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Abstract. The formation of the hcp-Ir0.70Re0.30 alloy from the single-source precursor 

(NH4)2[Ir0.70Re0.30Cl6] upon heating in hydrogen atmosphere can be associated with the 

formation of two intermediates: a crystalline iridium-based intermediate and an fcc-

structured alloy. Ir—Re alloys show lower thermal expansion coefficients and smaller 
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compressibility in comparison with individual metals. The high-temperature high-

pressure treatment of hcp-Ir0.70Re0.30 alloy enable us to probe the Ir—Re pressure dependent 

phase diagram. The miscibility gap between hcp and fcc alloys slightly shifts towards the 

rhenium side below 4 GPa. Above 4 GPa, the miscibility gap does not drift with pressure and 

narrows with compression. The electrocatalytic activity of Ir—Re alloys has been tested 

for methanol oxidation in acidic water solution. Ir—Re alloys show higher 

electrocatalytic activity in comparison with pure Ir and Re, which makes them 

perspective candidates for fuel cells application. The highest electrocatalytic activity has 

been obtained for the two-phase Ir0.85Re0.15 composition. 

Keywords: high-pressure, high-temperature, alloys, phase diagrams, X-ray 

diffraction, electrocatalysis 

1. Introduction 

The detailed investigation of binary alloys and their phase diagrams provides the 

basement for further progress in the development of multicomponent alloy 

compositions. Pure metals and binary alloys can be considered important models for 

further progression towards more complex systems, such as high-entropy alloys, 

metallic glasses, metallic foams and heterogeneous metal matrix composites. Refractory 

alloys based on platinum group metals play an important role as materials with 

outstanding mechanical, thermal and chemical stability. Nevertheless, due to their high 

melting points and price their applications are still limited and information about their 

properties is fragmented. 

Alloys based on platinum group metals with rhenium, especially Pt—Re alloys, 

were extensively investigated due to their extraordinary thermal stability and catalytic 

properties. At the same time, Ir—Re and Rh—Re alloys were investigated sporadically 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

[1-2]. As an example, Ir—Re alloys were proposed as materials for thermocouples [3], 

crucibles [4], and as active heterogeneous catalysts [5-8]. CVD prepared Ir/Re films 

were applied to the construction of rocket combustion chambers [9]. 

Pure platinum group metals were broadly investigated under extreme conditions. 

Nevertheless, their alloys have seldom been studied. Only Ir—Os alloys were tested 

under high-pressure high-temperature conditions in situ up to 140 GPa and 3000°C [10-

11], and the Ir—Re system has been investigated under high-temperature high-pressure 

up to 9 GPa and 2000°C ex situ using a belt press [12-16]. High-temperature high-

pressure studies may lead to a deeper understanding of the stability of ultra-hard ultra-

incompressible alloys upon extreme conditions and eventually be exploited as tools for 

the construction of realistic pressure-dependent phase diagrams. These are especially 

needed to predict alloys properties under working conditions as well as to understand 

the formation of their metallic minerals from the melt in the Earth Core. 

The Ir—Re binary metallic system has been investigated in detail during the last 

decade. Recently, existing experimental data have been critically reviewed with the aim 

of creating a realistic model for the Ir—Re ambient pressure binary phase diagram [2]. 

According to experimental data, the peritectic binary Ir—Re phase diagram has a 

miscibility gap between fcc- and hcp-structured alloys at 20 and 30 at.% Re. The Ir—Re 

phase diagram has been calculated using a sub-regular solution model based on 

experimental crystallographic and thermodynamic data (Fig. 1) [2]. 

Several Ir—Re alloys were prepared by arc-melting, high-temperature annealing 

and thermal decomposition of single-source precursors. Existing experimental data for 

single-phase Ir—Re alloys are summarized in the supplementary table S1. Atomic 
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volumes for existing hcp- and fcc-structured alloys can be fitted using second order 

polynomial functions: 

V/Zhcp = 14.14(6) + 0.14(2)·xRe + 0.43(5)·xRe
2 (1), 

V/Zfcc = 14.15(1) + 0.17(1)·xRe + 0.82(7)·xRe
2 (2), 

where atomic volumes, V/Z (V is a volume of the elemental cell and Z corresponds to 

the number of atoms in the elemental cell, with Z = 2 for hcp and Z = 4 for fcc alloys) 

are plotted versus atomic rhenium composition, xRe (Fig. 1). Hcp and fcc alloys follow 

two functions, both displaying small negative deflection from linearity (<2 %). The 

describing functions herein described can be used to estimate the composition of Ir—Re 

solid solutions with known lattice parameters. 

In the present study, we report the investigation of hcp-structured Ir—Re alloys 

under high-temperature high-pressure conditions. Our primary goal is the construction 

of a pressure-dependent binary phase diagram for a system constituted by 

incompressible metals with ultra-high melting points. The compressibility curve for 

hcp-Ir0.70Re0.30 was collected using in situ X-ray powder diffraction in diamond anvil 

cells and a large-volume press. To investigate the formation of hcp-Ir0.70Re0.30 from the 

single-source bimetallic precursor (NH4)2[Ir0.70Re0.30Cl6] upon heating in hydrogen 

atmosphere, we emplyed in situ powder X-ray diffraction. Finally, we performed 

preliminary tests of the electrocatalytic activity of hcp-structured Ir—Re alloys for 

methanol oxidation in acidic solution, as model systems for fuel cells. 

2. Experimental details 

IrxRe1-x alloys were prepared using single-source bimetallic precursors 

(NH4)2[Ir xRe1-xCl6] (x = 0.23, 0.42, 0.70, 0.71, 0.86), similar to the IrxOs1-x alloys 

described elsewhere [10-11]. (NH4)2[Ir xRe1-xCl6] were crystallized by adding an excess 
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of saturated water solution of NH4Cl to a mixture of hot concentrated water solutions of 

(NH4)2[ReCl6] and (NH4)2[IrCl 6]. Salts were filtered and dried in air. Metallic powders 

were prepared by thermal decomposition of (NH4)2[Ir xRe1-xCl6] in 5-vol.%-H2/95-

vol.%-N2 stream (15-30 minutes) at 1000 K, followed by natural cooling (10-12 hours). 

Hcp-Ir0.71(1)Re0.29(1) and hcp-Ir0.23(1)Re0.77(1) were used for high-temperature 

experiments. hcp-Ir0.71(1)Re0.29(1) and hcp-Ir0.70(1)Re0.30(1) were characterised in the large-

volume press and diamond anvil cell experiments respectively. The hcp-Ir0.71(1)Re0.29(1) 

and hcp-Ir0.70(1)Re0.30(1) alloys have nearly identical composition within experimental 

errors and are cited below as hcp-Ir0.70Re0.30. Elemental compositions were analysed in 

10 points using a Hitachi S-4800 Field Emission scanning-electron microscope (SEM) 

equipped with energy dispersive X-ray (EDX) analyser (Fig. S1. Table S2). 

The thermal decomposition of (NH4)2[Ir xRe1-xCl6] (x = 0.23 and 0.70) was 

investigated in situ using the powder X-ray diffraction (PXRD) set-up located at the 

Swiss-Norwegian Beam Lines (BM01A), ESRF. Samples in powder form were placed 

in 0.5 mm fused quartz mark tubes (Hilgenberg GmbH, Germany). Tubes were 

connected to a 2 vol.% H2/He flow (0.1-0.5 ml/min) and heated with hot air stream from 

room temperature to 1000 K with a ramp rate of 10 K/min. Temperature was calibrated 

using the thermal expansion of the cell parameters for silver powder as external 

standard. The wavelength (λ = 0.68894 Å) and sample-to-detector distance were 

calibrated using LaB6 powder (NIST SRM 660c) as external standard. Data were 

collected every 20 s (approximately every 3 K in the temperature scale) using a 

PILATUS2M 2D flat detector. The data were converted and diffracted intensities 

integrated using the SNBL software toolbox [17]. Temperature dependent PXRD 

patterns were plotted and analysed using the Powder3D software [18]. Parametric 
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sequential refinements were performed using TOPAS software [19]. Profile parameters 

for the Lorentzian function, cell parameters, and phase fractions were refined 

simultaneously for all phases using Rietveld refinement. Selected PXRD profiles upon 

heating and temperature dependent plots are given in Fig. 2 for (NH4)2[Ir 0.70Re0.30Cl6] 

and in supplementary Fig. S2 for (NH4)2[Ir0.23Re0.77Cl6]. 

High-pressure PXRD data for hcp-Ir0.70Re0.30 were collected up to 48 GPa at room 

temperature at the ID15B beam-line, ESRF, (λ = 0.410962 Å, MAR 555 flat panel 

detector, beam size 10(v)×10(h) µm2). A membrane diamond anvil cell with conically 

supported Boehler Almax type anvils (300 µm culet sizes) was used for pressure 

generation. Pressure was determined using a ruby luminescence. Neon was used as 

pressure-transmitting medium. The diffraction images were recorded under continuous 

ω-rotation of the DAC from -3 to +3° with 1 second acquisition time. After 

compression at room temperature, the sample was laser-heated offline up to 2000-

2250°C and quenched. The laser-heated sample was investigated at room temperature 

under pressure (48.5 GPa) and during decompression to ambient pressure. 

The large-volume 2000 tons MAVO press in a 6/8(x32) mode with tungsten 

carbide anvils [20] (ID06-LVP beam-line at the ESRF, λ = 0.2296 Å) was used for 

experiments with hcp-Ir0.70Re0.30. A linear pixelated GOS detector was used for in situ 

data collection (sequential exposure of 3.2 seconds at 10 Hz at 32 seconds interval, 

mounted to intercept the downstream diffraction from the horizontal anvil gap at 1966 

mm distance). The detector-beam normal plane was mechanically corrected for tilt and 

rotation, the detector position was corrected for zero-offset and calibrated against LaB6 

(SRM660a). The hcp-Ir0.70Re0.30 alloy sample was ground with h-BN powder (1:1 

volume ratio) in an agate mortar and loaded into a h-BN (Goodfellow) capsule, before 
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being included into the 10/4 windowed Cr:MgO assembly. Pressures were estimated 

using the equation of state of h-BN [21, 22], temperatures were estimated using the 

equation of state of MgO [23, 24]. The sample was compressed up to 10 GPa and 

heated up to 3100 K under constant pressure. Compressibility, heating, cooling and 

decompression curves were collected. Two-dimensional images were integrated to one-

dimensional intensities as a function of diffraction angle using the FIT2D software [25]. 

Unit cell, background, and line-profile parameters were thus refined simultaneously 

using the model-free full-profile refinement implemented in JANA2006 software [26]. 

Compressibility curves were fitted using the EoS-Fit 5.2 software [27]. 

Phase composition and cell parameters of quenched samples recovered from the 

large-volume press were proved by in house powder x-ray diffraction (PXRD) using an 

ARL X'TRA diffractometer (CuKα-radiation, Ni-filter, Bragg-Brentano reflection 

geometry, 2Θ = 5-100°, ∆2Θ = 0.03°, 10 s/step, room temperature). A polycrystalline 

sample was slightly ground with hexane using an agate mortar and the resulting 

suspension was deposited on the polished side of a quartz sample holder, to form a 

smooth thin layer after drying. Silicon powder was taken as an external standard (a = 

5.4309 Å, FWHM 2Θ = 0.1°) for the calibration. 

Cyclic voltammetry (CVA) was performed using an Autolab PGSTAT 

potentiostat (Eco-Chemie) controlled by a PC with GPES software. Few milligrams of 

alloys powders were deposited on screen-printed glassy carbon electrodes (GC-SPEs, 

DropSens C110, S = 0.12 cm2). 1 M H2SO4 water solution was used for background 

measurements. Electrocatalytic tests were performed in a drop of 1 M Methanol / 1 M 

H2SO4 after 5 minutes conditioning at 0.55 V (versus standard hydrogen electrode, 

SHE). Measured potentials were reported against SHE by using the ferrocyanide | 
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ferricyanide redox couple as internal standard. Ir and Re powders prepared by 

decomposition of (NH4)2[IrCl 6] and (NH4)2[ReCl6] were used for comparison. 

3. Results. 

3.1. Thermal decomposition of (NH4)2[IrxRe1-xCl6] (x = 0.23 and 0.70). 

Binary IrxRe1-x alloys can be prepared in the whole range of compositions by 

thermal decomposition of (NH4)2[Ir xRe1-xCl6] single-source precursors below 1000 K. 

Metallic alloys with x < 0.7 have hcp crystal structure; alloys with x > 0.85 are fcc-

structured. Compositions with 0.7 < x < 0.85 are two-phase fcc+hcp mixtures, which 

corresponds to the equilibrium Ir—Re phase diagram [2]. 

Recently, the thermal decomposition of (NH4)2[Ir xOs1-xCl6] has been linked to the 

formation of a crystalline intermediate [11]. A similar intermediate phase was detected 

in the thermal decomposition of the (NH4)2[Ir0.70Re0.30Cl6] salt in the temperature region 

550-700 K (Fig. 2). Above 650 K, defect fcc- and hcp-structured phases form 

simultaneously. Above 950 K only the hcp-Ir0.70Re0.30 alloy has been detected. The 

formation of metallic mixtures with further high-temperature equilibration has been 

detected in other systems, such as [Pd(NH3)4][PtCl6] and [Pd(NH3)4][IrCl 6] [28-29]. 

Broad diffraction lines characteristic for hcp– and fcc–structured intermediate 

metallic phases below 950 K suggest a high concentration of structural defects, such as 

fcc/hcp intergrowths and stacking faults. Since both phases are likely to form 

intergrowths (rather than separate crystals), it is possible to perform quick thermal 

annealing and favour phase exchange between the alloys, with the consequent formation 

of a single phase hcp-Ir0.70Re0.30 alloy. The simultaneous formation of fcc- and hcp-

structured phases makes this alloy different from the hcp-Ir0.50Os0.50, in which only one 

intermediate phase has been detected. The (NH4)2[Ir0.23Re0.77Cl6] salt with lower iridium 
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content does not show formation of any intermediate phases: (NH4)2[Ir0.23Re0.77Cl6] 

decomposes directly into hcp-Ir0.23Re0.77 above 625 K (Fig. S2). 

3.2. Thermal expansion and compressibility of the hcp-Ir0.70Re0.30 and hcp-

Ir0.23Re0.77 alloys. 

We collected the thermal expansion curves at ambient pressure for two hcp-

structured alloys, namely hcp-Ir0.70Re0.30 and hcp-Ir0.23Re0.77. Neither alloy show any 

specialities in their thermal expansion curves above 1000 K. Volumetric thermal 

expansion coefficients in the form ���� = �� + ���  were obtained by fitting the 

temperature dependent atomic volumes to 

	�
�
� = 	�
��

� 
�� �� ������


� �    (3) 

where V(T0)/Z is the atomic volume at reference temperature (293 K) (Table 1, Fig. 3). 

Hcp-Ir0.70Re0.30 and hcp-Ir0.23Re0.77 alloys have smaller thermal expansion in 

comparison with pure metals (Fig. 3) and smaller slope in comparison with pure iridium. 

Pure rhenium has negative thermal dependence of the c/a ratio, an unusual occurrence 

in hcp-structured metals. However, both hcp alloys have positive trend, which is more 

typical for hcp-structured metals such as Os and Ru. 

The pressure dependent compressibility curve at room temperature was recorded 

for hcp-Ir0.70Re0.30 up to 45 GPa and fitted using the third-order Birch-Murnaghan 

equation of state (BM-EoS) [10-11, 30-31] (Fig. 3, Table 1). The compressibility curve 

for hcp-Ir0.70Re0.30 can be fitted with a relatively large value for the pressure derivate of 

bulk modulus, which in turn results in lower compressibility of the alloy at high 

pressures in comparison with pure metals. The c/a ratio is growing with pressure, 

making this alloy different from pure Re, those c/a ratio does not depend on pressure 

below 100 GPa. 
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3.3. Phase separation in hcp-Ir0.70Re0.30 under high-pressure high-temperature 

Ambient pressure high-temperature annealing of the hcp-Ir0.70Re0.30 binary alloy 

does not result in any phase change and phase separation, which is a proof of the 

thermodynamic stability of this composition at ambient pressure. High-temperature 

high-pressure synthesis and phase stability of several Ir─Re alloys were investigated at 

1, 4 and 9 GPa up to 2000 K (Table 2, Fig. 1) [12-16]. Several alloys with compositions 

close to the miscibility gap in Ir─Re phase diagram were used to probe the pressure 

dependent equilibrium with metallic mixtures and pre-synthetized alloys. 

The annealing of Ir/Re mixtures at 2270 K and 4 GPa results in the formation of 

two-phase samples (Table 2, Fig. 1). This can be associated with a shift of the 

miscibility gap in the phase diagram upon pressure increase. Re has larger atomic 

volume, therefore the miscibility gap between fcc- and hcp-structured alloys shifts 

towards the rhenium side of the phase diagram. The hcp-Ir0.70Re0.30 binary alloy is ideal 

for probing Ir─Re phase relations and equilibrium under high-pressure, since its 

composition corresponds to the hcp-structured alloy with maximal Ir concentration. 

Previous experimental data have been obtained ex situ using quenched samples 

prepared in a belt press up to the pressure of 9 GPa [12-16] (Table 2, Fig. 1). In the 

present study the hcp-Ir0.70Re0.30 binary alloy was compressed up to 10 GPa in a large-

volume press at room temperature and heated with in situ diffraction control up to 3000 

K. At 10 GPa, hcp-Ir0.70Re0.30 is stable upon heating up to approximately 2770 K. 

Above 2770 K, the single-phase alloy decomposes with formation of a two-phase 

hcp+fcc mixture. After its formation, the two-phase mixture was annealed for several 

minutes at 3000 K (at the constant pressure of 10 GPa) and quenched. At 10 GPa, the 

single-phase hcp-structured alloy decomposes to an fcc–Ir0.73Re0.27 and hcp–Ir0.70Re0.30 
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mixture, which is very similar to the ex situ data obtained in the belt press at 9 GPa [12, 

16]. 

The hcp-Ir0.70Re0.30 alloy compressed to 45 GPa in diamond anvil cell was laser-

heated at 2270-2770 K for 1 minute and quenched to room temperature. The sample 

recrystallizes into a two-phase mixture (Fig. 4). In eight regions, the cell parameters of 

fcc and hcp phases are very similar and vary within experimental errors (Table 2). The 

shape of the caked diffraction rings suggests high crystallographic strain in the sample 

after heating under pressure. Phase separation at 48 GPa hints to a slight shift of the 

miscibility gap with pressure above 10 GPa. The miscibility gap above 10 GPa becomes 

very narrow. 

3.4. Electrocatalytic activity of Ir─Re alloys for methanol oxidation 

Several Ir─Re alloys were recently proposed as perspective heterogeneous 

supported catalysts [5-8]. To preliminarily investigate the catalytic activity of Ir─Re 

alloys, we tested them to the model reaction of methanol oxidation in acidic aqueous 

solution. 

The recently developed glassy carbon screen-printed electrodes can aid the fast 

screening of electro-catalytic performances of new metal combinations. The powder can 

be easily loaded on the horizontal working electrode and analysis can be carried out 

with few milligrams of powder in a drop of solvent. Nevertheless, due to the presence of 

a pseudo-reference electrode, potential values should be referred to SHE through the use 

of an internal redox calibration couple. 

Electro-catalytic activity can be estimated from cyclic voltammetry (CV) data 

from the position of the oxidation peak in the anodic curve. The potential corresponding 

to the peak maximum in an irreversible electrochemical process is strictly related to its 
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activation barrier: a high-energy barrier towards charge transfer corresponds to a high 

value of oxidation potential. For methanol oxidation, the peak appears only after the 

working electrode has been conditioned at an appropriate potential to achieve 

adsorption of the molecule on its surface. 

Ir and Re do not show pronounced activity in the oxidation of methanol in acidic 

media. Their oxidation potentials are relatively high: 0.521 V (for Ir) and 0.510 V (for 

Re). The following activity series can be extracted from the CV curves: two-phase 

Ir0.85Re0.15 (0.470 V) > hcp-Ir0.23Re0.77 (0.476 V) > hcp-Ir0.40Re0.60 (0.490 V) > hcp-Re 

(0.510 V) > fcc-Ir (0.521 V) ≈ hcp-Ir0.70Re0.30 (0.521 V) (Fig. 5). The Re-rich Ir─Re 

alloys show lower potentials in comparison with Ir and Re, which makes them better 

electrocatalysts for methanol oxidation. The Ir-rich hcp-Ir0.70Re0.30 alloy has higher 

peak’s potential and therefore lower electrocatalytic activity in comparison with Re. 

4. Discussion. 

Single-source precursors were proposed as starting materials for active metallic 

catalysts and porous metals [34]. Recently, several metallic phase diagrams were probed 

using samples prepared by precursors in mild conditions [35]. Here we report how 

pressure-dependent phase diagrams can be also probed using pre-specified binary 

metallic compositions prepared from single-source precursors. Phase separation in hcp-

Ir0.70Re0.30 alloy under high-temperature high-pressure provides information about miscibility 

gap at high-pressure up to 50 GPa (Fig. 1). Similarly to Ir─Os binary system, the miscibility 

gap in Ir─Re binary system shifts towards the metal with higher atomic volume (iridium and 

rhenium respectively) up to 4 GPa. Above 4 GPa, the miscibility gap does not visibly shift 

and narrows with pressure. The complete hcp-Ir0.70Re0.30 to fcc-Ir0.70Re0.30 transformation is 

not detected below 45-48 GPa. Formation of hcp-Ir0.70Re0.30 alloy from (NH4)2[Ir0.70Re0.30Cl6] 
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single-source precursor occurs below 1000 K and can be associated with the formation 

of two intermediate phases: first, a crystalline intermediate identical to the one detected 

in (NH4)2[Ir0.50Os0.50Cl6], and later the fcc-alloy. The hcp+fcc mixture preformed on 

early stage of thermal decomposition transforms into the hcp-Ir0.70Re0.30 alloy above 950 

K. The compressibility curve for hcp-Ir0.70Re0.30 collected at room temperature up to 45 GPa 

can be fitted with a bulk modulus of 340 GPa, which is smaller in comparison with pure 

metals. Heating of hcp-Ir0.70Re0.30 collected at ambient pressure suggests smaller thermal 

expansion in comparison with Re and Ir. The c/a ratio for hcp-Ir0.70Re0.30 is increasing with 

pressure and temperature, a sensible difference from pure Re, which shows a decrease in the 

c/a ratio with temperature and no pressure dependence. 

In general, thermal expansion and pressure compressibility of Ir─Re binary alloys 

follow similar trends as pure Ir and Re metals. At the same time, binary alloys display smaller 

thermal expansion and pressure compressibility, which can be further exploited to tune the 

properties of refractory alloys compositions. The miscibility gap in the phase diagram 

becomes narrower with pressure, a feature which could be exploited in the preparation of 

single-phase alloys unavailable by direct melting. 

We tested the electrocatalytic activity for methanol oxidation of several hcp-structured 

and two-phase (fcc+hcp) Ir─Re alloys. The best candidate for electro-catalytic oxidation 

of methanol is thus the two-phase Ir0.85Re0.15 alloy. Its high activity can be associated 

with its high structural defects concentration and with the presence of fcc/hcp 

intergrowths. The non-linear dependence of electrocatalytic activity from alloy’s 

composition, a trend showing two minima, should be further investigated for other 

metallic systems. However, this result suggests that it is necessary to pay attention to 
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multi-phase compositions, corresponding to miscibility gap on the phase diagram or to 

systems prepared in non-equilibrium conditions. 

The mechanism of formation of Ir─Re alloys from single-source precursors 

suggests the presence of a two-phase metallic mixture (fcc + hcp alloys) in a broad 

range of temperatures (700-950 K). Such mixture seems to be non-equilibrium and to 

contain high concentration of structural defects. Considering that the two-phase 

Ir0.85Re0.15 alloy shows higher electrochemical activity, the investigation of non-

equilibrium two-phase compositions prepared at temperatures below 900 K may lead to 

the discovery of new active catalysts with outstanding activity. 

5. Conclusions. 

In the current study, Ir─Re alloys powders were prepared from single-source 

precursors under mild conditions and could be potentially used as supported catalysts. 

In general, oxidation potential increases with Ir concentration and reaches a maximum 

for the hcp-Ir0.70Re0.30. Our technique based on single-source precursors can be extended to 

the preparation of other multicomponent refractory systems, to probe their catalytic and 

functional properties [36]. Ir─Re alloys prepared from single-source precursors are ideal 

models to probe the high-pressure high-temperature constitution of binary Ir─Re phase 

diagram. In the Ir─Re phase diagram, the miscibility gap between hcp and fcc alloys 

slightly shifts towards the rhenium side below 4 GPa. Above 4 GPa, the miscibility gap does 

not drift with pressure and narrows with further compression. 

 

Acknowledgements 

The authors thank ID-15B, ID06-LVP and Swiss-Norwegian (BM-01A) beam-lines at 

the European Synchrotron Radiation Facility (ESRF) for providing us measurement 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

time and technical support. Dr. Dmitry Chernyshov (SNBL), Dr. Vadim Dyadkin 

(SNBL) and Dr. Jonas Sottmann (University of Oslo) are thanked for their kind support. 

Financial support by German Science Foundation (DFG), German Ministry of Science 

and Education (BMBF) and EPSRC Impact Acceleration Account is greatly appreciated. 

References: 

[1] K.V. Yusenko, Phase Diagram of the Rhenium-Rhodium System: State of the Art, 

Plat. Met. Rev. 55(3) (2011) 186 doi:10.1595/147106711x579966. 

[2] K.V. Yusenko, Phase Diagram of the Iridium-Rhenium System, Plat. Met. Rev. 57(1) 

(2013) 57 doi:10.1595/147106713x659064. 

[3] G. Schneider and A. Boettcher, Deutsche Gold- und Silber-Scheideanstalt, 

‘Thermocouple’, US Patent 2,802,894; 1957. 

[4] R. D. Lanam, A. R. Robertson and E. D. Zysk, Engelhard Corp, ‘Iridium-Rhenium 

Crucible’, US Patent 4,444, 728; 1984. 

[5] Y. Nakagawa, Y. Shinmi, S. Koso and K. Tomishige, Direct hydrogenolysis of 

glycerol into 1,3-propanediol over rhenium-modified iridium catalyst, J. Catal., 272(2) 

(2010) 191 http://dx.doi.org/10.1016/j.jcat.2010.04.009. 

 [6] Sibao Liu, Yasuyo Okuyama, Masazumi Tamura, Yoshinao Nakagawa, Akio Imaib, 

Keiichi Tomishige, Selective transformation of hemicellulose (xylan) into n-pentane, 

pentanols or xylitol over a rhenium-modified iridium catalyst combined with acids, 

Green Chem. 18 (2016) 165 DOI: 10.1039/c5gc02183a. 

[7] Hiroko I. Karan, Kotaro Sasaki, Kurian Kuttiyiel, Carrie A. Farberow, Manos 

Mavrikakis, Radoslav R. Adzic, Catalytic Activity of Platinum Monolayer on Iridium 

and Rhenium Alloy Nanoparticles for the Oxygen Reduction Reaction, ACS Catal. 2 

(2012) 817 dx.doi.org/10.1021/cs200592x. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

[8] Wenting Luo, Yuan Lyu, Leifeng Gon, Hong Du, Miao Jiang, Yunjie Ding, The 

influence of impregnation sequence on glycerol hydrogenolysis over iridium-rhenium 

catalyst, Reac. Kinet. Mech. Cat. 118 (2016) 481 doi:10.1007/s11144-016-0975-z. 

[9] R.H. Tuffias Fabrication Processes for Iridium/Rhenium Combustion Chambers, 

Mater. Manufact. Process, 13(5) (1998) 773–782 

http://dx.doi.org/10.1080/10426919808935298. 

[10] K.V. Yusenko, E. Bykova, M. Bykov, S.A. Gromilov, A.V. Kurnosov, C. Prescher, 

V.B. Prakapenka, M. Hanfland, S. van Smaalen, S. Margadonna, L.S. Dubrovinsky, 

Compressibility of Ir─Os alloys under high pressure, J. Alloys and Comp., 622 (2015), 

155 DOI: 10.1016/j.jallcom.2014.09.210 

[11] K.V. Yusenko, E. Bykova, M. Bykov, S.A. Gromilov, A.V. Kurnosov, C. Prescher, 

V.B. Prakapenka, W.A. Crichton, M. Hanfland, S. Margadonna, L.S. Dubrovinsky, 

High-pressure high-temperature stability of hcp-IrxOs1-x (x = 0.50 and 0.55) alloys. J. 

Alloys and Comp., 700 (2017), 198–207 10.1016/j.jallcom.2016.12.207 

[12] A. Panchenko, T. Dyachkova, S. Gromilov, Y. Zaynulin Study of Alloys IrxRe1-x (x 

= 0.65, 0.75 and 0.85) Solid State Phenomena, 203-204 (2013) 55–58 

doi:10.4028/www.scientific.net/SSP.203-204.55. 

[13] S.A. Gromilov, T.V. Diachkova, E.A. Bykova, N.V. Tarakina, Yu.G. Zainylin, 

K.V. Yusenko, Thermobaric synthesis of the IrхRe1-х (0.2 < х < 0.4) solid solutions, Int. 

J. Mater. Sci. 5 (2013) 476–482 doi: 10.3139/146.110884. 

[14] S.A. Gromilov, I.V. Korolkov, K.V. Yusenko, S.V. Korenev, T.V. D’yuchkova, 

Y.G. Zainulin, A.P. Tutunnik, Phase transformations of the Re0.3Ir0.7 solid solution, J. 

Struct. Chem., 46(3) (2005) 474–478 doi:10.1007/s10947-006-0126-x 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

[15] A.V. Panchenko, A. V. Alekseev, S.A. Gromilov, Development of Debye – 

Scherrer Method for Study of Polycrystalline Samples, Vestnik NSU: Physics Series, 

7(2) (2012) 93–97. 

[16] A. Panchenko, T. Dyachkova, S. Gromilov, Y. Zaynulin Study of Alloys IrxRe1-x (x 

= 0.65, 0.75), XXII Conference on Applied Crystallograhy (Targanice, Poland), 

Program and Abstracts booklet (2012) 41. 

[17] V. Dyadkin, SNBL Tool-box. Grenoble, France: Swiss Norwegian Beamline at 

ESRF 2013. 

[18] P. Rajiv, R. Dinnebier, M. Jansen, Powder 3D Parametric: A program for 

automated sequential and parametric Rietveld refinement using Topas, Materials 

Science Forum 651 (2010) 97–104. 

[19] TOPAS v.4.0, Bruker-AXS 5465 East Cheryl Parkway – Bruker AXS – 2009. 

[20] J. Guignard, W.A. Crichton, The large volume press facility at ID06 beamline of 

the European synchrotron radiation facility as a High Pressure-High Temperature 

deformation apparatus. Rev. Sci. Instrum. 86 (2015) 085112. DOI: 

http://dx.doi.org/10.1063/1.4928151 

[21] Y. Le Godec, D. Martinez-Garcia, M. Mezouar, G. Syfosse, J. P. Itie, and J. 

M.Besson, Thermoelastic behaviour of hexagonal graphite-like boron nitride, High 

Press. Res. 17 (2000), 35 http://dx.doi.org/10.1080/08957950008200304 

[22] A.F. Goncharov, J.C. Crowhurst, J.K. Dewhurst, S. Sharma, Ch. Sanloup, E. 

Gregoryanz, N. Guignot, and M. Mezouar, Thermal equation of state of cubic boron 

nitride: Implications for a high-temperature pressure scale, Phys. Rev. B, 75 (2007) 

224114. DOI: 10.1103/PhysRevB.75.224114 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

[23] L.S. Dubrovinsky, S.K. Saxena, Thermal Expansion of Periclase (MgO) and 

Tungsten (W) to Melting Temperatures, Phys. Chem. Minerals, 24 (1997), 547–550. 

DOI 10.1007/s002690050070 

[24] A. Dewaele, G. Fiquet, D. Andrault  , D. Hausermann, P─V─T equation of state 

of periclase from synchrotron radiation measurements, J. Geophys. Res., 105 (2000), 

2869–2877. DOI: 10.1029/1999JB900364 

[25] A.P. Hammersley, S.O. Svensson, M. Hanfland, A.N. Fitch, and D. Häusermann, 

Two-Dimensional Detector Software: From Real Detector to Idealised Image or Two-

Theta Scan, High Press. Res., 14 (1996), 235–248. DOI: 10.1080/08957959608201408 

[26] V. Petříček, M. Dušek, L. Palatinus Crystallographic Computing System 

JANA2006: General Features. Z. Krist 229(5) (2014), 345–352 DOI 10.1515/zkri-2014-

1737. http://www-xray.fzu.cz/jana/jana.html 

[27] R.J. Angel, Equations of State. In Hazen, R.M., Downs, R.T. (Eds.), High-pressure, 

high-temperature crystal chemistry. Reviews in Mineralogy and Geochemistry, 41 

(2001), 35-60. http://www.rossangel.com/ 

[28] T. Asanova, I. Asanov, A. Zadesenets, E. Filatov, P. Plusnin, E. Gerasimov, S. 

Korenev, Study on thermal decomposition of double complex salt [Pd(NH3)4][PtCl6]. J. 

Thermal. Anal. Calorim. 123 (2016) 1183–1185. DOI 10.1007/s10973-015-5002-5 

[29] T.I. Asanova, I.P. Asanov, Min-Gyu Kim, E.Yu. Gerasimov, A.V. Zadesenets, P.E. 

Plusnin, S.V. Korenev, On formation mechanism of Pd–Ir bimetallic nanoparticles 

through thermal decomposition of [Pd(NH3)4][IrCl 6]. J Nanopart. Res. 15 (2013) 1994–

2009. DOI 10.1007/s11051-013-1994-6 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

[30] V.G. Sovetnikova, V.V. Zubenko, M.M. Umansky, X-ray diffraction determination 

of thermal expansion of rhenium in a wide temperature range, Kristallografiya (in 

Russian), 2(5) (1977), 1026–1029. 

[31] J.W. Arblaster, Crystallographic Properties of Iridium Assessment of properties 

from absolute zero to the melting point, Platinum Met. Rev., 54 (2010), 93–102. DOI: 

10.1595/147106710X493124 

[32] Y. Cerenius, L. Dubrovinsky, Compressibility measurements on iridium, J. Alloys 

Compd, 306(1-2) (2000), 26–29. DOI: 10.1016/S0925-8388(00)00767-2 

[33] L. Dubrovinsky, N. Dubrovinskaia, V.B. Prakapenka, A.M. Abakumov, 

Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 

Mbar, Nat. Commun. 3(1163) (2012), 1–7. DOI: 10.1038/ncomms2160. 

[34] M. Avisar-Levy, O. Levy, O. Ascarelli, I. Popov, A. Bino, Fractal structures of 

highly-porous metals and alloys at the nanoscale, J. Alloys Comp. 635(25) (2015) 48–

54 http://dx.doi.org/10.1016/j.jallcom.2015.02.073. 

[35] Y.V. Shubin, P.E. Plusnin, S.V. Korenev, Determination of the equilibrium 

miscibility gap in the Pd–Rh alloy system using metal nanopowders obtained by 

decomposition of coordination compounds, J. Alloys Comp. 622 (2015) 1055–1060 

http://dx.doi.org/10.1016/j.jallcom.2014.10.187 

[36] KV Yusenko, S Riva, PA Carvalho, MV Yusenko, S Arnaboldi, A Sukhikh, M 

Hanfland, SA Gromilov. First hexagonal close packed high-entropy alloy with 

outstanding stability under extreme conditions and high electrocatalytic activity in 

methanol oxidation, Scripta Materialia, 138 (2017), 22–27 

https://doi.org/10.1016/j.scriptamat.2017.05.022  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Fig. 1. Left: Dependence of atomic volumes (V/Z) on the composition for IrxRe1-x alloys 

(according to Table S1; dashed line represents a polynomial fitting for all fcc (squares) 

and hcp (hexagons) alloys; firm lines represent polynomial individual fittings for fcc- 

and hcp-structured alloys individually according to Equations 1 and 2). Phase diagram 

was calculated in [2] using regular solutions model. Right: Phase separation for 

0.80Ir+0.20Re and 0.75Ir+0.25Re mixtures [12-16] and in hcp-Ir0.70Re0.30 after 

annealing above 2000 K under compression (circles represent two-phase compositions). 

Fig. 2. Left: Selected PXRD patterns obtained at various temperatures corresponded to 

the thermal decomposition of (NH4)2[Ir0.70Re0.30Cl6] (2 vol.% H2/He flow, λ = 0.68894 

Å). Right: weight fractions for intermediate phases upon heating (inset corresponds to 

the 2D-film top view of the temperature dependent PXRD patterns upon heating). 

Fig. 3. Left: thermal expansion of hcp-Ir0.23Re0.77 and hcp-Ir0.70Re0.30 alloys on heating 

(red hexagons) and cooling (blue hexagons). Line corresponds fitting with Equation 3. 

Middle: thermal dependence of c/a ratio for hcp-Ir0.23Re0.77 and hcp-Ir0.70Re0.30 alloys 

and Re [30] (lines correspond to 2nd order polynomial fits). Right: Pressure dependence 

of atomic volume for hcp-Ir0.70Re0.30, pure Ir [31] and Re [30] (lines show the third-

order BM-EoS fits). Inset shows pressure dependence of c/a ratio. 

Fig. 4. A: In situ PXRD data collected at the large-volume press for hcp-Ir0.70Re0.30 at 

constant pressure (10 GPa) with increasing temperature between 2000 and 3000°C (2D-

film top view, ESRF ID06-LVP, λ = 0.2296 Å) and selected PXRD patterns collected at 

2000 and 3000 K. PXRD data collected before (B: 45 GPa, room temperature) and after 

(C: 48.3 GPa, room temperature) laser heating at 2000-2500 °C of the hcp-Ir0.70Re0.30 

alloy (ESRF ID15B, λ = 0.410962 Å). 
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Fig. 5. Cyclic voltammogram (scan rate 0.1 Vs-1) recorded in 1 M MeOH / 1M H2SO4 

after 5 min of methanol absorption at 0.55 V on IrxRe1-x, Re and Ir powders deposited 

on glassy-carbon screen-printed electrodes. Blue line – first cycle after absorption; grey 

line – second cycle after absorption (background). Current is normalized for the 

working electrode surface area. Potentials are reported against SHE by using the 

ferrocyanide | ferricyanide redox couple as internal standard. 
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Table 1. Volumetric thermal expansion parameters at ambient pressure and bulk moduli at room temperature for pure Ir, Re and hcp-structured Ir─Re alloys. 

Composition V0/Z, Å3·atom-1  a V0/Z, Å3·atom-1  b α0·105, K-1 α1·109, K-2 α293·105, K-1 B0, GPa / B0`  c Refs. 

hcp-Re (ambient pressure) 14.720(1) 14.73(1) 1.6(1) -0.04(1) 1.601 353(3) / 4 [30, 33] 

hcp-Ir0.23(1)Re0.77(1) 14.502(1)d ─ 1.12(4) 5.7(3) 1.287 ─ present study 

hcp-Ir0.71(1)Re0.29(1) 14.184(2)e ─ 1.32(6) 5.2(4) 1.472 ─ present study 

hcp-Ir0.70(1)Re0.30(1) 14.184(1)f 14.184(2) ─ ─ ─ 340(3) / 7.6(2) present study 

fcc-Ir 14.1475(3) ─ 1.66(2) 7.3(3) 1.874 354(6) / 5.80(7) [31, 32] 

aatomic volume refined from PXRD data at ambient conditions (in house data); 

batomic volume refined from BM-EoS; 

cB0 – bulk modulus, B0` – pressure derivative of bulk modulus; 

dhcp-Ir0.23(1)Re0.77(1): a = 2.759(1), c = 4.400(2) Å; 

ehcp-Ir0.71(1)Re0.29(1): a = 2.735(2), c = 4.380(4) Å; 

fhcp-Ir0.696(5)Re0.304(5): a = 2.737(1), c = 4.372(2) Å. 
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Table 2. Crystallographic data for Ir–Re metallic phases prepared under high-pressure high-temperature conditions 

Starting 
composition 

HP–HT treatment conditions 
Phase composition recovered 

after HP–HT treatment 
a, Å 
c, Å 

V/Z, Å3 Reference 

hcp–Ir0.70Re0.30 
Ambient pressure 

800°C, 1 h 
hcp–Ir0.70Re0.30 

2.736(2) 
4.390(3) 

14.23(1) [14] 

hcp–Ir0.70Re0.30 1 GPa, 1900°C, 5 min fcc–Ir0.70Re0.30 3.846(2) 14.22(1) [14] 

0.85Ir+0.15Re 4 GPa, 2000°C, 10 min fcc–Ir0.85Re0.15 3.8470(4) 14.233 [15] 

0.80Ir+0.20Re 4 GPa, 2000°C, 5 min fcc–Ir0.80Re0.20 3.845(2) 14.21(2) [13] 

0.75Ir+0.25Re 4 GPa, 2000°C, 10 min 
90 wt.% fcc–Ir0.76Re0.24 3.844(3) 14.21(2) 

[12, 16] 
10 wt. % hcp-Ir0.68Re0.32 

2.744(2) 
4.364(4) 

14.23 

0.75Ir+0.25Re 4 GPa, 2000°C, 15 min 
68 wt.% fcc–Ir0.87Re0.13 3.842(2) 14.18(2) 

[13] 
32 wt.% hcp–Ir0.65Re0.35 

2.741(1) 
4.377(2) 

14.24(4) 

0.65Ir+0.35Re 4 GPa, 2000°C, 10 min 
6 wt.% fcc–Ir0.77Re0.23 3.844(3) 14.21(2) 

[12, 16] 
94 wt. % hcp-Ir0.70Re0.30 

2.742(2) 
4.368(4) 

14.22 

0.60Ir+0.40Re 4 GPa, 2000°C, 5 min fcc–Ir0.60Re0.40 
2.725(1) 
4.371(2) 

14.33(4) [13] 

hcp–Ir0.70Re0.30 9 GPa, 1900°C, 10 min 

80 wt.% fcc–Ir0.75Re0.25 3.848(2) 14.245(5) 

[14] 

20 wt.% hcp–Ir0.65Re0.35 
2.742(2) 
4.374(3) 

14.241(5) 

hcp–Ir0.70Re0.30 10 GPa, 3000°C, 10 min 
47 wt.% fcc–Ir0.73Re0.27 3.849(3) 14.255(5) 

present 
study 

53 wt.% hcp–Ir0.70Re0.30 
2.739(2) 
4.375(3) 

14.212(5) 

hcp–Ir0.70Re0.30 48.3 GPa, 2000-2500°C, 1 min 
fcc–Ir0.74Re0.26 3.848(1) 14.250(2) 

present 
study 

hcp–Ir0.65Re0.35 
2.742(2) 
4.376(3) 

14.244(1) 
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