.77 0.29 0.01 0.00 0.01 0.01

Lewisham 1.18 2.75 0.17 0.15 0.00 0.00

Merton 0.00 0.57 0.36 0.04 1.18 2.49

Newham 0.01 0.01 0.00 0.00 0.00 0.00

Redbridge 0.31 0.12 0.36 1.86 1.78 8.80

Richmond upon Thames 0.86 43.32 49.48 9.29 55.99 72.47

Southwark 0.00 0.00 0.00 0.00 0.00 0.00

Sutton 0.00 0.00 0.00 0.19 0.77 4.23

Tower Hamlets 0.00 0.00 0.00 0.00 0.00 0.00

Waltham Forest 0.53 0.05 0.10 0.21 0.00 0.01

Wandsworth 83.50 83.13 60.18 1.53 0.80 5.72

Notes: The above �gures are percentage p-values obtained from application of time deformation
and growth time deformation tests to London house prices using alternative covariance matrix
estimators.
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Table Eleven: Time Deformation in GARCH �ltered London house prices

Borough FG FGw FGn FG FGw FGn

Barking and Dagenham 0.00 0.00 0.00 0.00 0.00 0.00

Barnet 0.00 0.00 0.00 0.00 0.00 0.00

Bexley 0.00 0.00 0.00 0.00 0.00 0.00

Brent 0.00 0.00 0.00 0.00 0.00 0.00

Bromley 0.00 0.00 0.00 0.00 0.00 0.00

Camden 0.00 0.00 0.00 0.00 0.00 0.00

City of Westminster 0.00 0.00 0.00 0.00 0.00 0.00

Croydon 0.01 0.04 0.02 0.01 0.04 0.02

Ealing 0.30 0.30 4.00 0.34 0.38 4.14

En�eld 0.00 0.00 0.00 0.00 0.00 0.00

Greenwich 0.00 0.00 0.00 0.00 0.00 0.00

Hackney 0.14 0.20 0.04 0.17 0.21 0.05

Hammersmith and Fulham 0.00 0.00 0.00 0.00 0.00 0.00

Haringey 0.00 0.00 0.00 0.00 0.00 0.00

Harrow 0.00 0.00 0.00 0.00 0.00 0.00

Havering 0.00 0.00 0.00 0.00 0.00 0.00

Hillingdon 0.00 0.00 0.00 0.00 0.00 0.00

Hounslow 0.00 0.00 0.00 0.00 0.00 0.00

Islington 1.38 0.85 0.90 1.38 0.85 0.90

Kensington and Chelsea 0.00 0.00 0.00 0.00 0.00 0.00

Kingston upon Thames 0.00 0.00 0.00 0.00 0.00 0.00

Lambeth 0.02 0.02 0.20 0.02 0.02 0.20

Lewisham 0.00 0.00 0.00 0.00 0.00 0.00

Merton 0.00 0.00 0.00 0.00 0.00 0.00

Newham 0.00 0.00 0.00 0.00 0.00 0.00

Redbridge 0.02 0.01 0.00 0.01 0.00 0.00

Richmond upon Thames 0.13 0.01 0.00 0.13 0.01 0.00

Southwark 0.00 0.00 0.00 0.00 0.00 0.00

Sutton 0.00 0.00 0.00 0.00 0.00 0.00

Tower Hamlets 0.00 0.00 0.00 0.00 0.00 0.00

Waltham Forest 0.00 0.00 0.00 0.00 0.00 0.00

Wandsworth 0.19 0.10 0.37 0.19 0.10 0.37

Notes: The above �gures are percentage p-values obtained from application of time deformation
and growth time deformation tests to standardised residuals of, or GARCH-�ltered, London house
prices using alternative covariance matrix estimators.
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