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Highlights 

 We study shear-thinning in non-colloidal near-Newtonian suspensions. 

 Experiments and SPH simulation both show effective thinning. 

 A cause is the downturn of matrix viscosity at high shear rates. 

 Variable friction coefficients may also co-exist with this cause. 

 Experiments are prone to edge fracture with suspensions. 
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Abstract 

Experiments and computations were carried out to explore the origins of shear-thinning in 

non-colloidal suspensions. Two grades of polydimethylsiloxane (silicone oil) and a 

glycerine/water mixture were used as matrices for the suspensions. The particles were 40μm 

diameter polystyrene (PS) and polymethyl methacrylate (PMMA) spheres. We concentrated 

on 40% volume fraction suspensions where shear-thinning was clear. The silicone oil 

matrices were nearly Newtonian: at 24
o 

C the viscosity of the 1.15Pa-s sample showed a 2% 

drop in viscosity a shear rate of about 3000s
-1

, the 13.2 Pa-s sample showed a drop of 2% at a 

shear rate of approximately 100s
-1

, and the glycerine/water sample appeared to be Newtonian 

at least up to 10
4 

s
-1

. Mild shear-thinning was seen with all suspensions, beginning at shear 

rates of order 0.1-1 s
-1

, followed by a rapid reduction of torque in the parallel-plate system at 

shear rates of 14, 150 and 1000s
-1 

respectively with the
 
three matrices. These rapid reductions 

are ascribed to edge effects.  

Matching smoothed particle hydrodynamics (SPH) simulations were made. The silicone 

matrix viscosities were modelled by a Carreau-Yasuda (CY) fit up to shear rates of order  

10
7 

s
-1

. The agreement between computations and experiments is generally good for 40% 

volume fraction suspensions up to the shear rate where edge effects intervene in the 

experiments- there are no edge effects in the simulations.  This confirms the suggestion [1] by 

V ́zquez-Quesada et al [Phys. Rev. Lett, 117, 108001 (2017)] that ‘hidden’ high shear rates 

between particles, where the non-Newtonian matrix viscosity comes into play, can result in 

shear-thinning at the macroscopic level. For the glycerine/water matrix at low shear rates this 

mechanism does not apply and a separate mechanism based on variable interparticle friction 

is suggested; the two mechanisms can co-exist. 

 

A.Introduction 

 

Non-colloidal suspensions of spheres with Newtonian matrices at negligible Reynolds 

numbers would be expected to show a viscosity (η) that is a multiple of the matrix viscosity 

(ηo) and a relative viscosity (ηr = η/ηo) which is a function only of the volume fraction of the 

spheres (ϕ). However, from experiments [2, 3] one sees that shear thinning does occur when 

ϕ ≥ 0.3 and the cause is not clear. There is one possible explanation [4, 5] that depends on 
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variation of the interparticle friction coefficient with shear rate. A second explanation has 

been made [1] which depends on the matrix being shear-thinning at the enhanced shear rate 

between the particles; at the macroscopic or mean shear rate the matrix fluid has a constant 

viscosity. 

This mechanism should not be confused with various investigations where the matrix is 

highly shear-thinning near the region of the mean shear rate. For example in [6] power-law 

matrices were assumed, while in other cases [7, 8] estimates of shear rate amplification are 

given. For 40% volume fraction suspensions strain-rate amplifications of about 4 [7] to 8 [8] 

were reported. We note the investigations of Liard et al [9], which will be discussed later in 

Section E. In all these cases the result is a shifted viscosity-shear rate curve which has a form 

similar to the matrix viscosity curve. However, in the investigation by V ́zquez-Quesada et al 

[1] and in the present paper the resulting viscosity curve is not of the same form as the 

assumed matrix relation because of the complex probability distribution of the actual shear 

rates in the suspensions. Hence it differs from the quasi-static picture in the cited references 

[7-9]. The earlier smoothed particle hydrodynamics (SPH) investigation [1] contained a 

rough power-law matrix viscosity rule; in the present paper a much more realistic model is 

used. 

From the earlier SPH simulations [1] it was suggested that there were regions of very high 

shear rate between the spherical particles in which shear thinning of the matrix took place; 

this local shear thinning of the matrix at high shear rates leads to shear thinning at the average 

(macroscopic) shear rate. Since the matrix shear-thinning is negligible at the mean shear rate 

and the local thinning occurs well beyond the mean shear rate it was therefore termed a 

‘hidden’ mechanism.  

The primary aim of the present paper is to compare some typical experimental results with 

the second explanation. It should be mentioned that the ratio of viscous forces to Brownian 

forces (the Péclet number,  ) in the suspensions was always of order 10
8
, well into the non-

colloidal region [5]; the Reynolds number (  ) was also negligible. Here,    = 
    

  
, where 𝜌 

is the fluid density,    is the rim speed in the viscometer, and a is the sphere radius. 

Typically, even at a high shear rate of 100s
-1

,    was of order 10
-2

, which is small. 

 

Our work therefore seeks to explore shear thinning in non-colloidal suspensions. We 

experimented with two different matrix materials (silicone oil and glycerine/water) and two 

spherical bead materials. Polymethyl methacrylate (PMMA) beads were used in the 

glycerine/water matrix and polystyrene (PS) beads were used in silicone oil in order to 

minimize density differences between beads and matrices. 

 For colloidal suspensions, where Brownian motion is relevant, reasonable predictions of the 

suspension rheology exist, and shear thinning is observed as result of a decreasing relative 

contribution of entropic forces at large shear rates [10]. However, no such mechanism is 

present in non-colloidal suspensions.  
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B. Experimental Procedure. 

 

Table 1. Matrix fluid properties. 

 

 

 

 

 

 

 

 

All the experiments were performed with a Paar Physica MCR 300 rheometer at a constant 

temperature of 24
o
C. We used silicone oils of different viscosity as matrices, see Table 1. The 

grades used were nominal 1000cs and 12500cs. formations. The density of silicone oils were 

970 kg/m
3
 and 973kg/m

3
 respectively and that of polystyrene (PS) was 1050 kg/m

3
. The 

mean diameter of the polystyrene beads was 40.88µm with a standard deviation of 2.75μm 

[5]. The glycerine/water suspensions used PMMA beads of mean diameter 40.45μm with a 

standard deviation of 3.89μm. The densities of the glycerine/water and the PMMA were 1249 

kg/m
3
 and 1160 kg/m

3 
respectively. 

 

We used a 50mm diameter cone-plate system (CP50-1) for the silicone oils with a vertex gap 

of 0.05mm. 50mm parallel plates (PP50) were used to measure the viscosity of the silicone-

based suspensions; the gap was 1mm. We used the same rheometer with PP50 parallel plates 

to investigate the viscosity of the glycerine/water matrices and the 40%PMMA-

glycerine/water suspensions. The gaps in this case were 0.1mm for the matrix fluid and 

0.5mm for the suspensions. 

  

 

C. Matrix Properties 

 

The observed low shear rate viscosities were 1.15 Pa- s for 1000cs silicone and 13.2 Pa.-s for 

12500cs silicone at the temperature of 24
o
C (Fig.1). Hence the 12500cs silicone oil has 

11.5 times higher viscosity than the 1000cs silicone oil at the same shear rate (0.1 s
-1

). The 

results for the glycerine/water (2% water) matrix are shown in Fig. 2. 

 

Matrix                                   Density, ρ        Viscosity, ηo          N1/ ̇
2   

                λ 

                                               (kg/m
3
)             (Pa-s)                  (Pa-s

2)                        
(s)   

1000cs Silicone oil                 970                  1.15                  2.3x10
-4              

    1x
 
10

-4 

12500cs Silicone oil               973                  13.2                   0.029                 0.0012 

Glycerine/water mix             1249                 0.606                     -                         - 
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Fig. 1 Effects of shear rate in silicone matrices (12500cs silicone oil (x) and 1000cs silicone 

oil (●) and 40% volume fraction PS-Silicone (12500cs silicone (■) and 1000cs silicone (▲)) 

suspensions at a constant temperature of 24
o
C. The PS beads were 40μm in diameter. Note 

that the shear thinning of the suspensions extends down to shear rates of order 0.1s
-1

. 

 

In Fig.1, circles and stars represent 1000cs silicone oil and 12500cs silicone oil results 

respectively. Both of them apparently show almost no change in viscosity with the increase 

of shear rate up to a critical value, indicating Newtonian flow of the matrix up to this point. 

However, one should not necessarily attribute the sudden downturn of viscosity of the 

silicones to shear thinning. 

 

We can see, from Table 1 that silicone oils exhibit normal stresses, and hence they are 

slightly viscoelastic. From measurements of the first normal stress difference (N1) using the 

cone-plate system one can define a relaxation time (λ) from: 

 

                                N1 = 2ηo λ ̇
2                                                                                        

 (1) 

 

where  ̇ is the macroscopic shear rate. One expects shear-thinning to occur if the 

Weissenberg number (Wi), defined as λ ̇  is of order 1 or greater. Table 2 shows the expected 

shear rate (
 

 
) at which shear-thinning is expected to commence and the observed critical 

shear rate ( ̇c).  

 

The observed rates for a 10% downturn of torque ( ̇c) are found from Fig 1 for the silicone 

fluids to be about 3000 and 200s
-1

 and for the glycerine/water fluids (Fig 2) to be greater than 

10
4 

s
-1 

(Table 2). Hence it appears that for silicone oils  ̇c < 
 

 
, and it is possible that the 

observed downturn with the silicones is due to edge fracture [11]. We can estimate the rate at 

which edge fracture occurs ( ̇e) as follows, using the work of Keentok and Xue [11]. 

According to [11], edge fracture occurs in cone/plate and parallel-plate rheometers when  

 

                                       N2c  =  2 σs /3b                                                   (2) 

0.1

1

10

100

0.1 1 10 100 1000 10000

V
is

co
si

ty
, η

 (
P

a.
s)

 

Shear rate, 𝛾 ̇ (s-1) 

12500cs Silicon oil
1000cs Silicon oil
40%40uPS-1000cs Silicon oil
40%40uPS-12500cs Silicon oil
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where N2c is the critical second normal stress difference magnitude at the rim shear rate and σs 

is the surface tension coefficient (0.021 Pa-m for silicones). If h is the gap at the rheometer 

edge, then the ‘flaw’ size b = 0.12h. From Eq. 2, where h =1mm, we find N2c = 114 Pa. From 

[3] -N2 / N1 is small for the 1000cs silicone, and it lies between 0.07 and 0.1 for the 12500cs 

silicone [12]. Using 0.07-0.1 for the ratio for the 12500cs fluid we estimate that edge fracture 

occurs for  ̇e ~ 198-240s
-1 

as shown in Table 2, which is in reasonable agreement with Fig 1. 

The glycerine/water matrix was not observed to fracture at the edge, at least up to a shear rate 

of 10
4 

s
-1

. For the glycerine/water mix, the slight downturn of viscosity at the largest shear 

rates may be due to shear heating. From [13] we find the rise in temperature (ΔT) at the 

central plane in a shear flow is ηo ̇
2 

h
2 
/8κ, where κ is the thermal conductivity

   
and h and  ̇2   

are values at the rim.
 
For glycerine κ~ 0.28 W/mK. This gives, at a rim shear rate of 10

4 
s

-1 

and h=0.1mm, a maximum temperature rises of about 0.5
o
C. According to Kaye and Laby 

[14] a 98% glycerine /2% water mix at 25
o 

C changes its viscosity by about 8% per 
o 

C. 

Hence a drop of viscosity of about 4% maximum is expected at a rim shear rate of 10
4 

s
-1

; 

Fig. 2 shows a change of about 3%. Hence we believe this matrix is Newtonian up to at least 

a rim shear rate of 10
4 

s
-1

. 

 

 

Table 2. Critical shear rates. 

 

Matrix (
 

 
) s

-1
 Observed (   c) s

-1
  dge rate (   e) s

-1
 

1000cs silicone 10
4
 3000 - 

12500cs silicone 833 200 198-240 

Glycerine/water >> 10
4
 >

 
10

4
 Large 

 

 

 

To explore the suggestion [1] that high interparticle shear rates influence suspension 

behaviour with matrices that are apparently Newtonian, it is necessary to know the matrix 

viscosities at shear rates of order 10
6 

s
-1

 or larger. We refer to the work of Swallow [15] and 

Barlow et. al. [16]. Swallow [15] suggested that the Cox-Merz [17] rule held for silicones. 

Barlow et. al. [16] did extensive high-frequency tests on silicones, measuring G' and G'' from 

10
4 

to 10
8 

Hz. Using the Cox-Merz relation we have, approximately 

 

                                                 η( ̇ )  ~  η*(ω) = 
√           

  

 
                            (3)                          

 

where, ω is the frequency of oscillation (rad/s; ω= 2πf; f in Hz). 
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             Fig. 2 Effects of shear rate in glycerine/water matrix and 40% volume fraction  

PMMA-Glycerine suspension at a constant temperature of 24
o
C.  

Glycerine 1 and 2 are duplicate tests of the same material.  

 

The results of Barlow et al [16] are normalized to 30
o 

C, and hence there is a change for other 

temperatures; we used 24
o
C in all tests. There are also slightly larger viscosities with our 

silicone samples-13.2 Pa-s and 1.15 Pa-s, whereas Barlow et al report 12.3 and 1.01 Pa-s. 

 

The variation of viscosity with temperature  obeys the equation [18] 

     [
    

     
]=    

         

         
                                      (4) 

 

Table 3. Comparison between Barlow et. al. data [16] with our experimental data. 

 

Viscosity 

grade(cs) 

Viscosity, 

η (Pa-s) 

at 30
ο
C 

Viscosity,

η (Pa-s) 

at 24ºC 

 

Viscosity, η 

(Pa-s) at 24ºC 

Experimental 

Percentage of 

difference in 

viscosity, 

η (Pa-s) 

Density, 𝜌 

(kg/m
3
) at 

30ºC 

Density, 

𝜌 

(kg/m
3
) 

at 24ºC 

Density,𝜌 

(kg/m
3
)at 

24ºC 

Experimental 

1000cs 0.896 1.012 1.15 12% 965 970 970 

12500cs 10.85 12.25 13.2 7.19% 968 973 973 

        

 

Equation (4) was used to obtain extrapolated values of viscosity at the lower temperature, 

where the values of   =1.90 and   =222 ºC were assumed. 

 

The variation of density with temperature was found to be described satisfactorily by the 

equation, 

   
 

    
  = 

 

     
[          ]                             (5) 

 

where, the values of    were 8.53×10
-4

 ºC
-1

, 8.84×10
-4

 ºC
-1

, 8.60×10
-4

 ºC
-1 

for the 1000cs and 

12500cs samples respectively. 

0.1

1

10

1 10 100 1000 10000

V
is

co
si

ty
, η

 (
Pa

-s
) 

Shear rate, 𝛾 ̇ (s-1) 

Glycerine 1
40%PMMA-Glycerin 1
Glycerin 2
40%PMMA-Glycerin 2



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

8 
 

 

The results of taking the G' and G'' data of [16] and finding the value of the shear viscosity 

using Eq. 3 and the relation η*(ω) = η( ̇ ) are shown in Table 4; the reduction of viscosity is 

clear. 

 

Table 4. η* as a function of shear rate from the data in [16] at 24
o 

C. 

 

 ̇ ,ω (s
-1

) η
* 

Pa-s; 1000cs η
* 

Pa-s; 12500cs 

5.564 x 10
4
 0.706 1.69 

5.564 x 10
5
 0.265 0.356 

5.564 x 10
6
 0.070 0.086 

 

We plot these results in Fig. 3, noting that the analysis of V ́zquez-Quesada et al [1] used a 

viscosity rule:   

 

                                        
 0

1, if 

/ ,

c

m

c c

 

    



 



                                                       (6) 

From Fig. 3 we find m = 0.43 for the 1000cs sample, and m = 0.70 for the 12500cs sample. 

The values of the critical shear rates where the horizontal lines intersect the power-law lines 

are about 2.4 x 10
4 

s
-1 

and 3.16 x 10
3 

s
-1 

respectively. From the normal stress data (Table 2) 

the comparable critical rates were 10
4 

s
-1 

and 833s
-1 

respectively. Hence it is clear that the 

silicone matrices are Newtonian up to shear rates around 10
4
 s

-1 
and 10

3 
s

-1 
respectively, and 

then they obey power-laws after a short transition, which is not captured in Fig 3. 

Further data are shown by Lee [19], but the most useful data come from the Dow-Corning 

website [20]. There it is seen that the 1000cs and 12500cs grades show a reduction of 

viscosity at shear rates of 10
4 

and 10
3 

s
-1 

respectively. 
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Fig.3 Showing the high-frequency shear data [16] and the power-law behaviour for the two 

silicone fluids. 

 

The matrix behaviour for both silicones is shown in Fig 4. Whilst the power-law model (Eq 

6) was used previously [1], a much better fit to the data is given by the Carreau-Yasuda (CY) 

model [21], and this has been used in the subsequent computations reported here. One sees 

from Fig 4 that the cone-plate data for the silicone matrix experiments (symbol □) diverge 

from the other data at comparatively low shear rates. This is due to edge effects in the cone-

plate system; it is necessary to use capillary or oscillatory data to avoid this effect. 

For glycerine we can refer to a paper by Barlow and Lamb [22] who found that the limiting 

elastic modulus (Gm) at high frequency was 2.3 x10
9 
Pa. Hence a relaxation time ηo/Gm ~ 2.6 

x 10
-10 

s is expected for this matrix and no observable shear-thinning in the rheometer is 

expected. 

 

          

D. Suspension Response 

 

The 40%PMMA-glycerine/water suspensions exhibit shear-thinning (Fig. 2).  The viscosity 

falls steadily but quite slowly up to a shear rate of 1060 s
-1

, but with an increase of shear rate 

above 1060 s
-1

, the viscosity apparently decreases rapidly. 

 

For the silicone oil suspensions, the square and triangle marked lines in Fig 1 refer to the 40% 

volume fraction PS-12500cs and PS-1000cs suspensions. At a shear rate of 0.1s
-1

 the 

viscosity of the 12500cs silicone suspension has increased to 77.5 Pa-s from the viscosity of 

the matrix of 13.2 Pa-s; the viscosity
 
of the PS-1000cs suspension was 6.37 times higher than 

the viscosity of the 1000cs silicone matrix.  

 

0.01

0.1

1

10

100

1000 10000 100000 1000000 10000000

η
* 

P
a-

s 

Frequency, ω - Shear rate (𝛾 ̇) 

η* Pa-s; … 
1000cs
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The viscosity of the 12500cs silicone suspension appears to fall quickly from 57.8 Pa-s at a 

shear rate of 31.9 s
-1

. The viscosity of the 1000cs silicone suspension appears to fall rapidly at 

a shear rate of 204 s
-1

.
 
These sharp declines are believed to be due to edge fracture [11,13]. 

 

Shear-thinning appears to begin at very low shear rates (~ 0.1s
-1

). The slopes of the viscosity-

shear-rate curves are not large here; in all cases the slope is of order -0.05 on the logarithmic 

plots. For the sharp declines at larger shear rates, we consider edge effects. Edge effects, 

following Eq. 2, depend on the second normal stress difference N2. Suspensions with 

Newtonian matrices have a second normal stress difference given by [3] 

 

                                          N2 = -4.4   ̇ϕ3                                                                
(7)  

 

and for ϕ=0.4, the magnitude of N2 is 0.28 η  ̇. 

The fracture criterion (2) was developed on the basis of a second-order fluid model [13] and 

it is not clear that the factor b = 0.12h in Eq (2) is appropriate for suspensions. For the 

suspensions it seems likely that a more appropriate length scale for b  is not h but something 

of the order of the sphere radius (a) . Replacing 0.12h  by 30μm ( 1,5 times the sphere radii) 

gives the following results. 

 

For the 1000cs suspensions, Eq 2 now predicts a critical shear rate due to edge fracture of ~ 

150s
-1

; for the 12500cs suspension, the onset of edge effects is expected at a shear rate of 

about 13s
-1

, and for the glycerine/water suspensions, edge effects are expected to appear at a 

shear rate exceeding  550s
-1

. These results match the results in Figs 1 and 2 quite well. 

 

E. Numerical results 

 

In this section, results from simulations (using the SPH model described in the Appendix) 

and experiments will be compared. To do the comparison, the rheology of the solvent has to 

be well characterized. Both matrices considered here, Dow-Corning silicone 1000cs and 

12500cs can be very well characterized using the Carreau-Yasuda (CY) model [21] 

 

 

 
  

( 1)/

0

1
m A

A 


 







 


                  (8) 

where 0  and   are the limiting viscosities at low and high shear rates respectively, 

1/c   determines the transitional shear rate between the extreme viscosities, A  

determines the width of the transition and m  is the power law exponent of the viscosity 

decay within the transition.

 
Both matrix fluids, 1000cs and 12500cs, can be reproduced fairly well with similar 

parameters for the CY model but with different relaxation times. The parameters used for 

both silicone characterizations were 0  , 1.2A   and m-1 = -0.55. The relaxation times, 

however, are taken as λ= 3.10
-5 

s for the silicone 1000cs, and as λ = 7.10
-4 

s for the silicone 
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12500cs. In Fig. 4 both characterizations have been drawn and compared to previous 

rheological data as well as data reported by the manufacturer Dow Corning [16, 19, 20], and 

those corresponding to this work, showing an excellent fit, especially to the Dow-Corning 

data[20]. As mentioned above in Section C and Fig 4, the divergence of our cone-plate 

experiments from the other data is due to edge effects; there are no edge effects in the 

simulations. 

In the simulation setup we consider a box of size x y zL L L  , confined between two planar 

walls separated by a distance 64zL a , with a  being the radius of the solid particles. The 

walls move with velocities wV in the x  direction to generate a shear rate   in the plane x-z. 

Note that the effective shear rate   measured in the bulk is, in general, slightly smaller than 

the imposed one 2 /in w

zV L  . In the following rheological analysis we always measure the 

bulk   to avoid possible artefacts due to small amount of wall slip. The size of the box is 

16xL a , 8yL a  and 64zL a , selected large enough to rule out possible confinement as 

well as finite size effects. Once the steady state is reached, the viscosity can be calculated 

from averaging of the tangential force acting on the wall as  /susp x x yF L L  . In order to 

compare the rheology of the simulated particulate system with the experimental results shown 

in Sec. D, a dimensionless shear rate is defined as 
* / c       where   are the 

relaxation times for the different silicon matrices obtained by fitting their rheology using the 

CY model discussed above. In simulations, the shear rate is kept fixed at 0.013   so that 

the particle Reynolds number 2 / 0.0016eR a     remains constant and small. In order to 

span the same regime of dimensionless shear rates observed in experiment ( 
*
~[10

-5
-10

-1
]), 

the parameter  ̇c  (defining the viscosity model Eq.(8) entering the lubrication Eq.(12): see 

Appendix) is changed in the simulation. 
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Fig.4 Characterization of the solvent rheology with the CY model for silicone 1000cs and 

silicone 12500cs compared with previous results [16, 19, 20] and with our experiments 

[□]. 

 

In Fig. 5 the comparison of the relative suspension viscosity obtained from simulations and 

experiments is shown. Silicone 1000cs and 12500cs matrices are considered and the 

dispersed solid phase is at a concentration 0.4  .  

Good agreement of the shear thinning decay and the value of the viscosity is obtained in both 

cases in the range of dimensionless shear rate 
*
~[10

-4
-10

-2
]. Note that no additional fitting 

parameters have been used other than those used to fit the data in Fig 4, and the computed 

response is not a shifted version of the Carreau-Yasuda model. 
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Fig 5. Rheology of  40% suspensions. Comparison of the simulations with the experimental 

results with the silicone matrices 

 

In simulations, however, the power law viscosity decay extends to higher shear rates 

compared to the experiments, i.e. towards values approaching c  for the respective matrices. 

On the contrary, experimental results show a sudden downturn in the viscosity well below the 

estimated c  (starting approximately at 
*
~10

-2
). This discrepancy is due to second normal 

stress differences causing edge fracture; note that the second normal stress difference is much 

enhanced in suspensions (Eq. (7)). 
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As a result, it is expected that suspensions with silicone matrices exhibiting the rheology 

shown in the Fig. 4 and without edge fracture problems, will show extended power-law 

viscosity decrease without sudden downturn effects.   

It should be noticed that a similar numerical approach was used in [9] to explore the effects 

of the matrix shear-thinning on the suspension. In that work, however, the authors focused on 

a regime of bulk shear rates in the same order of the matrix c  (i.e. 
*
~10

-1
-10

2
 in our 

notation). In agreement with previous literature, they observe a scaling regime in that range 

of shear rates which allows one to predict suspension bulk rheology based on matrix 

properties alone. We point out that in the low shear rate regime explored in this work (i.e. 
*
~10

-4
-10

-1
), mild shear-thinning of the suspension cannot be directly linked to the matrix 

shear-thinning, in fact the scaling exponents are different in the two cases. We believe that in 

this regime the suspension viscosity derives from a complex interplay between matrix 

property and changing anisotropic microstructure.  This, on the other hand, is consistent with 

the results presented in [9] (see their Fig. 3-4) where experimental data for the suspension 

viscosity collapse poorly on a master curve at large concentrations and small shear rates. This 

was also proved by their scaling error (see their Fig-4) which shows values as high as 10% at 

concentration 0.4  . Remarkably, that change in relative viscosity reported is precisely the 

difference in the computed bulk viscosity (shear thinning) that we observe at low shears (see 

Fig. 5), so our results here can explain the failure in the scaling proposed in [9] in the low 

shear rate regime. 

Another aspect which deserves discussion is represented by the very low shear rate regime 

(i.e. for 
*
<10

-4
). It seems that, under the current conditions, our model based on the ‘hidden’ 

shear-thinning mechanism [1] is not able to reproduce the shear-thinning observed in 

experiments down to 
*
~10

-5
 (see silicone 1000cs) where a plateau is observed instead. This 

deviation results in a smaller relative viscosity measured in simulations with respect to 

experimental values and suggests the possibility of additional frictional effects which are not 

taken into account in our ‘hidden’ shear rate model. Note that frictional effects should not be 

relevant at higher shear rates (at 0.4  ) where good quantitative agreement in the exact 

values of the viscosity is obtained. The results with a glycerine/water matrix do not fit the 

pattern of the present simulation model and therefore remain to be explained, most probably 

by an interparticle friction mechanism [5]. 

F. Conclusion 

It is perhaps unexpected, following [5] and the work of Mari et al [23], that there is so close 

an agreement between the computed and experimental relative viscosities in Fig 5 when no 

explicit Coulombic friction  was used in the SPH computations. It appears that at ϕ= 0.4, 

frictionless computations [5,23] give a relative viscosity of 6.2 ±0.4, whereas in reference [1] 

a Newtonian SPH computation yields a relative viscosity of 6.85 at low shear rates. Looking 

at Fig 6 one sees that the compound spheres are not completely smooth. In reference [5] we 

found that roughness increases relative viscosity, and so it appears that this suffices to explain 

the quite small increase of relative viscosity seen in the computations- it appears there is a ‘de 

facto’ friction coefficient in the computations of 0.1-0.2, which is actually due to the 

roughness ratio of about 5%  [5]. 
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It appears that the ‘hidden’ shear-thinning mechanism [1] must exist due to the high shear 

rates (relative to the macroscopic shear rate) between the particles, bringing into play the 

shear-thinning of the apparently ‘Newtonian’ matrices. The agreement between the computed 

relative viscosity and the experimental results in the middle range of shear rates is striking 

and demonstrates the importance of ‘hidden’ shear-thinning matrix effect in this regime. At 

very low shear rates the frictional effects [4,5] seem to be more important as is seen in the 

results with the glycerine/water matrices, where the matrix shear-thinning - possibly 

occurring at extremely high-shear rates - is unlikely to affect suspension rheology at very low 

macroscopic shear rates. This is because the simulations with a Newtonian matrix [1] do not 

show shear-thinning, whereas it is clearly seen in the experimental data in Fig 2.The two 

mechanisms can clearly co-exist. In addition, the problem of edge fracture is always present 

in parallel-plate and cone-plate experiments with suspensions and can seriously interfere with 

the interpretation of the phenomena, so care is needed.  
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Appendix: Smoothed Particle Hydrodynamic model of suspension 

To simulate the system, the suspension model presented in [24] has been modified. The 

matrix is simulated with SPH, which is a meshless Lagrangian fluid model where the Navier-

Stokes equations are discretized using a set of points denoted as fluid particles. Positions and 

momenta of every fluid particle (labelled by Latin indices 1, ,i N  ) evolve in a Lagrangian 

framework, according to the SPH discrete equations 

.

i ir v                                                                                                     (9) 

.

02 2 2 2

( ) ( )1 1
( 2)

j ij ij ij iji
i ij ij

j ji j ij i j ij ij

P W r W rP
m D

d d r d d r r


     
        

       
 

e v
v e e   (10) 
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where D is the number of dimensions of the system, iP  the pressure of particle i , /ij ij ijre r

the unit vector joining particles i  and j , ij i j v v v  their velocity difference and 0  the 

viscosity of the solvent.  ,i ij cut

j

d W r r  is the number density associated to particle i  

estimated as a weighted interpolation with a bell-shaped function W with compact support 

cutr . With this definition, mass conservation and continuity equations for the mass density 

i imd   ( m particle mass) are implicitly satisfied [25]. Equation (10) is  Newton’s equation 

of motion of the particle i  which is a discrete representation of the momentum Navier-Stokes 

equation in a Lagrangian framework. A quintic spline weighting function W [26] is used, 

with cutoff radius 4cutr dx  ( dx being the mean fluid particle separation). Finally, an 

equation of state for pressure is chosen as  
7

0 0/ 1i i bP p p    
 

 where the liquid speed 

of sound 0 07 /sc p   is taken sufficiently large to enforce incompressibility [27]. 

Boundaries and solid inclusions are modelled by using boundary particles similar to the fluid 

ones, located inside the solid regions as discussed in Ref. [28] (Fig. 6). In the case that two 

solid inclusions are very close, the analytical solution of the lubrication interaction between 

spheres [24] can be used. Both normal ( )n sF and tangential ( )t sF  analytical expressions 

for the forces between solid particles   and   are considered up to order  1/ ln( )s , s

being the distance between the surfaces of the spheres. 

          

          ( ) ( )n s f s     F V e e                             

  ( ) ( )t s g s      F V 1 e e                                  (11)              

 

where the scalar functions ( )f s and ( )g s are defined as 

              
2 9

( ) 6 ln
4 40

a a
f s a

s s
  

  
    

  
 

              ( ) ln
a

g s a
s

  
 

   
 

                                       (12) 

for equal spheres of radius a . Both normal and tangential lubrication forces are applied for 

distances smaller than / 2n

c cuts r  and / 8t

c cuts r , which are the distances where the 
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estimations of the SPH model of the interaction force between spheres starts to fail due to 

lack of resolution [19, 26, 27]. 

 

 

 

Fig. 6 Scheme of the location of the boundary particles (white spheres) within a solid 

sphere. The resolution is 5 particles per radius and corresponds to that used in this 

study. 

 

The rheology of a complex solvent is included in Eqs. (11) through the functional 

dependence of the shear viscosity    , where   is the effective local shear rate between 

the solid suspended particles and  . This can be estimated [1] as 9 / (16 ) 3 /s a s   V . 

The resulting lubrication dynamics in Eq. (11) are solved by an efficient implicit splitting 

scheme as discussed in detail in [24, 31]. 

Finally, additional repulsive forces between solid particles are introduced to prevent solid 

particle penetrability. They read [32, 33]  

 0
1

s
rep

s

e
F

e



 

 




F e                                                            (13) 

where 1   determines the range of the repulsive force, and 0F its magnitude. According to 

previous works [23] parameters chosen as 0 0.02115F   and 1 310 a    allow us to model a 

hard-sphere interaction and prevent particle penetration. 

 

 

 


