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Abstract: 

In this paper we report on the development of an aerosol jet printed sensing platform integrating 

elements of silicon and printed electronics. To demonstrate the technology, thin film humidity 

sensors have been fabricated over the top surface and sides of pre-packaged integrated circuits 

using a combination of direct-write aerosol jet deposition and drop-casting. The resistive based 

sensor consists of an aerosol jet deposited interdigitated nano-particle silver electrode structure 

overlaid with a thin film of Nafion® acting as a humidity sensitive layer. The fabricated sensor 

displayed a strong response to changes in relative humidity over the tested range (40% RH to 80% 

RH) and showed a low level of hysteresis whilst undergoing cyclic testing. The successful fabrication 

of relative humidity sensors over the surface and pins of a packaged integrated circuit demonstrates 

a new level of integration between printed and silicon based electronics - leading to Printed-Sensor-

on-Chip devices. Whilst demonstrated for humidity, the proposed concept is envisaged to work as a 

platform for a wide range of applications, from bio-sensing to temperature or gas monitoring. 
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Research Highlights 

 A new way of vertically integrating printed and silicon electronics is presented: Printed-Sensor-

on-Chip. 

 Aerosol Jet Deposition was used to print microscale electrodes humidity sensors onto pre-

packaged integrated circuits. 

 Aerosol Jet Deposition demonstrated high resolution printed features over rough and non-

conformal surfaces. 

 The printed humidity sensors showed a strong and consistent response with low hysteresis. 
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1.  

Introduction 

In this paper, we present the use of aerosol jet deposition (AJD) to create microscale printed sensors 

directly onto pre-packaged integrated circuits (IC’s). The approach used demonstrates a new way of 

integrating elements of printed and silicon electronics adding additional functionality to the silicon 

device, and resulting in complete miniaturized sensor systems. This novel sensor fabrication process 

is demonstrated by printing a relative humidity sensor over the top surface and edges of an 

analogue-to-digital converter (ADC) integrated circuit, demonstrating the concept of Printed-Sensor-

on-Chip devices. 

The prospect of mass produced completely printed electronic systems is attractive, however it is still 

in the early stages of development [1, 2]. Whilst the use of printing and other related deposition 

technologies to produce sensors is currently achievable [3, 4, 5, 6], in order to be of use, these 

sensors still require the use of conventional silicon electronics control elements [7, 8]. A key 

challenge to working with printed electronics and sensors is how these printed and silicon elements 

are integrated together and the limitations arising from this. Due to temperature constraints and 

mechanical reasons, common silicon integration methods, such as solder bonding, wire bonding and 

flip-chip assembly, are not suitable for use with flexible printed electronics [9, 10].  

In this paper a different approach is demonstrated based on fabrication by AJD of small scale sensors 

over silicon components - a solution capable of joining the functionality and advanced materials of 

printed electronics with the maturity and processability of conventional silicon based electronics. By 

integrating customisable printed sensors directly onto integrated circuits new application specific 

integrated circuits (ASIC’s) can be developed and still processed using conventional electronics 

assembly techniques. Additionally, the overall footprint and weight of the device are reduced when 

compared with a separate sensor system attached/integrated via a cable to a silicon control circuit. 

The approach of using additive deposition methods (with a variety of processes cited) has been 

previously outlined in a patent application by Texas Instruments but has not been physically 

demonstrated [11]. 

AJD is a direct-write additive fabrication technology capable of depositing a wide range of functional 

materials without the need for conventional masks and/or stencils [12]. The aerosol jet process 

works by atomising a solution/suspension containing a functional material into a fine mist of 

droplets which are suspended in a carrier gas flow. The generated mist is then transported to a 

deposition head where it is focused into a collimated stream by a secondary gas flow and directed 

towards the substrate through a converging nozzle. The substrate is positioned below the nozzle on 

a motion controlled heated stage and patterning is achieved by the relative movement of the 

substrate and deposition head [13, 14, 15, 16]. The process is non-contact, enabling features to be 

printed onto both two- and three-dimensional surfaces. AJD is therefore capable of patterning 

functional materials over challenging topographies, such as the surface and edges of an IC, which 

would not be possible with other printing processes. These capabilities allow the technology to be 

used in the fabrication of a wide range of highly customisable printed electronic devices and sensors. 

The technology has been reported in journal articles as a deposition method for functional layers in 

a diverse range of applications including thin film transistors [17, 18, 19], strain gauges [20], solar 

cells [21, 22, 23, 24, 25], light emitting diodes (LED's) [22, 26], printed circuits [27], resonators [28] 

and biological sensors [6]. 
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On account of its non-contact, digital nature and ability to deposit over non-conformal surfaces, AJD 

is an ideal process for the development of the proposed Printed-Sensor-on-Chip technology.  

However, despite the advantages offered by AJD, there were a number of challenges in terms of 

overcoming the non-conformal and complex topography of the pre-packaged IC. These included 

careful control of a number of process parameters to maintain track consistency over the relatively 

rough surfaces and steep walls. 

To provide a demonstration of the capabilities of this technology, a relative humidity sensor was 

fabricated over a pre-packaged analogue-to-digital converter. AJD was adopted for depositing the 

microscale interdigitated electrodes and interconnects. Nafion® was used as the functional humidity 

sensitive material, drop cast over the AJD interdigitated electrodes. As the relative humidity of the 

environment increases, the level of water adsorbed into the Nafion® film rises. This causes 

dissociation of the acidic sites and through the presence of water molecules, proton hopping occurs 

decreasing the resistance of the layer. As the relative humidity decreases, the opposite effect is 

observed with little dissociation of the acidic groups taking place, resulting in a lower number of 

conductive pathways [29, 30, 31]. 

2. Experimental 

2.1. Materials 

The interdigitated electrode structure was deposited using a commercial nano-particle silver ink TPS 

35 HE (Clariant Produkte (Deutschland) GmbH).  This ink was diluted with deionised water at a ratio 

of 1:3 parts by volume and stored at 4°C when not in use.  The active layer was produced using a 20 

wt.% Nafion® solution in a mixture of lower aliphatic alcohols and water (Sigma-Aldrich 527122). 

This material was used without further modification to produce thin films. Prior to the deposition of 

the interdigitated electrodes, the surface of the IC package was cleaned with ≥99.8% absolute 

Ethanol (Sigma-Aldrich, 24103) to remove any contaminants/trace materials from the manufacturing 

process. 

The integrated circuit used was an MCP3001 10-bit analogue-to-digital converter (Microchip 

Technology Inc., USA) in a standard narrow SOIC-8 footprint. The top surface of the chip body has an 

area of 4.90mm by 3.90mm with chamfered edges on all sides [32]. The electrode digits/fingers are 

deposited on the horizontal surface of the chip body whilst the connections to the chip pins are 

printed via the chip shoulder and edge at ≈ 45° and ≈ 80° respectively - relative to the top surface. 

The surface of the chip is made from a rough moulded resin and is engraved with text indicating the 

model number of the chip and an identifier for pin 1. The average surface roughness (Sa) and the 

maximum surface height (Sz) were measured at 1.09µm and 8.80µm respectively in accordance with 

EN ISO 4287 using an Alicona G5 Infinite Focus optical microscope (Alicona Imaging GmbH).  The 

average depth of the engraved text was measured to be of the order of 13 µm, which provided a 

step over which print continuity had to be maintained. In addition to being a low cost and mass 

produced integrated circuit, the MCP3001 was chosen for its ability to perform conversions based on 

a low reference voltage (0.25V – Vdd). Operation of the sensor at low voltages is essential to avoid 

unwanted decomposition of the water by the applied voltage – water is decomposed when the 

applied potential difference is greater than ≈ 1.2V [33] . 

2.2. Sensor Design and Fabrication 

The Printed-Sensor-on-Chip platform consists of an interdigitated electrode structure which was 

overlaid with an active sensing material specific to the intended application. The interdigitated 

electrode structure was deposited by aerosol jet deposition on the top surface of the integrated 
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circuit and included interconnects which extend over the edge of the package and onto the required 

pins of the IC. For the application presented, the printed sensor makes contact with pins two and 

four of the IC. The individual electrodes are designed to be 2.2mm in length and have a width and 

separation of 100µm. The interdigitated design was chosen to provide the largest effective active 

area for the sensor and for this application measures 2.7mm by 2.3mm. The interdigitated electrode 

structure comprises of multiple interdigitated electrodes and two interconnects. Each interconnect 

provides a channel that connects the interdigitated electrodes to the required pins of the IC. Given 

the function of these interconnects they were designed with a width of 150µm to maintain a high 

conductivity over the edge of the chip package.  

The interdigitated electrode structure was produced using an AJ300 aerosol jet deposition system 

(Optomec Inc., USA) an overview of which is shown in Figure 1. During deposition a ceramic nozzle 

with a 100µm diameter orifice was used. Deposition was carried out using an ultrasonic atomiser 

operating at a frequency of 2.4MHz and was driven at 48V and 660mA to generate a dense mist of 

droplets. This mist was transported via a gas stream (atomiser flow) through a length of tubing to 

the deposition head at which point the entrained droplet stream was surrounded by a secondary gas 

flow known as the sheath gas and directed towards the substrate through the nozzle. The platform 

movement was then moved at controlled speeds to pattern the silver ink on both top surface and 

chip edges. 

Following deposition of the interdigitated electrode structure, the “printed-on” integrated circuit 

was placed in a convection oven to drive off any remaining solvent and to sinter the nano-particle 

deposit and hence impart conductivity to the electrode structure. 

Printing of the interdigitated structure and connects to the chip pins presented challenges in terms 

of maintaining conductivity when printing over the rough surface and steep walls of the IC, 

presenting a range of working distances between the nozzle and the IC, a parameter known to affect 

print quality, as well as producing sufficient definition in the electrode digits so that both width and 

gaps were controlled.  There are also a host of process parameters that affect deposition generally 

that must be optimized for each ink system used.  A series of deposition tests were therefore carried 

out using glass microscope slides as a standard substrate to understand the effects of various 

process parameters and to identify the optimal values for printing high resolution features on the IC 

package.   

Scanning Electron Microscopy (SEM) analysis was performed using a JEOL 7800 Field Emission Gun 

Scanning Electron Microscope to look at the morphology of the sintered nano-particle silver layer. 

Additionally, the resistance of the sintered silver layer was measured using a probe station with 

micro-positioners connected to a Keithley 2000 multimeter. The first probe was positioned on the 

pin of the IC and the second at the furthest point along the top most interdigitated electrode. This 

measurement was performed on both sides of the interdigitated electrode structure from pins two 

and four. 

To complete the sensor, using a mechanical pipette, a layer of Nafion® was drop cast over the 

interdigitated electrodes creating an electrical connection. Drop casting was selected as a rapid 

means of depositing a coating as selective patterning was not required.  A casting volume of 0.5µl 

was used and was deposited at a distance of 1mm above the chip surface. The cast films were 

allowed to dry at room temperature for at least 12 hours prior to characterisation of the sensor. The 

resistance of the fabricated sensor was then proportional to the relative humidity of the 

environment. Figure 2 shows an exploded 3D representation of the sensor showing the AJD 

Interdigitated Electrodes and Nafion® layer relative to the IC. 
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2.3. Sensor Operation and Measurement 

The Vss and Vref pins of the IC were connected to a dual channel power supply (Rohde & Schwarz 

GmbH & Co KG (Germany)) which provided five volts and one volt to the pins respectively.   With 

Vref, set to one volt and using the full 10-bit resolution of the ADC the sensor is capable of 

measuring changes in voltage as low as 0.97mV. Using a serial interface the sensor can be enabled or 

disabled and measured using a microcontroller (MCU) and data acquisition system (DAQ). To enable 

the sensor, the MCU sends a low signal to the ADC’s chip select (~CS) pin, two pulses of the clock 

signal then initiate a measurement by the ADC. The MCU then successively reads 10 bits of data 

from Dout, one bit per clock pulse, before setting the chip select pin high - disabling the sensor. The 

serial data is reassembled by the MCU and transmitted to a PC where it is recorded against the 

current timestamp and plotted in real-time. A circuit schematic for the MCP3001 ADC is shown in 

Figure 3, showing (a) the use of a traditional potential divider and (b) the position and connections of 

the printed sensor when integrated with the ADC. The sensitivity of the sensor system was tuned by 

varying the value of R1 against the variable resistance R2 and for the presented application R1 was 

selected to be 10MΩ. When the variation in R2 is large and spans multiple orders of magnitude 

(ohms – mega ohms) the value chosen for R1 significantly influence the sensitivity at one end of the 

measurement scale when compared to the other. 

         

The sensor was installed into the circuit described above and placed into a Sanyo MTH-2400 

environmental chamber at a constant temperature of 20°C. To verify the humidity and temperature 

at the position of the sensor within the chamber, an additional humidity logger (LASCAR electronics 

EL-USB-2-LCD+) was used to simultaneously record temperature and humidity data in parallel with 

the Printed-Sensor-on-Chip. This logger was rated for operation between -35°C and 80°C at 0% RH to 

100% RH with an accuracy of ±0.3°C and ±2% RH [34]. The sensor was subjected to testing, cycling 

the relative humidity between 40% RH and 80% RH. This allowed the hysteresis and repeatability 

characteristics of the sensor to be determined. In addition, incremental tests were performed to 

evaluate the step response of the printed sensor at intervals of 10% RH. Data values were recorded 

every ten seconds synchronised with the capabilities of the LASCAR reference logger. The 

experimental setup is shown in Figure 4. 

  

3. Results and Discussion 

3.1. Optimization of print parameters 

The amount of ink deposited as well as the quality of deposition, were controlled by adjusting key 

process parameters including; the flow rate of the atomiser and sheath gas streams, the speed of 

stage movement and the number of passes used.  Since adjustments in gas flows require a 

stabilisation period before laminar flow is reached, these had to be fixed prior to printing. The 

atomiser flow rate acted as the main determinant of the amount of material flow from the nozzle 

while the sheath flow acted to focus the material stream into a collimated beam.  If the atomiser 

flow rate is too low, insufficient material is deposited, on the other hand a high atomiser flow rate 

results in excessive and erratic material deposition as shown in Figure 5(c). As the focussing ratio 

(sheath gas flow rate/atomiser gas flow rate) was increased to an optimal level, the line width was 

reduced and the definition of printed edges improved.  However, further increases in focussing ratio, 
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passed the optimum, lead to the introduction of “overspray” – a phenomenon whereby material is 

deposited outside the target area due to turbulent flow causing wider unfocussed lines Figure 5(b).  

Optimal values for the atomiser and sheath gas flow rates were found to be 14cm3/min and 

32cm3/min respectively. These settings allowed the deposition of high resolution fine lines with 

minimal “overspray”. This is illustrated in Figure 6(a) which shows printed lines of silver ink with an 

average width of 9.8µm. 

Given the need to produce conductive features over the non-conformal topography of the IC 

package, the stage speed was investigated as a means of controlling the amount of ink deposited on 

the various sections of the IC package. Using the optimal flow rates described above, as the stage 

speed was increased from 1 to 3 mm/s, the width of the deposited line decreased slightly but at 

greater speeds (3 to 10 mm/s), the line width was found to be independent of stage speed.  In terms 

of the thickness of ink deposit, there was a decrease as stage speed was increased with an especially 

rapid drop in thickness between speeds of 1 and 3 mm/s.  This indicated that stage speed could be 

adjusted to compensate for the lower material deposition that occurs when the nozzle and IC 

surface are not perpendicular as when printing down the side of the IC and onto the pins.  Platform 

movement speeds of 2.5mm/sec and 0.8mm/sec were therefore used for the top surface and chip 

edges respectively. To overcome the surface roughness of the IC package and to ensure good 

coverage and low resistance over the entire print, the print cycle was repeated five times giving an 

approximate print thickness of 1.8µm. 

Variation of the working distance, the nozzle to substrate gap, between 2 and 5mm was seen to 

have little effect in the width of deposited lines.  However, as the working distance was increased 

further, the width of the deposited line tended to increase. In terms of thickness of the ink deposit, 

there was again very little variation in the 2 to 5 mm range but as distance was increased this 

thickness fell.  More significantly, larger working distances gave poorly defined edges and 

demonstrable overspray.  Given the size of the IC used in this experiment, it was possible to maintain 

the working distance to the IC package between two and four millimetres over the pins and top 

surface without adjustment of the nozzle height. 

Without the use of stage heating, there was a tendency for migration of material to the edges of the 

line during drying (coffee-stain effect). The use of stage heating reduced this effect allowing almost 

rectangular line profiles at 100°C. 

Rather than directly printing 100 micron wide lines for the interdigitated electrode structure, 

multiple fine lines were printed parallel to each other in a serpentine fashion with a narrow 

separation as shown in Figure 6(b). This produced features with high edge definition and low 

amounts of overspray. Figure 6(c) shows the deposited 100µm and 150µm wide lines printed on the 

chip surface. 

Heating of the deposited silver tracks causes the nano-particles to sinter together forming a 

conductive layer with a low resistance. Maximum print conductivity was obtained by heating the 

deposited layers at 200°C for 60 minutes in a convection oven.  

3.2. Characterization of the Interdigitated Electrode Structure 

The print settings used produced well defined features that coped with the topography of the chip.  

The resistance from pin 2 to the furthest point on the top most electrode measured 16.1Ω and from 

pin 4 to the furthest point on the top most electrode measured 18.5Ω. Figure 7(a) is a photograph of 

the deposited interdigitated electrode structure showing the interconnects extending over the edge 

of the IC package and making contact with the chip pins. The inset image shows an enlarged 
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photograph of the chip edge, showing the continuity of the aerosol jet deposited silver layer over 

the steep angle. Figure 7(b) and (c) are SEM images of the sintered nano-particle silver taken at 60x 

and 3000x magnification respectively. Figure 7(b) provides an overview of the interdigitated 

electrode structure focusing on the edge of the chip revealing no change in morphology when 

printing over the edge. Figure 7(c) shows the morphology of the silver layer displaying a film like 

structure representative of a completely sintered layer. The high quality of the sintered layer can be 

seen with no pin-holes or micro-cracks being observed. 

3.3. Humidity Response of the Printed-Sensor-on-Chip Device 

The humidity of the chamber was cycled between 40% RH and 80% RH and data was recorded from 

both the Printed-Sensor-on-Chip device and the LASCAR reference sensor. After a stabilization 

period of 15 minutes at 40% RH and 20°C in the environmental chamber, the humidity value was 

cycled between 40% RH and 80% RH  and back down whilst a constant 20°C temperature was 

maintained. Measurements of both the Printed-Sensor-on-Chip device and the reference sensor 

(LASCAR) were taken at 10 second intervals and the test was repeated five times. Figure 8 shows a 

plot of the voltage output recorded from the Printed-Sensor-on-Chip device against the relative 

humidity value recorded by the reference sensor. From this, the hysteresis response of the device 

can be seen, exhibiting a linear trend with an R2 value of 0.9959 on cycle 5 (y = -0.0153x + 1.5438).  

Looking at the data for cycle five the maximum hysteresis is calculated to be 3.7% at 48.5% RH with 

no significant variation over the entire range. The first cycle shows a slightly broader hysteresis when 

compared with cycles 2-5 suggesting a conditioning period is beneficial following fabrication. Figure 

9 shows repeatable results from the Printed-Sensor-on-Chip device across the five cycles, as well as a 

close agreement with the measurements obtained from the reference senor.   

Again, after a stabilization period of 15 minutes at 40% RH and 20°C in the environmental chamber, 

the humidity value was stepped from 40% RH to 80% RH and back down in 10% RH increments. At 

each increment the environmental chamber was allowed to stabilize for 5 minutes before the 

relative humidity value was changed. Measurements of both the Printed-Sensor-on-Chip device and 

the reference sensor (LASCAR) were taken periodically at 10 second intervals and the results are 

shown in Figure 10. The data shows that the response of the Printed-Sensor-on-Chip device is 

nonlinear with respect to changes in the relative humidity of the environment. The change in voltage 

(and hence resistance) are larger for changes at higher relative humidity (70% RH – 80% RH) 

compared against lower relative humidity. This behaviour has been previously observed when using 

Nafion® as the sensing material and the results obtained from the Printed-Sensor-on-Chip are 

comparable to those reported in literature [35, 36].  

3.4. Discussion 

The presented printed-sensor-on-chip demonstrated a sensitive response to changes in humidity. 

The deposition of the interdigitated electrode structure overcame the difficulties in printing onto a 

challenging 3D structure.  In order to further develop and expand the proposed concept of printed-

sensor-on-chip to a larger manufacturing scale, it is essential to assess all its components.    

The interdigitated electrode structure is made up of multiple overlapping parallel lines meaning the 

overall device/sensor size can be reduced, allowing further miniaturization. This would allow the use 

of chips with smaller footprints, as well as the fabrication of multiple sensing elements on a single 

chip. Similar interdigitated structures could be also employed for integration onto the chips not only 

of sensors, as here demonstrated, but also other electronic components such as interdigitated 

supercapacitors for energy storage [37, 38]. In this case, aerosol jet printed silver could be used as a 
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current collector which could then be overlaid with an ink containing an energy storing material, 

such as activated carbon. 

In order to sinter the printed silver ink, the device has to withstand a heating process and the 

temperatures used in this work may cause failure in more sensitive chips; although this was not 

observed during the study.  This processing temperature could be significantly reduced by using 

lower temperature sintering inks, as found in other printing processes; however, currently there is 

not a wide range of conductive inks tailored to the aerosol jet deposition process. Another approach 

would be to investigate the use of alternative rapid sintering technologies such as Near-Infrared 

(NIR) or photonic sintering [39, 40].  

Finally deposition of the sensing material, Nafion® could be improved by using automated drop-on-

demand systems.  

  

4. Conclusions 

In this paper, for the first time, the use of aerosol jet deposition to create printed sensors directly 

onto pre-packaged integrated circuits has been demonstrated. This provides a way of integrating 

printed and silicon electronics to form individually customisable application specific integrated 

circuits that are compatible with traditional electronics/PCB manufacturing and assembly processes. 

The ability to produce a high resolution interdigitated electrode structure over a rough and non-

conformal surface has been demonstrated whilst maintaining a high conductivity. Additionally, AJD 

was used to deposit conductive tracks directly over the edges of an integrated circuit package, 

overcoming the steep angle, joining the printed sensor with the IC connections.  

The Printed-Sensor-on-Chip concept has been successfully demonstrated through the fabrication of 

a relative humidity sensor printed on the top surface of an analogue-to-digital converter IC. The 

relative humidity sensor displayed a strong response to changes in relative humidity tested between 

40% RH and 80% RH as well as showing low hysteresis and good repeatability characteristics. 

However, the approach described is a platform technology that can be adapted to individual 

application requirements simply by adjusting the IC, design or materials. 

The Printed-Sensor-on-Chip allows devices to be fabricated with smaller footprints by vertically 

integrating components onto traditional electronic IC’s. Advances in this area will extend the 

technology to printing entire miniaturised circuits vertically integrated on top of conventional 

electronic components and PCB’s. This technology inspires a vision enabling opportunities for new 

markets creating individually customised/fingerprinted circuits and devices that can still be 

commercially processed and constructed. 
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Figure Captions 

Figure 1: Schematic of the Aerosol Jet Deposition Process Showing the Fabrication of an 

Interdigitated Electrode Structure over an Integrated Circuit 

Figure 2: An exploded 3D representation of the sensor showing the Aerosol Jet Deposited 

Interdigitated Electrode Structure and Nafion® Layer. 

Figure 3: MCP3001 Circuit Schematic (a) With a Variable Resistor and (b) With the Printed Sensor 

Figure 4: Experimental Setup used to Measure the Response of the Printed-Sensor-on-Chip Device to 

Changes in Humidity. 

Figure 5: The effect of varying process parameters on deposition quality - (a) Optimised Focusing 

Ratio, (b) Poor quality line due to turbulent flow within the nozzle and (c) Excessive deposition from 

a too high atomiser flow. 

Figure 6: Optimisation of Aerosol Jet Parameters (a) Showing a 10µm Wide Line Deposited at 

2mm/sec on a Glass Substrate (scale bar is 20µm), (b) The Parallel Line Fill Pattern used to Produce 

Wider Lines, and (c) The Interdigitated Electrode Structure Deposited on the Chip Surface (scale bar 

is 300µm). 

Figure 7: (a) A Photograph Showing the Aerosol Jet Deposited Interdigitated Electrode Structure 

Over the Chip Surface with an Inset Focusing on the Chip Edge Region, (b, c) SEM Images of the 

Deposited Interdigitated Electrode Structure over the Chip Surface and Edges at 60x and 3000x 

magnification respectively. 

Figure 8: The Hysteresis of the Printed-Sensor-on-Chip Device Measured from 40% RH to 80% RH 

and Back to 40% RH for five cycles. Vss = 5V, Vref = 1V and R1 = 10MΩ. 

Figure 9: The Repeatability Characteristic of the Printed-Sensor-on-Chip Device Measured from 40% 

RH to 80% RH and Back to 40% RH for five cycles. Vss = 5V, Vref = 1V and R1 = 10MΩ. 

Figure 10: The Response of the Printed-Sensor-on-Chip Device Measured from 40% RH to 80% RH 

and Back to 40% RH in 10% RH step increments. Vss = 5V, Vref = 1V and R1 = 10MΩ 


