
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in:

International Journal of Medical Microbiology

                                                

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa35039

_____________________________________________________________

 
Paper:

Harris, L., Dudley, E., Rohde, H., Frommelt, L., Siemssen, N., Wilkinson, T. & Mack, D. (2017).  Limitations in the use

of PSM,  agr , RNAIII, and biofilm formation as biomarkers to define invasive  Staphylococcus epidermidis  from

chronic biomedical device-associated infections. International Journal of Medical Microbiology, 307(7), 382-387.

http://dx.doi.org/10.1016/j.ijmm.2017.08.003

 

 

 

 

 

 

 

_____________________________________________________________
  
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

 

Permission for multiple reproductions should be obtained from the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/96641587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa35039
http://dx.doi.org/10.1016/j.ijmm.2017.08.003
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 


 

 1 

Limitations in the use of PSMγ, agr, RNAIII, and biofilm formation as biomarkers to 

define invasive Staphylococcus epidermidis from chronic biomedical device-associated 

infections 

 

Llinos G. Harris1*, Ed Dudley2, Holger Rohde3, Lars Frommelt4, Nicolaus Siemssen4+, 

Thomas S. Wilkinson1 and Dietrich Mack1, 5 

 

1Microbiology and Infectious Diseases, Institute of Life Science, Swansea University 

Medical School, Swansea, SA2 8PP, UK 
2Institute of Mass Spectrometry, Swansea University Medical School, Swansea, SA2 8PP, 

UK 
3Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum 

Hamburg-Eppendorf, Universität Hamburg, Germany 
4ENDO-Klinik Hamburg GmbH, Hamburg, Germany  
5Bioscientia Labor Ingelheim, Mikrobiologie/Infektiologie, Ingelheim, Germany 

 

Running title: agr-specificity groups in S. epidermidis 

 

Keywords: Staphylococcus epidermidis, agr, quorum sensing, infection, phenol soluble 

modulins, biomedical devices, biofilm formation 

 

* Corresponding author:  

Llinos G. Harris, Microbiology and Infectious Diseases, Institute of Life Science, Swansea 

University Medical School, Swansea, SA2 8PP, UK 

Phone: #44 (0)1792 602419  

Email: l.g.harris@swansea.ac.uk 

 

+Present address: Endoprothetik und Gelenkchirurgie, Krankenhaus Tabea GmbH & Co. KG, 

Hamburg, Germany 



 2 

Abstract 

Staphylococcus epidermidis is a common cause of biomedical device-associated infections. 

Agr is the major quorum sensing system in staphylococci and regulates virulence factors. 

Four agr-specificity groups exist in S. epidermidis, and chronic S. epidermidis infections are 

hypothesised to select for agr-negative phenotypes. Therefore, we investigated S. epidermidis 

strains from prosthetic joint- and catheter-associated infections to establish i) whether an 

infection selects for an agr-negative phenotype; ii) the importance of PSMγ and iii) if the 

agr-specificity group is infection dependent. S. epidermidis nasal isolates from healthy 

volunteers were used as controls. The distribution of agr-specificity groups was significantly 

different between infection and control episodes, but did not distinguish between the 

infection types. PSMγ secretion was used to determine agr-activity and HPLC analysis 

showed that 44% of prosthetic and 32% of catheter-associated episodes produced no PSMγ in 

comparison to 8% of the control strains. However, PSMγ expression did not always correlate 

with RNAIII up-regulation, indicating that PSMγ synthesis is likely influenced by additional 

post-transcriptional control. The data suggests chronic S. epidermidis infections favour agr-

specificity group 1 but the results suggest that they do not select for an agr-negative 

phenotype. Further studies are required to explore the mechanisms underlying the selection 

and survival of these S. epidermidis phenotypes isolated from biomedical device-associated 

infections.  

 

Introduction 

Infections are a major problem associated with biomedical devices, such as central venous 

catheters, prosthetic joints, cardiac pacemakers, heart valves and cerebrospinal fluid-shunts. 

A major concern in these infections is their chronic persistence and recalcitrance to 

antibiotics, making the removal of the infected device necessary. The commensal 

Staphylococcus epidermidis is a leading cause of nosocomial biomedical device-associated 

infections (1). S. epidermidis has evolved sophisticated regulatory systems and mechanisms 

allowing adaption to changing environmental conditions during colonization and, in 

particular during an infection. Critical to the pathogenesis of biomedical device-associated 

infections is the ability of the bacteria to adhere to the biomaterial surface and subsequently 

produce biofilm. Thereby, S. epidermidis successfully evades the host’s immune system and 

becomes intrinsically resistant against most first line antibiotics (2).  
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An important factor suggested to influence the pathogenesis of S. epidermidis is its ability to 

produce pro-inflammatory peptides named phenol soluble modulins (PSMs) (3). The PSM 

family in S. epidermidis consists of PSMα, PSMβ1, PSMβ2, PSMδ, PSMε and PSMγ/δ-toxin 

(4). PSMs have been associated with a strong pro-inflammatory effect, as they can induce 

cytokine release in monocytes, activate the HIV-1 LTR in macrophage-like cells, and induce 

NFκB production (3). They are also chemotactic for leukocyte subsets and cause 

degranulation and inhibit human neutrophil apoptosis (5). PSMs like many toxins and surface 

proteins involved in the colonisation and persistence of S. epidermidis infections are 

regulated by the quorum sensing accessory gene regulator (agr) system (6, 7). PSMs are also 

involved in biofilm maturation and detachment as well as bacterial defence against human 

neutrophils (8, 9).  

 

In staphylococci, the agr system is responsible for the regulation of various virulence factors 

(10). The agr system consists of four genes (agrA, agrB, agrC and agrD) that are divergently 

co-transcribed by RNAII (a density dependent autoinducing system), and RNA111 (an RNA 

effector molecule), which also includes an open reading frame encoding PSMγ (-toxin) 

(Supplemental Fig. 1) (10). AgrD contains the sequence of the autoinducing peptides (AIP) 

generated by proteolytic processing through AgrB. The AIP is bound by AgrC, which is a 

membrane-bound receptor of the two-component system AgrC/AgrA. At a threshold 

concentration, AgrC phosphorylates or dephosphorylates AgrA. Then, activated AgrA, in 

conjunction with SarA, activates the two agr promoters P2 and P3 leading to rapid 

autoinduction of the agr system and synthesis of the effector molecule RNAIII, which in turn 

controls the transcription of the hld gene leading to the expression of PSMγ. In S. aureus and 

S. epidermidis, agr is activated during transition from exponential growth to the stationary 

phase and attenuates expression of several cell surface proteins, whilst increasing the 

expression of many secreted virulence factors. Agr activity can be determined by the amount 

of PSMγ expressed, as the hld gene is encoded within RNAIII (6, 11). Previous studies have 

suggested that strains with agr-negative phenotypes are frequently associated with infections 

(10, 12), and the development of thicker biofilms (12). This is also supported by an S. 

epidermidis 1457Δagr-mutant which colonised a subcutaneous catheter with significantly 

higher cell numbers consistent with its higher biofilm-forming capacity, whilst the wild type 

had higher cell numbers in the surrounding tissues, indicating a higher degree of invasiveness 

(12). In addition, the exogenous addition of PSMγ decreased biofilm formation, thus it was 



 4 

hypothesized that the toxin might interfere with biofilm accumulation mechanisms in the later 

stages of biofilm formation (12). There are four agr-specificity groups in S. epidermidis, that 

differ in the hypervariable region of agrBCD and influence the amino acid sequence of the 

AIP (Supplemental Fig. 1) (13). It has been shown that AIP peptides from different agr-

specificity groups are mutually inhibitory (12). A study by Carmody and Otto (14), 

demonstrated that agr-specificity groups may be associated with certain S. epidermidis 

infections. However the isolates used were not well characterised. Thus the aim of this 

present study was to elucidate the relationship between the ability of previously well 

characterised S. epidermidis isolates from different biomaterial-associated infections to 

produce PSMγ (15, 16); and if variations exist, confirm their relationship with an agr-

negative phenotype, specific agr-specificity group and/or specific biomaterial-associated 

infection.  

 

Materials and Methods 

Bacteria strains 

A total of 100 previously characterised prosthetic joint infection (PJI) isolates from 50 

patients, and 40 isolates from central venous catheter infections (16 patients) collected 

between 1998 and 2004 in the ENDO-Klinik and University Hospital Hamburg-Eppendorf 

were used (15, 16). In each PJI case, staphylococcal isolates were obtained under strict 

aseptic conditions from independent pure cultures of a preoperative hip or knee joint aspirate 

and an intraoperative tissue specimen. The mean time interval between joint aspiration and 

intraoperative tissue specimen recovery was 11 weeks (median = 9 weeks). The central 

venous catheter infection isolates were recovered from the blood cultures of 16 bone marrow 

transplantation patients (2-5 isolates per patient, recovered 2 to 72 days after bone marrow 

transplantation). These S. epidermidis strains were regarded as invasive strains, as at least two 

clonally identical or closely related isolates were obtained from cultures of blood drawn at 

different time points or from independent cultures of blood drawn at one time per patient 

(16). Twenty six isolates from the nasal swabs of healthy volunteers were used as controls. 

Isolates were streaked from frozen stocks onto Columbia agar supplemented with 5 % horse 

blood (Oxoid, Thermo Fisher Scientific, Loughborough, UK), and incubated overnight at 37 

°C, and were used in the subsequent experiments. 
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Identification of agr-specificity groups 

Genomic DNA was isolated from bacteria cultured overnight in PY broth (1% peptone, 0.5% 

yeast extract, and 0.5% NaCl; all from Thermo Fisher Scientific) using a QIAmp mini kit 

(Qiagen, Crawley, UK) following the manufactures instructions. The primers and PCR 

conditions are summarised in Supplemental Table 1. The agr hypervariable region was 

amplified using Taq polymerase (Invitrogen, Paisley, UK) with primers specific to agr-

specificity group 1 and agr-specificity group 2, 3 and 4 (Invitrogen), resulting in a product of 

approximately 500bp. Restriction fragment length polymorphism (RFLP) using restriction 

enzymes, Dra1 and Dre1 (Promega, Southampton, UK) was used to confirm the agr-

specificity groups, as Dde1 cuts all agr-specificity groups, whilst Dra1 cuts only agr-

specificity groups 2, 3 and 4. Nucleotide sequencing (Eurofins MWG Operon, London, UK) 

was used to differentiate between agr-specificity groups 2, 3 and 4.  

 

PSMγ -production analysis 

To analyse the production of PSMγ, bacteria were cultured in basic media (0.5% yeast 

extract, 0.5% NaCl, 0.1% K2HPO4, and 0.1% glucose; all from Thermo Fisher Scientific) for 

8h from a starting OD600 of 0.05, then centrifuged and the supernatant kept for High 

Performance Liquid Chromatography (HPLC) analysis. A Resource PHE 1-ml column (GE 

Healthcare, Little Chalfont, UK) and an Applied Biosystem Vision BioCAD HPLC 

instrument was used as described previously (11). S. epidermidis PSMγ elutes at a retention 

time of about 7.5 min (after sample injection) as a distinct peak. The identity of PSMγ was 

determined after peak fractionation using a MALDI-ToF/MS (Bruker Daltonik GmbH, 

Germany), should appear as a peak of approximately 2849Da (3).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

 

Transcription analysis of RNAIII  

Quantitative RT-PCR was used to analyse the transcription of RNAIII. RNA was extracted 

from 2 and 8h cultures of 22 pairs of prosthetic joint infection isolates, 22 catheter isolates (8 

patients) and 9 control nasal swab isolates, using a modified protocol described by Kenny et 

al. (17) and the Promega SV Total RNA isolation kit (Promega, Southampton, UK). Cells 

were harvested by centrifugation for 10min at ambient temperature, resuspended in 3ml 

sterile PBS (Sigma, Dorset, UK), then a 1.5ml portion of the cell suspension was mixed with 

3ml of RNA protect solution (Qiagen) and incubated for 5 min at ambient temperature. Cells 

were centrifuged for 10min at ambient temperature and the pellet frozen at -20°C until ready 

to analyse. The samples were thawed and resuspended in 180µl of TE buffer (10mM Tris; 
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1mM EDTA (pH 8.0); Thermo Fisher Scientific), centrifuged to remove any residual RNA 

protect solution, and resuspended in 180µl TE buffer containing 200 µg/ml lysostaphin 

(Sigma), 400 U/ml mutanolysin (Sigma) and 40 µg/ml proteinase K (Qiagen). Samples were 

incubated at 37°C for 1-2h, with occasional shaking, then 75µl of RNA lysis buffer and 

350µl of RNA dilution buffer from the SV RNA isolation kit were added to the suspension 

and mixed gently by inversion. The subsequent extraction of RNA was performed according 

to the instructions of the manufacturer. Extracted RNA was quantified with a NanoDrop 

ND100 spectrophotometer (Thermo Fisher Scientific, UK), and diluted to 10µg/ml. 4µg/ml 

of RNA was used for first-strand cDNA synthesis with the iScript cDNA synthesis kit (Bio-

Rad, Hemel Hempstead, UK) in a total volume of 20µl. 3µl of cDNA was used as a template 

in real-time PCR analysis with a SensiMix SYBR mix (Bioline, London, UK) and primers for 

RNAIII and gyrB in a RotorGene 6000 instrument (Qiagen) using the conditions outlined in 

Supplemental Table 1. All RT-PCR analyses were performed in triplicate for at least two 

independent experiments. Relative transcriptional levels within distinct experiments were 

determined using the 2-ΔΔCt method which compares RNAIII transcription at 2 and 8h (18) 

and gyrB as the reference housekeeping gene. A 3-fold difference in 2-ΔΔCt was used as a cut-

off point for RNAIII transcription up-regulation between 2 and 8h.  

 

Biofilm assay 

The biofilm phenotype of the S. epidermidis isolates was determined with a semi-quantitative 

adherence assay using 96-well tissue culture plates (Nunc, UK) to measure attachment and 

accumulation of biofilm on the plastic surface, as described previously (19). Biofilm-positive 

strains were defined as strong biofilm: mean OD570 greater than 0.7; biofilm positive: mean 

OD570 0.5-0.69; and weak biofilm positive: mean OD570 0.2 - 0.49. Biofilm negative strains 

had a mean OD570 less than 0.19. 

 

Statistical analysis 

Data were analysed using a Fisher exact test and ANOVA using SPSS software, with the 

level of significance set at p < 0.05. 

 

Results 

Identification of agr-specificity groups.  

The agr-specificity groups (Table 1) in the prosthetic joint infection (PJI; 50 pairs), catheter 

infection (16 patients) and control nasal swab (n = 26) isolates were established using 
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specific PCR primers and RFLP to differentiate between the 4 agr-specificity groups. The 

results showed that agr specificity group 1 was most common among the PJI and catheter 

episodes, with 74 and 90% prevalence respectively. Isolates with agr specificity group 2 and 

3 were also identified in 16 and 10% of PJI episodes respectively, whilst the remaining 

catheter isolates (10%) were all agr specificity group 2. Agr-specificity group 4 was only 

found in one PJI patient. In comparison, the control nasal swab isolates analysed were equally 

distributed in agr groups 1-3 and none in 4 (Table 1). The agr-specificity group of isolates 

from the same patients were identical in all cases. The distribution of agr-specificity groups 

was significantly different between infection episodes and control nasal swab isolates (p < 

0.05), whilst the agr-specificity group distribution between prosthetic and catheter episodes 

was not (p > 0.05).  

 

PSMγ production analysis 

PSMγ production was used to establish agr activity within the isolates using HPLC (Table 2 

and Supplemental Figure 2) and thus determine if isolates had an agr negative phenotype. In 

agr active isolates (Supplemental Figure 2), a peak was observed as expected after about 7.5 

min in HPLC separation (11), and analysis of this peak using MALDI-ToF/MS showed a 

distinct peak of 2840 Da (not shown), thus confirming the presence of PSMγ. Similar 

analysis of all isolates (Table 2) confirmed that 44% of the PJI ones and 32% of those from 

catheters produced no PSMγ in comparison to only 8% of control nasal swab isolates; and no 

PSMγ production was found in any agr-specificity groups irrespective of isolate source. The 

differences observed in PSMγ production between infection (PJI or Catheter) and control 

nasal swab isolates was significant (p < 0.05), but no significant difference was observed 

between the PJI and catheter isolates (p > 0.05). Interestingly, a difference in PSMγ 

production was observed between 26% of the PJI pairs and 19% of the catheter isolates from 

the same patient, that is one isolate produced PSMγ whilst the other did not; and such a 

phenotypic difference was observed consistently in replicate experiments.  

 

Transcription analysis of RNAIII  

RNAIII is only transcribed if the agr locus is active, therefore RNAIII up-regulation was 

analysed in 22 pairs of PJI isolates, 22 catheter isolates (8 patients), and 9 control nasal swab 

isolates), and a 3-fold difference between  in 2-ΔΔCt used as the cut-off point. The results 

showed that RNAIII was transcribed by 65 of the isolates tested (Supplemental Table 2), 

despite the fact that 24 of these isolates did not produce PSMγ according to the HPLC results. 
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No significant association was found between RNAIII transcription and PSMγ production for 

the PJI, catheter or control isolates (p > 0.05) (Figure 1). However, the 3-fold increase in the 

RNAIII transcribed by the catheter isolates was significantly greater than that observed in the 

PJI and control isolates (p < 0.05). Furthermore, median values for RNAIII transcription in 

PSMγ positive isolates were higher than in PSMγ negative isolates for both infection types 

but was not statistically significant (p > 0.05).  

 

Biofilm formation 

The ability of the PJI, catheter and nasal isolates to form biofilms was tested using a semi-

quantitative adherence assay (19). Biofilm-positive isolates were defined as strong, positive 

or weak biofilm formers and the results are shown in Table 3. The ability of the isolates to 

form a biofilm was also correlated to their agr type and whether they were PSMγ positive or 

negative. Of the PJI isolates 66% were biofilm positive and all the strong biofilm producers 

(13 isolates) belonged to agr specificity group 1, with isolates from agr specificity group 2, 3 

and 4 producing weaker biofilms. In comparison, 83% of the catheter isolates were biofilm-

positive, with 9 isolates forming strong biofilms, again all belonging to agr specificity group 

1. Only 1 of the nasal isolates produced a positive biofilm, whilst 9 isolates were weak 

biofilm producers and 16 were biofilm negative, from agr specificity groups 1, 2 and 3. No 

significant differences were seen between agr specificity group and ability to form a biofilm 

(p > 0.05).  

 

An agr-negative phenotype has been associated with stronger biofilms. However, of the 13 

PJI strong biofilm producers, only 4 were agr-negative, and of the 9 catheter-associated 

strong biofilm producers only 4 were agr-negative (Table 3). No significant difference was 

observed between PJI, catheter or nasal isolates and whether they had an PSMγ 

positive/negative phenotype (p = > 0.05).  

 

 

Discussion 

The agr quorum sensing system is responsible for the regulation of many factors involved 

with S. epidermidis colonisation, immune evasion and activation (5, 20). Four different agr-

specificity groups have been identified in S. epidermidis (13) and have been linked with 

specific clinical infection entities in S. aureus (21). This study investigated the relationship 

between the differential ability of S. epidermidis strains isolated from prosthetic joint 
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infections (PJI) and catheter infections to produce PSMs, and whether any variations 

identified were associated with a specific agr-specificity group, agr-negative phenotype 

and/or biomaterial-associated infection.    

 

Firstly, the distribution of agr-specificity groups in S. epidermidis isolates from a strain 

collection of 100 prosthetic joint infections (50 pairs) and 40 catheter infections (16 patients) 

showed agr-specificity group 1 as the most prominent type in both prosthetic joint infection 

and catheter isolates (74 and 90%), whereas there was no significant specificity group in the 

control nasal swab isolates from healthy volunteers (38, 31 and 31%). Three other studies 

looking at agr-specificity groups in S. epidermidis infections, also found agr-specificity 

group 1 common in infection isolates (4, 14, 22) with fewer agr-specificity group 2 and 3 

isolates. Two of these studies had similar values of agr-specificity group 1-3 within the 

commensal isolates, thus substantiating the results obtained in this current study. However, in 

the Li et al. (22) study, agr-specificity group 2 was significantly more dominant at 51%. A 

possible agr-specificity group 4 was found in a PJI episode in this current study and in a 

commensal isolate in the Hellmark et al. study (4). Agr-specificity groups in relation to other 

specific S. aureus infections have also been investigated, and have been found to correlate 

broadly with strain genotypes (23-25). Campoccia et al. [37] found differences in agr-

specificity group prevalence in orthopaedic implant infections which were dependent on 

whether the isolate was from a sporadic or epidemic infection. Hence, there is strong 

evidence to suggest that specific agr-specificity groups in S. epidermidis are also associated 

with particular clinical infections.  

 

Agr-negative phenotypes have been proposed to be common in infection isolates in 

comparison to commensal ones (10) and have been associated with increased biofilm 

formation, an important virulence factor in S. epidermidis implant associated infections (6, 

12). Thus a second hypothesis was that infection isolates may select for an agr-negative 

phenotype. Firstly, PSMγ production was analysed, as its production is assumed to signify an 

active agr system. The results showed significantly fewer of the infection isolates produced 

PSMγ in comparison to the control nasal swab ones (p < 0.05), suggesting that they have an 

agr-negative phenotype, thus correlating to previous studies (10). Specifically, these results 

correlate with Vuong et al. (12, 20), as they also found significantly more agr-negative 

phenotypes in their clinical isolates than in their healthy volunteer isolates. It has also been 

suggested that having an inactive agr system would be advantageous during prosthetic joint 
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and catheter infections as both are associated with biofilm formation, and PSMγ expression is 

known to affect biofilm formation (6). However, this current study found no significant 

difference between being agr-negative/positive and biofilm formation in any of the PJI, 

catheter or nasal isolates (p > 0.05). A possible reason for this is the fact that the agr system 

is not the only regulatory system that influences biofilm formation in S. epidermidis, as at 

least four unlinked regulatory gene loci have been identified to have a role in S. epidermidis 

biofilm formation (26, 27).  

 

The fact that PSMγ negative isolates were detected signifies that it is not critical to the 

survival of S. epidermidis in vivo, but would influence the ability of the bacteria to disperse as 

this is thought to be PSMγ dependent (6, 8). Surprisingly, differences within prosthetic joint 

infection pairs and catheter patient samples were observed. This observation was unexpected, 

as different infection episodes from the same patients had the same agr-specificity group and 

were clonal according to previous work (15, 16). Hence to substantiate the PSMγ results 

RNAIII transcription was analysed in a selection of the isolates. They showed that 64 out of 

72 isolates transcribed RNAIII, despite 24 of these not producing PSMγ. The amount of 

RNAIII transcribed in the PSMγ negative isolates was lower than in the PSMγ positive ones 

but not significantly, thus suggesting a possible delay in RNAIII transcription resulting in no 

PSMγ production or not enough being produced for detection using HPLC. It has previously 

been shown in S. epidermidis and S. aureus that there is a 1-2h delay between RNAIII 

transcription, hld translation and PSMγ expression, due to the fact that the hld gene is 

embedded in the gene encoding RNAIII (20). Another study has also suggested that in S. 

aureus, using PSMγ  production as an indicator of agr activity was not always accurate when 

dealing with clinical isolates (28). Hence in this present study it is possible that in some 

cases, PSMγ was produced but to a sub-optimum level for HPLC detection, thus suggesting 

that despite RNAIII being transcribed to comparable amounts, an unknown post-transcription 

or post-translational mechanism may influence PSMγ secretion. 

 

Another factor that has not been considered so far, is that in S. aureus it has been shown that 

AgrA rather than RNAIII influences PSMγ expression, and that the expression of the hld 

gene despite being embedded within RNAIII is under the strict regulation of the agr locus 

and not RNAIII expression (29). Such a relationship has yet to be elucidated in S. 

epidermidis, but would certainly explain the discrepancy observed in this study between 

PSMγ expression and RNAIII transcription. In S. aureus, mutation in the 3’end of agrA have 
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been shown to result in a further 2-3 hours delay, leading to the lack of PSMγ expression 

(28), whilst mutations in S. epidermidis agrC and agrA have previously been suggested to 

result in no agr expression (12). However, despite finding SNPs within the 3’end region of 

agrA and agrC in isolates within the current study (results not shown), there was no particular 

correlation between the presence of these SNPs and PSMγ expression.   

 

To conclude, the results presented in this study indicate that in S. epidermidis, specific agr-

specificity groups are associated with particular clinical infections. Assuming that no PSMγ 

production is indicative of an agr-negative system, it may be concluded that chronic 

infections such as prosthetic joint infections are frequently associated with agr-negative 

phenotype in comparison to nasal isolates from healthy volunteers. This would be 

advantageous to the persistence of the bacteria as it could produce thicker biofilms which aid 

in evasion of the host immune system. However, if RNAIII transcription is used to define the 

activity of the agr system, chronic infection isolates are not associated with an agr-negative 

phenotype. Thus the discrepancy observed between RNAIII transcription and PSMγ 

production warrants further study if we are to fully understand the role of the agr system in 

infections. 
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Figure and Table Legends 

 

Table 1. Distribution of agr-specificity groups among PJI, Catheter and Nasal swab isolates 

The number in brackets refers to the overall percentage of isolates from each source in each agr-specificity 

group. 

 

Table 2. Distribution of PSMγ-production among the infection types and nasal swab isolates 

Fisher’s Exact results: PJI vs. Control, p < 0.05; Catheter vs. Control, p < 0.05; PJI vs. Catheter, p = 0.042 

 

Table 3. Biofilm formation results with correlation to agr specificity group and agr 

positive/negative phenotype based on the PSMγ results. 

No significant differences between agr specificity group and ability to form a biofilm in PJI, catheter or nasal 

isolates, p > 0.05.  

Statistics of PJI ability to form a biofilm vs. PSMγ positive/negative, p = 0.284; Catheter ability to form a 

biofilm vs. PSMγ positive/negative, p = 0.599; Control ability to form a biofilm vs. PSMγ positive/negative, p = 

0.129 

 

Figure 1. Box-plot analysis correlating PSMγ production with RNAIII transcription between 

2 and 8h 

 

Supplemental Table 1. Primers used in this study, and the PCR/qRT-PCR conditions used 

 

Supplemental Table 2. Detailed analysis of the HPLC and qRT-PCR results  

No significant difference in RNAIII transcription or PSMγ between Prosthetic episodes / Catheter episodes & 

Control, p > 0.05 

 

Supplemental Figure 1. Schematic representation of the function of the agr system of 

Staphylococcus, including the amino acid peptides of S. epidermidis specificity groups 1-4 

 

Supplemental Figure 2. Spectral results from HPLC analysis of S. epidermidis 8h culture 

supernatants showing the production of PSMγ (peak) or no production (flat-line) 
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Figure 1. Box-plot analysis correlating PSMγ production with RNAIII transcription between 

2 and 8h 
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Supplemental Figure 1. Schematic representation of the function of the agr system of 

Staphylococcus, including the amino acid peptides of S. epidermidis specificity groups 1-4. 

 
 

 

Supplemental Figure 2. Spectral results from HPLC analysis of S. epidermidis 8h culture 

supernatants showing the production of PSMγ (peak) or no production (flat-line). 
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Table 1. Distribution of agr-specificity groups among PJI, Catheter and nasal swab isolates.  

 

 

 

 

 

 

The number in brackets refers to the overall percentage of isolates from each source in each agr-specificity 

group. 

 

 

 

 

Table 2. Distribution of PSMγ-production among the infection types and nasal swab isolates 

 

Fisher’s Exact results: PJI vs. Control, p < 0.05; Catheter vs. Control, p < 0.05; PJI vs. Catheter, p = 0.042 

 

 

  

 agr group 1 agr group 2 agr group 3 agr group 4 

PJI 37 (74%) 8 (16%) 4 (8%) 1 (2%) 

Catheter 15 (94%) 1 (6%) 0 0 

Control 10 (38%) 8 (31%) 8 (31%) 0 

  PJI Catheter Control 

  

Distribution per 

isolate (n = 100) 
Variation 

between 

episodes 

(n = 50) 

Distribution per 

isolate (n = 40) 
Variation 

between 

episodes 

(n = 16) 

Distribution per 

isolate (n = 26) 

  

PSMγ  

positive 

PSMγ  

negative 

PSMγ  

positive 

PSMγ  

negative 

PSMγ  

positive 

PSMγ  

negative 

agr group 1 41 33 12 27 9 3 10 0 

agr group 2 10 6 0 0 4 0 6 2 

agrgroup 3 3 5 1 0 0 0 8 0 

agrgroup 4 2 0 0 0 0 0 0 0 

Total 
56 

(56%) 

44 

(44%) 

13   

(26%) 

27 

(68%) 

13 

(32%) 

3    

(19%) 

24 

(92%) 

2     

(8%) 
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Table 3. Biofilm formation results with correlation to agr specificity group and agr 

positive/negative phenotype based on the PSMγ results. 

 

No significant differences between agr specificity group and ability to form a biofilm in PJI, catheter or nasal 

isolates, p > 0.05. Statistics of PJI ability to form a biofilm vs. PSMγ positive/negative, p = 0.284; Catheter 

ability to form a biofilm vs. PSMγ positive/negative, p = 0.599; Control ability to form a biofilm vs. PSMγ 

positive/negative, p = 0.129 

 

  

  Strong 

biofilm  

(OD570 > 0.7) 

Positive 

biofilm 

(OD570 0.5-

0.69) 

Weak biofilm 

(OD570 0.2-

0.49) 

Negative 

biofilm       

(OD570 <0.19) 

PJI agr group 1 13 6 46 9 

 agr group 2 2 4 7 3 

 agr group 3 0 0 7 1 

 agr group 4 0 0 2 0 

 PSMγ positive 11 7 32 6 

 PSMγ negative 4 3 30 7 

Catheter agr group 1 9 5 22 0 

 agr group 2 0 0 4 0 

 agr group 3 0 0 0 0 

 agr group 4 0 0 0 0 

 PSMγ positive 5 5 17 0 

 PSMγ negative 4 0 9 0 

Control agr group 1 0 1 3 6 

 agr group 2 0 0 4 4 

 agr group 3 0 0 2 6 

 agr group 4 0 0 0 0 

 PSMγ positive 0 1 7 16 

 PSMγ negative 0 0 2 0 
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Supplemental Table 1. Primers used in this study, and the PCR/qRT-PCR conditions used 

 

 

 

 

 

  

Gene Primers PCR/qRT-PCR conditions Reference 

agr-specificity 

group 1 

Forward 5’-GAAACAACCTATACCTA-3’ 

Reverse 5’-GCAGAAGGGATTACAATCGT-3’ 

2 min, 94°C; 30 cycles of 15s,  94°C; 30s, 50°C; 1min, 

72°C; final extension 72°C for 7min 

This study 

agr-specificity 

group 2, 3 and 4 

Forward 5’-GAAACAACCTATACCTA-3’ 

Reverse 5’-GCAGAAAGGATTATAATTCCA-3’ 

2 min, 94°C; 30 cycles of 15s,   94°C; 30s, 50°C; 1min, 

72°C; final extension 72°C for 7min 

This study 

hld 

 

Forward 5’-GTTATGATGGCAGCAGA-3’ 

Reverse 5’-GGATGGCTCAACAACTCA-3’ 

3min, 95°C; 35 cycles of 30s, 94°C; 30s, 55°C; 30s, 72°C This study 

gyrB 

 

Forward 5’-CTGACAATGGCCGTGGTATTC-3’ 

Reverse 5’-GAAGATCCAACACCGTGAAGAC-3’ 

3min, 95°C; 35 cycles of 30s, 94°C; 30s, 55°C; 30s, 72°C 10 
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Supplemental Table 2. Detailed analysis of the HPLC and qRT-PCR results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No significant difference in RNAIII transcription or PSMγ between Prosthetic episodes / Catheter episodes & Control, p > 0.05

Prosthetic joint (n = 44 isolates; n = 22 episodes) 

  Distribution per isolate Variation  

between episodes 

Distribution per isolate Variation  

between episodes   RNAIII positive RNAIII negative PSMγ positive PSMγ negative 

agr group 1 27 5 5 23 9 7 

agr group 2 4 2 2 4 2 2 

agr group 3 4 0 0 3 1 0 

agr group 4 2 0 0 2 0 0 

Total 37 (84%) 7 (16%) 7 (16%) 32 (73%) 12 (27%) 9 (20%) 

       

Catheter (n = 22 isolates; n = 8 episodes) 

  Distribution per isolate Variation 

between episodes 

Distribution per isolate Variation 

between episodes   RNAIII positive RNAIII negative PSMγ positive PSMγ negative 

agr group 1 17 1 1 15 3 3 

agr group 2 4 0 0 0 4 0 

agr group 3 0 0 0 0 0 0 

agr group 4 0 0 0 0 0 0 

Total 21 (95%) 1 (5%) 1 (5%) 15 (68%) 7 (32%) 3 (38%) 

       

Nasal swabs (n = 9) 

  Distribution per isolate Variation 

between episodes 

Distribution per isolate Variation 

between episodes   RNAIII positive RNAIII negative PSMγ positive PSMγ negative 

agr group 1 3 0 n/a 3 0 n/a 

agr group 2 2 1 n/a 2 1 n/a 

agr group 3 2 1 n/a 3 0 n/a 

agr group 4 0 0 n/a 0 0 n/a  

Total 7 (78%) 2 (22%) n/a 8 (89%) 1 (11%) n/a 
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