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 12 

Abstract 13 

Tephrochronology and especially crypto-tephrochronology is an established chronological 14 

technique employed in a range of depositional environments in Europe and beyond. During 15 

the late Quaternary, Icelandic cryptotephra deposits are widely found in palaeorecords 16 

across northern latitudes of Europe e.g. Scotland, Ireland, Norway, Sweden and the Faroe 17 

Islands but are sporadic in southerly latitudes as distance from Iceland increases. As yet, 18 

very few Icelandic cryptotephras have been identified in Wales or southern England which 19 

may well reflect the geographical limit of Icelandic tephra distribution. Here, however, we 20 

report the discovery of an Icelandic cryptotephra deposit within a sediment sequence 21 

retrieved from the Pant-y-Llyn turlough (Carmarthenshire, south Wales), the only known 22 

turlough in Britain. Turloughs are groundwater-fed ephemeral lakes associated with 23 

limestone bedrock and can accumulate sediments that may yield records suitable for 24 

palaeoreconstructions. A discrete peak of glass shards originating from the Askja-S eruption 25 

is identified in the sediment record. This discovery extends the distribution of this early 26 

Holocene eruption giving new insight into its dispersal patterns and also indicates that 27 

sedimentary sequences from sites in these more southerly latitudes are valuable repositories 28 

for ash preservation. Furthermore, its discovery within a carbonate-rich sequence provides a 29 

minimum age constraint on the timing of sediment accumulation and provides an alternative 30 

tool for what is typically a problematic dating environment.  31 

 32 

1. Introduction 33 
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Tephrochronology is a powerful dating technique whereby geochemically distinct and well-1 

constrained ash deposits can underpin a chronological framework as well as allow precise 2 

and direct synchronisation of geological records (Lowe, 2011). In recent years, this 3 

technique has significantly progressed beyond the realms of visible or macro-ash deposits to 4 

focus on cryptotephra deposits preserved in distal areas relative to the volcanic source 5 

(Davies, 2015). Cryptotephra deposits are invisible to the naked eye and contain a low 6 

concentration of volcanic glass shards that can only be detected by microscopy following a 7 

series of extraction steps to isolate the shards from the host sediment. Discrete horizons 8 

were identified in distal peat bog deposits as early as the 1960s, where stratigraphic 9 

information was employed to suggest the preservation of the Hekla 3, Hekla 4, Askja 1875 10 

and Öraefajökull 1362 cryptotephras in Swedish, Norwegian and Faroes peat bogs 11 

(Persson, 1966, 1971). It was the discovery of cryptotephra in Scottish peat (Dugmore, 12 

1989), however, that instigated the recent advances in the search for ash deposits far 13 

removed from volcanic centres.  14 

Extensive employment of extraction techniques such as ashing (for organic rich deposits; 15 

Dugmore, 1989) and density separation (for minerogenic sediments; Turney, 1998) together 16 

with robust chemical characterisation of glass shards (Hayward, 2012) have given rise to an 17 

abundant European network of cryptotephra discoveries (Fig. 1). Traces of Icelandic 18 

eruptions spanning the last 15,000 years have been identified in depositional records across 19 

Europe (e.g. Wastegård and Davies, 2009; Lawson et al., 2012; Davies et al., 2012; Timms 20 

et al., 2016; Wulf et al., 2016). However, there are very few reported findings of distal ash 21 

deposits south of 53⁰ latitude and east of 6⁰ longitude and noticeable gaps in Wales, 22 

southern England and large parts of France are evident on spatial distribution maps (Fig. 1). 23 

The density of cryptotephra discoveries is also skewed towards the sites located in northerly 24 

latitudes with only the largest known eruptions such as the Vedde Ash and the Askja-S 25 

Tephra found in more southerly latitudes (e.g. Lane et al., 2011, 2012b). This apparent 26 

absence may be an indicator of the geographical limit of most Icelandic ash plumes but most 27 

likely reflects a sampling bias with very few studies conducted in lowland areas of Wales and 28 

southern England. With the exception of a recent study by Watson et al., (2017), there have 29 

been traces of potential cryptotephra deposits identified in sites in the Brecon Beacons and 30 

mid-Wales but these findings have not been supported by geochemical characterisation of 31 

the shards themselves (Williams, 2001; Williams et al., 2007; Buckley and Walker, 2002).   32 

Here we explore tephra preservation in a sediment sequence extracted from the Pant-y-Llyn 33 

turlough in south Wales (Fig. 2). Turloughs are ephemeral water bodies associated with 34 

topographic depressions in karst and are periodically inundated mainly by groundwater. 35 

Turloughs are common in the Republic of Ireland (Skeffington et al., 2006; Naughton et al., 36 
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2012), however, this is the only known turlough in Britain (Campbell et al., 1992; Hardwick 1 

and Gunn, 1995) and as such is a designated Annex I priority habitat under the EU Habitats 2 

Directive 92/43/EC (McLeod et al., 2005). Turloughs do not have a true inflow or outflow 3 

stream, and fill and empty either diffusely across their base or via estavelles, a karst feature 4 

that can act as both a spring and a sink (Tynan et al., 2007). Sediments from turloughs are 5 

rich in calcium carbonate (Coxon and Coxon, 1994) and an investigation of their infill can 6 

provide insight into the development and formation of these rare features. Dating such 7 

sedimentary sequences using the conventional radiocarbon method, however, is problematic 8 

due to the erroneous effects of hard-water and contamination by old carbon (Lowe and 9 

Walker, 2000). Tephra deposits have huge potential as an alternative dating technique for 10 

such sequences (e.g. Candy et al., 2016; Timms et al., 2016) and we present the first 11 

positive findings in Wales to date a carbonate-rich record retrieved from a turlough. 12 

 13 

2. Site Description and Methods 14 

The Pant-y-Llyn turlough is located in south Wales, UK (Lat: 51⁰ 49’ 51” N, Long: 4⁰ 1’ 26” 15 

W) at an altitude of 150 m OD. The lake is small, just 160 m long and 60 m wide, and lies in 16 

a depression formed in the underlying Carboniferous Dowlais Limestone Formation (Fig. 2).  17 

Sediment cores were obtained on 28th August 2013 when water levels were sufficiently low 18 

to allow access into the turlough basin. A basin survey was conducted using a peat probe 19 

and hand auger at 10 locations to determine the area with the thickest sequence of soft 20 

sediment. Using a Russian corer (5 cm diameter, 50 cm length) a 550 cm core was obtained 21 

from the eastern part of the turlough basin, but the bedrock was not reached (Fig. 2). The 22 

core (British Geological Survey borehole reference SN61NW12) is comprised of a sequence 23 

of unconsolidated lake muds, silts and peat. Cores were wrapped in cling film and stored in a 24 

cold room at <4 ⁰C until sub-sampling was undertaken. Four 100 g bulk sediment samples 25 

from 200, 245, 395, 510 cm depth below ground level were sent to the 14CHRONO Centre at 26 

Queens University Belfast for dating (Table. 1).  27 

Loss on ignition (LOI) was conducted on the core between 550-300 cm. LOI was performed 28 

at a 4-cm resolution between 550-530 cm and 490-300 cm and at a 2-cm resolution between 29 

530-490 cm spanning the transition from the basal unit of reddish silty clay and organic lake 30 

mud unit. The standard protocol of Heiri et al., (2001) was followed with samples placed in a 31 

furnace at 550 ⁰C for 2 hours to determine the organic matter loss by weight percent and a 32 

further 2 h at 1000 ⁰C to determine the calcium carbonate (CaCO3) loss by weight percent.  33 
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Tephra investigations focused on the 350-550 cm portion of the sequence with initial 1 

searches conducted on 5-cm contiguous samples and followed the methodology outlined in 2 

Turney, (1998). The samples were ashed at 550 ⁰C for 2 hours and the remaining particulate 3 

material was sieved at 80 and 25 µm. Due to the minerogenic nature of the sediment a 4 

density separation was performed using sodium polytungstate and the 2.3-2.5 gcm-3 density 5 

fraction was mounted onto microscope slides using Canada Balsam. A light-powered, 6 

polarizing microscope was used at x100 and x200 magnification to identify and count the 7 

glass shard concentrations. Where a distinct peak in tephra shard concentration was 8 

present, 1-cm segments were sub-sampled from the core to pinpoint the position of the 9 

tephra isochron to the nearest cm. For geochemical analysis, samples were processed 10 

following the same methodology as outlined above, with the exception of the ashing step. 11 

Due to the low shard concentrations a micro-manipulator was used to extract individual 12 

shards for geochemical analysis. Shards were placed on a microprobe slide and embedded 13 

in epoxy resin. Glass shards were sectioned using decreasing grades of silicon carbide 14 

paper and polished using 9, 6 and 1 µm diamond suspension and 0.3 µm micro-polish.  15 

Geochemical analysis was undertaken at the Tephra Analytical Unit at the University of 16 

Edinburgh using a Cameca SX100 wavelength dispersive spectrometer electron-probe micro 17 

analysis (WDS EPMA). Operating conditions are noted in the supporting information. A 3 μm 18 

beam set-up was used for some shards due to the small particle size (Hayward, 2012). No 19 

analytical offsets were observed between the 3 and 5 μm set-ups (see supporting 20 

information). Lipari and BCR2g secondary standards were analysed at regular intervals to 21 

examine the accuracy of the instrument and the precision of the analysed tephra shards (see 22 

supporting information).    23 

 24 

3. Results 25 

3.1. Lithostratigraphy, LOI and radiocarbon dates 26 

The lithostratigraphy is shown in Fig. 3, and consists of a basal unit of reddish silty clay (550-27 

522 cm) overlain by grey silty clay (522-511 cm). An organic lake mud is present between 28 

511 and 450 cm and is overlain by brown, carbonate-rich mud that shows some evidence of 29 

fine laminations (450-362 cm). These are not thought to be annually resolved. Organic fen 30 

peat is found in the uppermost part of the sequence (362-0 cm). LOI values are low (~12 %) 31 

within the basal clay unit indicating a high minerogenic input which we suggest has been 32 

deposited during the Loch Lomond Stadial. Calcium carbonate values also remain low (~5 33 

%) within this unit. A sudden increase in LOI values is observed at 511 cm, reaching values 34 
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of 50 % by 508 cm. We suggest that this may represent the early Holocene transition. The 1 

highest LOI values (55-70 %) are observed between 500 and 466 cm with a shift towards 2 

slightly lower values of around 50 % between 466 and 430 cm. Calcium carbonate values 3 

begin to increase at around 480 cm but show marked fluctuations between 10 and 40 % 4 

between 480 and 430 cm. A short-lived peak of 70 % in calcium carbonate content is 5 

observed at 422 cm and is accompanied by a dip in LOI at the same depth. Between 410 6 

and 360 cm, low LOI values (10-25 %) are accompanied by higher calcium carbonate values 7 

(60-76 %). The increase in LOI values and corresponding decrease in calcium carbonate 8 

values observed 360 cm (47 % and 10 % respectively) coincides with a shift from lake mud 9 

to fen peat. In the uppermost part of the record, LOI increases to ~60 % at 335 cm and 10 

calcium carbonate content falls to ~10 % (Fig. 3). The overall calcium carbonate variations in 11 

this sequence may reflect periods of stronger groundwater influence in this turlough.  12 

Radiocarbon ages obtained from four bulk samples are summarised in Table 1. The 13 

lowermost radiocarbon date lies stratigraphically at the base of the lake mud unit, which is 14 

assumed to represent the early Holocene. However, the radiocarbon age estimate reveals a 15 

much older age of 12958-12713 cal BP which is closer to the onset of the Loch Lomond 16 

Stadial. Similarly, an age range of 12589-12105 cal BP is obtained for the sample at 395 cm, 17 

which lies 115 cm above the lowermost radiocarbon age, implying a relatively high 18 

sedimentation rate (7 yrs/cm) compared with other similar sediment deposits of this age (e.g. 19 

Quoyloo Meadow - ~46 yrs/cm: Timms et al., 2016). The uppermost ages at 200 and 245 cm 20 

are also close in age (~8.7 cal BP and ~8.6 cal BP, respectively) and indicate a slight 21 

inversion with the former yielding an older age than the latter (Table. 1).  22 

 23 

3.2. Tephra discoveries 24 

Low-resolution investigation of the tephra content revealed the presence of one distinct peak 25 

in shard concentration at 495-500 cm whilst the rest of the sequence revealed a low 26 

background of ~ 2-3 glass shards per 0.5 gram dry weight (g dw) at intermittent intervals. 27 

Due to the low shard concentrations, no geochemical results were attempted and without 28 

this information, the significance of the apparent background in glass shards is uncertain. 29 

The distinct peak in shard concentration between 495-500 cm was refined to 1 cm where a 30 

concentration of 72 shards per 0.5 gram dry weight (g dw) was established at 499-500 cm 31 

(labelled PLL_500 in Fig 3 and 4). The shards were colourless and typically platy and fluted 32 

in morphology. Microprobe analyses confirm their homogenous rhyolitic composition with 33 

SiO2 values ranging between 72.24 - 76.4 wt%, K2O values of 2.39 – 2.65 wt% and CaO 34 

values of 1.5 – 1.75 wt% (Table 2). Major oxide biplots reveal a strong correlation with the 35 
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Askja-S Tephra (Fig. 4) which can easily be distinguished from other early Holocene age 1 

tephras such as the Hässeldalen Tephra on the basis of higher FeO and CaO values (Fig. 2 

4). The tephra at Pant-y-Llyn is also geochemically distinct relative to other early Holocene 3 

tephras including the Suðuroy, An Druim, Breakish, Hovsdalur, Høvdarhagi, L274, Skopun, 4 

Fosen, Ashik and Abernethy tephra (Fig. 4) (Wastegård, 2002; Ranner et al., 2005; Pyne 5 

O’Donnell, 2007; Lind and Wastegård, 2011; Matthews et al., 2011; Lind et al., 2013). The 6 

Askja-S geochemical signature can also be discriminated from older widespread tephras 7 

such as the Vedde Ash based on higher SiO2 and CaO values.  8 

Whilst chemical similarity is shown between the Askja-S Tephra and the 499-500 cm 9 

deposit, the radiocarbon dates would suggest an older age than presently suggested for the 10 

Askja-S Tephra. It is possible that PLL_500 could be a previously unknown tephra 11 

originating from the Dyngjufjöll volcanic system, given the closely timed tephra deposits of 12 

similar chemical signatures derived from Icelandic provenances, such as Katla (Lane et al., 13 

2012b) or the numerous Borrobol-type deposits discovered (Lind et al., 2016; Jones et al., 14 

2017). As yet, however, there are no reported findings of older Askja-S-type tephras in the 15 

literature. Guðmundsdóttir et al., (2016) have reported a younger tephra – the Askja L– 16 

dated to approximately 9400 cal BP (Striberger et al., 2012) and the Askja H tephra – dated 17 

to 8850 years old has been identified by Jóhannsdóttir, (2007). The former tephra reveals an 18 

identical chemical composition to Askja-S but the Al2O3 and FeO content for the latter differs 19 

from the Askja-S (Guðmundsdóttir et al., 2016). The Askja L and H have, however, never 20 

been discovered outside of Iceland making the Askja-S correlation most likely in Pant-y-Llyn. 21 

The lithostratigraphic information also supports this correlation to the early Holocene Askja-S 22 

Tephra in line with other studies (e.g. Davies et al., 2003; Wulf et al., 2016; Timms et al., 23 

2016).   24 

 25 

4. Discussion 26 

4.1. Askja-S Tephra dispersal and significance 27 

The identification of the Askja-S Tephra in the Pant-y-Llyn record, extends the geographical 28 

area of Icelandic ash deposition. Until now, very few Icelandic tephras have been found 29 

south of 53⁰ latitude and east of 6⁰ longitude (Fig. 1) and our new findings indicate that this 30 

is not a reflection of the dominance of more northerly dispersal trajectories (see also recent 31 

findings outlined by Watson et al., 2017). We propose potential dispersal maps based on 32 

reported Askja-S findings and, given the reported negative findings for this tephra (Table 3 33 

and Fig 5c), speculate that dispersal may have been characterised by more than one plume 34 
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trajectory (Fig. 5c). Proximal deposits in Iceland, however, suggest the main axis of Askja-S 1 

dispersal was mainly to the NNE (Sigvaldason et al., 2002). We acknowledge that several 2 

other factors may also account for the absence of the Askja-S Tephra in some records (e.g. 3 

uneven ash distribution within sites, failure to pinpoint cryptotephra deposits in low-resolution 4 

searches; Pyne O’Donnell, 2011; Timms et al., 2016), however, we use our maps to 5 

highlight geographical areas that are most likely to result in fruitful recovery of the Askja-S 6 

deposit. In particular, the relatively high shard concentrations (72 shards per 0.5 gdw) 7 

highlight the tantalising possibilities of tracing the Askja-S Tephra, as well as other Icelandic 8 

tephras, further south in the British Isles and perhaps France. 9 

 10 

4.2. Askja-S age estimate 11 

The Askja-S Tephra is considered to be a key isochronous marker for the early Holocene 12 

and its extensive distribution from Arctic Norway (Pilcher et al., 2005) to Switzerland (Lane et 13 

al., 2011) and from northern Ireland (Turney et al., 2006) to north Poland (Wulf et al., 2016) 14 

now allows Pant-y-Llyn to be precisely integrated within a broad palaeorecord network (Fig. 15 

5). One age estimate for the Askja-S Tephra is 10,830±57 cal BP, which was derived by 16 

age-modelling a range of radiocarbon dates (Bronk Ramsey et al., 2015 and references 17 

within), however, Ott et al., (2016) provide an older age of 11,228±26 cal BP based on a 18 

varve-interval from the Hässeldalen tephra in Lake Czechowskie, Poland. Based on the 19 

relative stratigraphic positions of tephras in the Lake Hämelsee record, Jones et al (2017) 20 

suggests that the Ott et al., (2016) age estimate is marginally too old than the age estimate 21 

outlined by Bronk Ramsey et al., (2015).  22 

In the Pant-y-Llyn sequence, the radiocarbon date at 510 cm (10 cm below the Askja-S 23 

Tephra) has revealed an age range of 12,958-12,713 cal BP, almost ~2000 years older than 24 

the Askja-S Tephra. A further date of 12589–12105 cal BP is obtained from the sample 25 

dated at 395 cm (Table 1 & Fig. 3). Given the hard-water error that affects sediments in 26 

limestone terrain (Walker, 2005), we suggest that these ages cannot be used to obtain a 27 

reliable age-model, especially the sample obtained from 395 cm where CaCO3 content is 68 28 

%. The discrete Askja-S peak, however, provides a well-constrained age marker for the 29 

lowermost part of the sequence and constrains the brown gyttja to the early Holocene 30 

interval. Although bedrock was not reached during coring, the Askja-S Tephra provides a 31 

minimum age estimate for the sediment sequence and indicates that the underlying silty clay 32 

unit is likely to represent the Loch Lomond Stadial. Further work will need to ascertain 33 

whether a full Late-glacial sequence is preserved at the site; such records are limited in 34 

number in south Wales (e.g. Walker et al., 2003, 2009). 35 
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 1 

5. Conclusion  2 

The identification of the Askja-S Tephra in the Pant-y-Llyn turlough sediments extends the 3 

known distribution of this tephra further south and east in the British Isles and suggests that 4 

sites south of 53⁰ latitude and east of 6⁰ longitude can be valuable repositories for ash 5 

preservation. We compile positive and negative findings of the Askja-S Tephra and use this 6 

distribution to propose a three plume trajectory. The independently dated age estimate for 7 

the Askja-S Tephra (10,830±57 cal BP – Bronk Ramsey et al., 2015) provides a crucial 8 

chronological marker for this record and provides a minimum age estimate for the onset of 9 

sediment accumulation at Pant-y-Llyn. This study highlights the value of using cryptotephra 10 

deposits to overcome the problems of radiocarbon dating sediment in limestone terrain. The 11 

lowermost silty clay deposit at Pant-y-Llyn is likely to have been deposited during the Loch 12 

Lomond Stadial and highlights the potential of extracting a palaeoenvironmental record from 13 

this sequence that extends back into the Late-glacial period. Further analysis of this core 14 

sequence may yield information on the evolution and formation of this rare turlough. 15 
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Table 1. Four radiocarbon dates measured from bulk sediment at 14CHRONO Centre at 1 

Queens University Belfast. Ages were calibrated using OxCal and the IntCal13 calibration 2 

set (Bronk Ramsey, 2009; Reimer et al., 2013). Acid-Alkali-Acid (AAA) pre-treatment was 3 

undertaken on samples. Dates supplied by the British Geological Survey. 4 

Laboratory ID 
code 

Depth 
(cm) 

δ13C  
‰ 

14C age 
yrs BP  

Calibrated age range  
(cal BP)(95.4%)  

UBA-26393 200 -25.4 7857±41 8932–8545 

UBA-26392 245 -23.4 7833±37 8748–8541 

UBA-26394 395 -26.8 10479±65 12589–12105 

UBA-26391 510 -29.1 10953±47 12958–12713 

 5 

 6 

 7 

 8 

 9 

Table 2. Summary geochemical data displayed as major oxide concentrations (average and 10 

standard deviation) for the tephra layer 499-500 cm (PLL_500). A complete list of analyses 11 

and full microprobe operating conditions can be found in the supplementary data. 12 

 13 

 
SiO2 

TiO

2 
Al2O

3 
Fe
O 

Mn
O 

Mg
O 

Ca
O 

Na2

O K2O 
P2O

5 Total 

499-500 cm wt % 

average 
(n=33) 

73.8
6 0.30 

11.8
1 

2.5
0 0.09 0.24 1.63 4.28 

2.5
1 0.04 

97.2
5 

st dev 0.79 0.01 0.30 
0.0
9 0.01 0.03 0.06 0.17 

0.0
6 0.01 1.02 

 14 

 15 
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Table 3. A compilation of positive and negative findings of the Askja-S Tephra (ordered by publication date). Absences are noted according to 16 

the sampling interval, age models and the stratigraphic position of other tephras in the original studies  17 

Site Latitude and 
Longitude  

Numer in Fig 
5 

Reference Askja-S Tephra 
present 

Lake Hämelsee, Germany 52°45' N, 9°18' E 1 Jones et al., 2017 Yes 

Turret Bank, Scotland 57°00' N, 4°44' E 2 Lowe et al., 2017 Yes 

Inverlair, Scotland 56°52' N, 4°43' W 3 Kelly et al., 2016 Yes 

Quoyloo Meadow, Scotland 59°03' N, 3°18' W 4 Timms et al., 2016 Yes 

Lake Tiefer See, Germany 53°35' N, 12°31' E 5 Wulf et al., 2016 Yes 

Lake Czechowskie, Poland 53°52' N, 18°14' E 6 Wulf et al., 2016 Yes 

Meerfelder Maar, Germany 50°06' N, 6°45' E 7 Lane et al., 2015  No 

Store Slotseng basin, SW 
Denmark 

55°19' N, 9°16' E 8 Larsen & Noe-Nygaard, 2014  No 

Grønlia fen, Norway 63°47' N, 10°28' E 9 Lind et al., 2013 No 

Wegliny, Poland 51°49' N, 14°43' E 10 Housley et al., 2013 No 

Mulakullegöl, Sweden 57°12' N, 13°25' E 11 Lilja et al., 2013 Yes 

Tøvelde, Denmark 54°57' N, 12°17' E 12 Larsen, 2013 Yes 

Endinger Bruch, Germany 54°14' N, 12°53' E 13 Lane et al., 2012 Yes 

Havnardalsmyren, Faroe Islands 62°01' N, 6°84' W 14 Kylander et al., 2012; Wastegård pers 
comm 

Yes 

Abernethy Forest, Scotland  57°14' N, 3°42' W 15 Matthews et al., 2011  No 

Soppensee, Switzerland  47°05' N, 8°05' E 16 Lane et al., 2011 Yes 

Høvdarhagi bog, Faroe Islands 61°54' N, 6°55' W 17 Lind & Wastegård, 2011 Yes 

Loch Achik, Scotland  57°15' N, 5°50' W 18 Pyne O’Donnell, 2007  No 

Lough Nadourcan, northwest  
Ireland 

55°03' N, 7°54' W 19 Turney et al., 2006 Yes 

Long Lough, Northern Ireland 54°26' N, 5°55' W 20 Turney et al., 2006 Yes 

Borge Bog, Arctic Norway 68°14' N, 13°44' E 21 Pilcher et al., 2005 Yes 

Hässeldala port, Sweden 56°16' N, 15°03' E 22 Davies et al., 2003 Yes 

 18 
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Figure 1. Spatial distribution map of Europe including distal sites (outside of Iceland) that 

contain Icelandic tephra layers of Holocene and Lateglacial age (~15 ka yr BP to present). 

Circle size relates to the number of tephra layers found in each site. Data from published 

sources (Davies et al., 2012; Lawson et al., 2012; Wulf et al., 2016; Watson et al., 2017; and 

references within). The circle on Greenland corresponds to the SUMMIT cores and NGRIP 

(Grönvold et al., 1995; Mortensen et al., 2005). Only one record in Wales has reported 

geochemical results to support tephra findings (Watson et al., 2017). 
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Figure 2. Location map of the Pant-y-Llyn turlough (Lat: 51⁰ 49’ 51”, Long: -4⁰ 1’ 26”), coring 

location and local bedrock geology. 'Contains British Geological Survey Digi Map 1:50,000 

Bedrock Geological Map and Ordnance Survey data © Crown Copyright and database rights 

2017. 
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Figure 3. Lithostratigraphy, radiocarbon dates, loss on ignition, CaCO3 content and total shard concentrations for the Pant-y-Llyn core (BGS 

Borehole reference SN61NW12). Radiocarbon dates are derived from bulk sediment samples. Calibrated age ranges are shown here and 

outlined in table 1. Askja-S Tephra age estimates are from Bronk Ramsey et al., 2015 (a) and Ott et al., 2016 (b). 
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 3 

Figure 4. Selected bi-plots showing tephra PLL_500 glass shard major element composition 4 

correlating to the Askja-S Tephra. Hässeldalen, L-274 ,Høvdarhagi, Skopun, Fosen, 5 

Suðuroy, An Druim, Breakish, Hovsdalur, Ashik and Abernethy Tephra data also shown for 6 

discrimination. Data have been normalised. Data from: (Wastegård, 2002; Ranner et al., 7 

2005; Pyne O’Donnell, 2007; Lind & Wastegård, 2011; Matthews et al., 2011; Lane et al., 8 

2011, 2012a; Lind et al., 2013;  Lilja et al., 2013; Wulf et al., 2016; Timms et al., 2016 and 9 

Jones et al., 2017). 10 
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Figure 5. Spatial distribution maps for the Askja-S Tephra. a)  Sites where the Askja-S 3 

Tephra is present. b) Current spatial distribution envelope for the Askja-S Tephra (modified 4 

from Wulf et al., 2016). c) Suggested plume trajectory, given the location of sites where the 5 

Askja-S is present and absent. Site numbers and details are provided in full in Table 3.  6 
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