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10 ABSTRACT

11 Tidal energy is one of promising solutions for reducing greenhouse gas emissions and it 

12 is estimated that 100 TWh of electricity could be produced every year from suitable sites 

13 around the world. Although premature gearbox failures have plagued the wind turbine 

14 industry, and considerable research efforts continue to address this challenge, tidal 

15 turbine gearboxes are expected to experience higher mechanical failure rates given they 

16 will experience higher torque and thrust forces. In order to minimize the maintenance cost 

17 and prevent unexpected failures there exists a fundamental need for prognostic tools that 

18 can reliably estimate the current health and predict the future condition of the gearbox. 

19 This paper presents a life assessment methodology for tidal turbine gearboxes which   

20 was developed with synthetic data generated using a blade element momentum theory 

21 (BEMT) model. The latter has been used extensively for performance and load modelling 

22 of tidal turbines. The prognostic model developed was validated using experimental data. 
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28 1 Introduction

29 Power generateted from Renewable energy resouces in the UK in 2015 incresed by 29% 

30 compared to 2014, and accounted for 25 per cent of total UK electricity generation. Wave 

31 and tidal stream energy has the potential to meet up to 20% of the UK’s current electricity 

32 demand, representing a 30-to-50 gigawatt (GW) installed capacity. Between 200 and 300 

33 megawatts (MWs) of generation capacity may be able to be deployed by 2020, and at the 

34 higher end of the range, up to 27GWs by 2050[1]. [2]. [3].

35

36 Operation and maintenance (O&M) decisions for tidal turbines contributes significantly to 

37 the cost of tidal energy production [4]. These decisions generally depend on many factors 

38 such as machine health, repair costs, weather conditions, etc. Premature failures in 

39 gearboxes result in a significant cost increase due to unplanned maintenance and long 

40 downtime. Such gearbox failures have plagued the wind turbine industry for decades 

41 despite reasonable adherence to design practices [5]. The tidal turbine gearbox will 

42 experience higher torque, thrust and transient events [6]. 

43

44 Recent wind industry experience has triggered the use of essentially three main 

45 approaches for dealing with gearbox reliability; root cause analysis, improving system 

46 design and condition monitoring [7, 8]. The Condition Monitoring (CM) systems of wind 

47 turbine gearboxes are commonly applied to detect damage in advance of the failure of 

48 the equipment. Efficient condition monitoring must be sensitive enough to detect potential 

49 failure events in order to provide adequate time for an operator to plan maintenance 

50 inspections and repairs [9-11]. Oil and vibration analysis have been used extensively for 

51 condition monitoring of wind turbine gearboxes [12-14]. These provide identification of 

52 changes in predetermined condition indicators (CI), and ideally should be capable of 

53 quantifying damage severity in order to estimate remaining useful life (RUL) using failure 

54 prediction models. Oil debris monitoring is more beneficial for fault identification as the 
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55 majority of faults in wind turbine gearboxes are due to bearing spall and gear pitting [13]. 

56 These types of faults release metallic wear debris particles and the size and number of 

57 these particles increases with time until failure is reached. Recently a combination of oil 

58 and vibration analysis has been applied in order to efficiently predict the remaining life of 

59 bearings. This technique utilizes modern computational algorithms such as neural 

60 networks [15, 16], fuzzy logics [17] and a Bayesian network [18]  to predict the failure. 

61 However, varying loads and speed fluctuations provide a challenge to the application of 

62 many of these algorithms [19, 20]. The availability of tidal turbines significantly affects 

63 their economic viability and a key aspect of tidal turbine availability is the need for efficient 

64 planning of maintenance resources. Condition Monitoring Systems (CMS) offer a solution 

65 to maintenance management and increased reliability [5, 21-23] as demonstrated in the 

66 wind turbine industry. Such systems continuously monitor turbine components and 

67 provide an optimum maintenance schedule.

68

69 Failures in gearboxes are essentially related to the uncertainty associated with loading 

70 condition during the design phase. In addition transient loading events contribute 

71 detrimentally to fatigue life. These transient  load events are caused by large variations 

72 in load condition, grid loss or resonant vibration. The former is of particular concern as 

73 the operational load variation on tidal blades has been seen to change by 100% within a 

74 few seconds, as depicted in Figure 1. In this instance the normalised torque increased 

75 from just over 0.1 to 0.9 within 10 seconds. These large variations in load have a 

76 determinant effect on drivetrain mechanical integrity, and as such the continuous 

77 monitoring of the tidal loading condition can provide an effective tool for health 

78 assessment [24].
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80 Figure 1 Example of load variation on tidal blades based on flow predicttion for Ramsy 

81 Sound site in the UK [25]

82

83 Generally, prognostic approaches can be categorized into three forms: data-driven, 

84 physics-based and fusion prognostics (hybrid) approaches. The majority of current 

85 research into gearbox prognosis uses the data-driven methodology which is based on 

86 vibration and oil analysis [9, 13, 26] technologies. Typically, the data is collected during 

87 operation and then statistically treated to estimate the residual life (RUL). However, for 

88 most of the developed prediction models the time between the residual life (RUL) 

89 prediction  and actual failure is relatively short [27] which ultimately leads to higher 

90 maintenance costs. Physics-based models have been applied for prediction of life based 

91 on crack propagation theory; such models require significant information and are difficult 

92 to develop so they have not become established in industry [28]. Hybrid approaches 
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93 combine both data-driven and physics-based information to take the advantage of the 

94 strengths of each approach while overcoming their limitations [29].  

95 This paper introduces a hybird prognostic approach for predicting the remaining life 

96 centred on a methodology that combines data-driven and physics-based models. The aim 

97 of this paper is to propose this new methodology as a practical tool for gearbox prognosis. 

98 In order to predict the life accurately   realistic data is required, therefore  data based on 

99 a hydrodynamic model has been generated for demonstrating and validating the 

100 presented prognostic model; details of the hydrodynamic model is presented in section 

101 3.”.

102 This research presents a novel approach for gear prognosis which can be used for both 

103 wind and tidal turbines. The main contributions of this work includes residual gear life 

104 estimation for tidal gearboxes based on realistic load and speed conditions, which  was 

105 generated for one of UK sites  earmarked for tidal power. In addition, the paper introduces 

106 a new method to generate realistic flow data based on a combination of ADCP, SEM, and 

107 BEMT.

108 2 Prognostic Concept

109 Gearbox life is limited by the ability of the gear teeth to transmit power for the required 

110 number of cycles without failure. The most common gear failure modes are pitting, 

111 spalling and bending fatigue. Therefore, significant efforts have been made to minimize 

112 these failures at the design phase by considering different design characteristics. 

113 International standards for gear design [30, 31] consider the life of gears for both bending 

114 and contact fatigue.  The latter leads to the formation of pits which occur if the limits of 

115 the surface durability of the meshing flanks are exceeded, resulting in particles breaking 

116 out of the flanks leading to pit formation. The extent to which such pits can be tolerated 

117 (in size and number) varies within wide limits, depending mainly on the field of application. 

118 In some fields, extensive pitting can be accepted; in other fields, any appreciable pitting 

119 is to be avoided. In bending fatigue, if the load exceeds the fatigue limit, cracks are 
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120 formed. The first of these often appears in the fillets where the compressive stress is 

121 generated; i.e. in the “compression fillets” which are those of the non-working flanks. 

122 Tooth breakage usually ends the service life of a transmission system. In this study, the 

123 gear failure initiation is considered as the point of end of life.

124

125 The gear design process considers numerous influences that can be generalized into 

126 material factors, geometric factors, lubrication and general influence factors. These 

127 factors were introduced to take account of the influence of many characteristics of gears 

128 such as the elasticity of the material, the helix angle of the teeth and the number of cycles 

129 in the design life. These factors were categorized into three: general influence factors (K), 

130 pitting resistance factors (Z) and bending resistance factors (Y). The general influence 

131 factors are used in both pitting and tooth bending resistance calculations and includes the 

132 application factor KA, which accounts for the effect of variable load, the dynamic factor Kv, 

133 which makes allowance for the effects of gear tooth quality level and modifications relating 

134 to speed and load. Moreover, other load factors (  and ) are applied to take account 𝐊𝐇𝛃 𝐊𝐇𝛂

135 of the influence of load distribution in both normal and transverse directions [30]. The 

136 pitting resistance factors include geometry factors which account for the influence of 

137 geometry characteristics to contact fatigue such as zone factor , helix angle factor   𝐙𝐇 𝐙𝛃

138 etc. In addition, pitting fatigue resistance factors account for the effect of material and oil 

139 film. An estimation methodology of pitting resistance factors is detailed in the relevant ISO 

140 standard (ISO 6336.2) [32]. The numerous bending fatigue resistance factors determine 

141 the effect of geometry and surface condition on gear root bending fatigue [33]. These 

142 influencing factors on gears life are considered in the prognostic methodology presented 

143 in this paper.

144

145 The prognostic model presented aims to evaluate the remaining life of tidal turbine 

146 gearboxes. This model is focused on predicting the residual time before failure initiation. 

147 Failure initiation is characterised by the presence of the first pit on gear flank. The size of 
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148 this pit varies depending on gear modules, the gears module is the unit of size that 

149 indicates how big or small a gear is. It is the ratio of the reference diameter of the gear 

150 divided by the number of teeth,  for gears with 2-5 module, the pit size that characterises 

151 a fault initiation is 0.4 mm in diameter [33]. For gears with modules above 5 the pit size is 

152 for fault initiation is 0.8 mm in diameter [34].  

153

154 A schematic representation of the proposed prognostic model is shown in figure 2. The 

155 model consists of four stages; the first stage consists of processing measured data (rotor 

156 speed and torque) that is employed to estimate the drive train load spectra. The second 

157 stage includes gearbox design model which estimate gear geometry and fatigue 

158 resistance factors. The third stage brings together the load spectra, gear geometry and 

159 fatigue resistance factors into a life prediction model. At this stage a series of calculations 

160 are performed to estimate the gear damage index  for pitting and bending failures, the 

161 damage index represents the fraction of life consumed by exposure to the cycles at the 

162 different stress levels. In general, when the damage fraction reaches 1, failure occurs.The 

163 last stage of the model involves predicting the remaining life is predicted based on the 

164 accumlated damage index and average damage index per tidal cycle, the later 

165 continuously updated through out turbine operation.

166

167

168

169

170

171

172

Detailed Gearbox Model

Variables
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173

174

175

176

177

178 Figure 2 Gearbox prognostic model

179

180 To achieve life prediction model of tidal turbines understanding of gearbox design is 

181 essential. The main function of the tidal turbine gearboxes is to transmit the power from 

182 the low speed high torque rotor to the generator operating at high speed and low torque. 

183 Typically epicyclic gear modules are employed due to their high transmission ratio, high 

184 torque to weight ratio and high efficiency [35].  Tidal turbine gearboxes configurations are 

185 similar to those employed in wind turbines as they share similar design features such as 

186 the combined use of epicyclic and parallel gear configurations, see figure 3. The gearbox 

187 configuration employed for this investigation consist of two planetary stages and one 

188 parallel stage, see figure 3. The details of the gearbox design can be seen in  table 1. 

189 This gearbox type has been extensively studied to investigate premature wind turbine 

190 gearbox failures [5, 8, 36-39], as such its application to the developed prognostic model 

191 provided a source of validation. 

Data Processing 
(Torque and Speed)

Life Model calculates gears 
fatigue from drivetrain loads

Real real time data processing

Continously 
updated Life 

prediction
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192

193 Figure 3 Gearbox configuration (LS-PS: Low Speed Plentary stage, IS-PS 

194 Intermediatee Stage  Plentary Stage, HSS: High Speed Stage) 34

195

196

197

198

199

200

201 Table 1: Gearbox design features

Gear Sun Planet ( ×
)𝟒

Internal 
Gear

First Stage
Number of teeth 27 47 121
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Module (mm) 8
Helix angle (°) 0
Facewidth (mm) 90
Centre distance (mm) 296

Second Stage

Gear Sun Planet (
)× 𝟒

Internal 
Gear

No teeth 25 23 75
Module (mm) 9
Helix angle (°) 0
Facewidth (mm) 98.5
Centre distance (mm) 230

Third stage
Gear Pinion Wheel
No of teeth 18 69
Module (mm) 4
Helix angle (°) 0
Facewidth (mm) 54.945
Centre distance (mm) 172

202 2.1 Cycle counting

203 In the majority of applications gearboxes typically operate at rated torque throughout their 

204 life and as such the predicted gear fatigue strength is modified by ‘life factors’ obtained 

205 from the material characteristics. However for  gearboxes subject to loads of differing 

206 amplitude stress cycles counting is required. Many traditional techniques have been 

207 suggested for stress cycles counting such as rainflow and rang-pair methods. However 

208 for tidal gearboxes the number of stress cycles does not only depend on the variable 

209 loading condition but also on the gear rotational speed, therefore the use of traditional 

210 cycle counting methods are inappropriate. To overcome this limitation the authors used 

211 the number of cycles at a particular stress level, estimated based on time spent at each 

212 load and speed, see equation (1).

Nt =
ωt

60 ×
1

Fsample 
       (1)
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213 Where  is the number of cycles for one tooth of each gear,  (rpm) is the rotating speed Nt ωt

214 of the gear during the corresponding load,  is the fraction of time corresponding to Fsample

215 the load under consideration.

216 Equation (1) shows the number of cycles  is calculated for each data sample, so the Nt

217 number cycle is calculated for each load point, which generate a very dense load 

218 spectrum (load-cycle spectrum). Therefore data reduction is important to avoid 

219 computionally expensive data processing. Data reduction was achieved by accumulation 

220 load cycles into a load spectrum with a larger bin size. The first step in constructing this 

221 spectrum is to divide the entire load range of values into a series of intervals and then 

222 count how many cycles at the same load fall into each interval.

223 Ideally the prognostic model should use data from operational measurements of torque 

224 and speed. However, for the purposes of this investigation, data from the numerical 

225 simulation described in section 3 was employed. With the torque data the corresponding 

226 load on gears were estimated using the ISO 6336 methodology [30, 31]. 

227 2.2 Life Estimation 

228 It is well-known that contact and bending stress levels have a substantial effect on gear 

229 fatigue life. Fatigue failure takes place when these stresses exceed the permissible 

230 stresses. Estimation of these stresses involves consideration of fatigue resistance factors 

231 which account for the various influences on the life of the gears [32, 33]. The calculated 

232 service life is based on the notion that every load cycle contributes to the damage of the 

233 gears. The amount of damage depends on the stress level, with levels below a defined 

234 value considered as non-contributory. 

235 Fatigue resistance factors are required for life estimation; these factors are calculated 

236 using the ISO standard based on gear geometric and material specifications. A numerical 

237 tool was used to extract these features based on Method C of ISO 6336. The factors are 

238 summarized in Table 2, the details and physical meaning of these factors  can be found 

239 in [32, 33]. 
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240 Table 2: Fatigue resistance factors calculated based on ISO guidelines 
Parameter Sun gear Planet gears
Dynamic load  KV 1.001
Transverse load factor (contact stress) KHβ 1.063
Face load factor (root stress) KFβ 1.049
Face load factor (contact stress)  / KHα KFα 1
Zone factor ZH 2.495
Single pair tooth contact factors ZB/D 1.03 1

Elasticity factor ZE 189.812
Contact ratio factor Zϵ 0.878
Helix angle factor (contact) Zβ 1
Life factor (contact) ZNT 0.95 0.972
Lubricant factor (contact) ZL 1.047
Velocity factor ZV 0.942
Roughness factor ZR 0.99
Work hardening factor ZW 1
Size factor ZX 1
Tooth form factor YF 1.39 1.290
Stress correction factor YS 1.92 2.045
Stress correction factor YST 2
Helix angle factor (tooth root) Yβ 1
Rim thickness factor YB 1 1
Deep tooth factor YDT 1
Life factor (tooth root) YNT 0.91 0.928
Test relative notch sensitivity factor YδrelT 0.99 0.996
Relative surface factor YRrelT 1.04 1.047
Size factor (tooth root) YX 0.97 0.97
Mean stress influences factor YM 1 1
Safety factors in pitting 1.25 1.313
Safety factors in tooth bending 2.56 2.652

241

242 In order to estimate the gear life, bending and pitting stress spectra are required and this 

243 is calculated based on the equation (2) [33].

𝜎𝑓𝑖 = 2000
𝑇𝑖

𝑑𝑟𝑒𝑓𝑚𝑛𝑏 𝑌𝑠𝑌𝐹𝑌𝛽𝐾𝑣𝑖𝐾𝐵𝑖𝐾𝛼
𝑖

       (2)
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244 Where  is the torque experienced by gear, is nominal tooth root stress which is the 𝑇𝑖 𝜎𝑓𝑖 

245 maximum local principal stress produced at the tooth root when an error-free gear pair is 

246 loaded by the static nominal torque and without any pre-stress such as shrink fitting [33].

247 The contact stress spectrum is estimated by [32]:

𝜎𝐻𝑖 =  𝑍𝐻𝑍𝐸𝑍 ∈ 𝑍𝐵𝐷 2000
𝑇𝑖

𝑑𝑟𝑒𝑓
2𝑏

𝑢 + 1
𝑢 𝐾𝑣𝑖𝐾𝐻𝛽𝐾𝐻𝛼𝑖           (3)

248 Where  is the contact stress at pitch point which is the stress due to the static nominal 𝜎𝐻𝑖

249 torque of error-free gears.

250 To account for variation of load distribution for the planetary gears the nominal stress 

251 spectrum for bending and contact are corrected [30, 32, 33], see equations (4) and (5).

σH = ZBσHi KAKVKHβKHα
(4)

σF = σFi KAKVKFβKFα (5)

252 All factors used in the above equations are defined in Table 2. These stress spectra 

253 are used to estimate the life factors for pitting and bending .𝑍𝑛𝑡 𝑌𝑛𝑡

𝑍𝑛𝑡 =
𝜎𝐻

𝜎𝐻𝑃
              (6)

𝑌𝑛𝑡 =
𝜎𝑓𝑖

𝜎𝑓𝑃
             (7)

254 In turn, the life factor is used to estimate the corresponding number of cycles to failure for 

255 each load bin using the graphical information in ISO 6336-2:2006, figure 6, and ISO 6336-

256 3:2006, Figure 9. Then, the damage index due to fatigue is calculated for each cycle using 

257 the Miner’s rule [34].
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𝐷 =
𝑛

∑
𝑖 = 0

Nt

𝑁𝑖
            (8)

258 In which is the number of cycles for one gear tooth and is the total number of cycles Nt Ni 

259 in order to cause damage under corresponding loading conditions. This is estimated 

260 based on material fatigue characteristics described by the Wohler curve, as derived from 

261 material testing under cyclic loading. The test results are presented as a plot of stress (S) 

262 against the number of cycles to failure (N), known as an S-N curve; the international 

263 standard provides this data for gears material for both contact and bending stresses  (ISO 

264 6336-2:2006, and ISO 6336-3:2006) [32, 33].

265

266 Remaining life prediction of gears are not only dependent on the load history experienced 

267 by the turbine , but also  the expected future load. As the tidal cycle can be accurately 

268 predicted for specified locations using hydrodynamic ocean modelling system, see [40] , 

269 therefore the average damage index per the tidal cycles  can be estimated using a load 𝐷𝑎

270 history. For purpose of this study the averge damage index is calculated based on one 

271 tidal cycle due to lack of longer hydrodynamic data, however using longer hydrodynamic 

272 data could lead to more accurate average damage index per tidal cycle. The remaining 

273 life (L) is predicted by:

274

𝐿 =  
1 ‒ 𝐷

𝐷𝑎
            (9)

275

276 The process of predicting the life described above is a continuous process and suitable 

277 for online gearbox prognostics as summarised in Figure 4.
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278

Load spectrum
• equation 1

Pitting and bending stress 
spectrum 

• equation 2 and 3

Nominal stress 
calculation

• equation 4 and 5

Life factor
• equation 6&7

Damage index
• equation 8

Remaining Life 
prediction RUL

279 Figure 4 The proposedprognostic process

280

281 3 Hydrodynamic modelling

282 3.1 Blade element momentum theory (BEMT)
283

284 The synthetic torque records used in this paper were generated using a blade element 

285 momentum theory (BEMT) model of a tidal turbine. BEMT is a widely-employed technique 

286 [41-43]  for modelling conventional horizontal-axis turbines, in both wind and tidal 

287 application. There is an extensive and well-rooted literature on the method [44] so a brief 

288 overview is presented here.

289 In essence, BEMT parameterises two different models of a turbine with parameters called 

290 'induction factors', and then determines the value of the induction factors that brings these 

291 models into agreement. In the first place, the turbine was represented as a collection of 

292 annular rings, each of which absorbs some linear momentum from the flow of the fluid 
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293 and imparts a degree of swirl into the wake. In the second place, the turbine was regarded 

294 as a collection of two-dimensional foils generating lift and drag forces that vary depending 

295 on the flow angle and velocity at the foil location. The annuli in the first representation and 

296 the blade elements in the second lie at the same radial locations, giving a one-to-one 

297 correspondence. The lift and drag coefficients are calculated from a lookup table that is 

298 chosen based on the specific foil used in the turbine design, and the forces themselves 

299 also depend on the chord length and angle of blade twist at each radial location.

300 The two induction factors (axial and tangential) indicate how much the momentum flux of 

301 the working fluid through each annular element is changed by the presence of the blades; 

302 they also affect the velocity of the fluid relative to each blade element and thus determine 

303 the hydrodynamic forces. Since the change of momentum flux and the hydrodynamic 

304 forces must be equivalent, the problem is reduced to finding the values of the induction 

305 factors that satisfy this requirement. There are a number of approaches to solving this 

306 problem; the method employed [43] treats it as a minimisation problem.

307 The BEMT is most commonly used to predict turbine performance in terms of power 

308 output. However, as the forces on each of the blade elements were calculated at each 

309 time step of the simulation the time-varying loads on the rotor can be calculated 

310 throughout the duration of the simulation by summing the tangential forces across all 

311 blades. This method has been employed to generate the torque records used in the 

312 current study. Although classical BEMT only allows steady uniform inflow, the model 

313 employed has been modified such that it can simulate a turbine subject to non-uniform, 

314 time-varying flows.

315

316

317

318
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319 3.2 Synthetic Eddy Method (SEM)
320

321 Classical BEMT requires a steady, uniform inflow. In this new modified model, the ability 

322 to track the location of each two-dimensional foil has been added on each blade 

323 separately, allowing the simulation of unsteady and non-uniform flows. This capability 

324 allows out the work described in this paper to be carried.

325 This capability, of course, is of limited use if appropriate inflow data is not available. 

326 Ideally, measured field data should be used from a turbine deployment site; however, 

327 there is no device capable of taking simultaneous, high-frequency measurements of all 

328 three components of flow velocity across a volume of water large enough to contain a full-

329 scale turbine. Instead, the synthetic eddy method (SEM) was employed to generate an 

330 artificial flow field that can be specified to arbitrary precision in both space and time.

331 The SEM was developed as a way of generating inflow data for Large Eddy Numerical 

332 simulations [45]. Again, an extensive description of SEM is beyond the scope of the 

333 current work, so a brief description only is provided here. Given a set of covariances for 

334 the fluctuation velocities of a turbulent flow field, along with a distribution of eddy length 

335 scales, SEM generates a time-varying field of eddies each of which induce velocities in a 

336 region of space near them. The input data requirements are easily met, as the most 

337 common method of gathering data on turbulence at planned deployment sites is with 

338 acoustic Doppler current profilers [46-48], and these measurement devices output 

339 precisely the type of statistical data that SEM requires as an input.

340

341 The synthetic eddies are characterised by a strength, which determines the magnitude of 

342 the induced velocities; a length scale, which determines the size of the region in which 

343 the eddies influence is present; and a shape function. With strengths derived from the 

344 input covariances and a suitably-normed shape function (see [45] for details), the second-

345 order statistical moments of the artificial flow field will match those specified by the 
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346 covariances used to calculate the eddy strengths. Note that this matching is only exact 

347 for a simulated flow-field of infinite duration.

348

349 4 Generation of the torque record

350  The geometry of a model turbine that has been extensively tested was employed in this 

351 study [49]. The model itself is too small to be effectively used in turbulent flows based on 

352 field data, as it would be significantly smaller than the smallest measured eddy length 

353 scales; therefore the authors elected to scale up the radius and chord length by a factor 

354 of 10, giving an overall rotor diameter of 4.75m. The geometry characteristics of the 

355 blades of this turbine are shown in Figure 5; a Wortmann FX 63-137 blade section is used 

356 for the entire blade span.

357

0 0.5 1 1.5 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Radial location (m)

C
ho

rd
 le

ng
th

 (m
)

0 0.5 1 1.5 2
50

55

60

65

70

75

80

85

Tw
is

t a
ng

le
 ( 

)

358 Figure 5 Geometry characteristics of turbine blades used in the BEMT model.
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360 The Synthetic eddy method (SEM) was used to generate the inflow conditions based on 

361 measured field data. This field data used was taken from ADCP measurements in 

362 Ramsey Sound, a channel off the coast of Pembrokeshire, between the 13th and 27th of 

363 September, 2009; this encompasses a complete spring-neap cycle. Seven flood and ebb 

364 phases (i.e., fourteen phases in total) corresponding to regular intervals from the 

365 measurement period were selected as the test conditions for the work presented here. 

366 For each of these phases, the covariances needed to generate a synthetic turbulent field 

367 with SEM were calculated from an hour-long subset of ADCP data corresponding to the 

368 time of maximum current speed.

369

370 A full, three-dimensional velocity field of ten minutes duration was generated from each 

371 of the fourteen sets of turbulence statistics. Figure 6 shows an example of how the 

372 'template' statistics taken from ADCP measurements are replicated in the synthetic 

373 turbulence field, the top three panels show autocovariance for each of the three velocity 

374 fluctuation components (u',v' and w') and the bottom two panels show horizontal-vertical 

375 cross-covariance (u'w' and v'w'), note that ADCPs cannot measure the horizontal-

376 horizontal cross-covariance ‹u'v'›; this is set to zero in the SEM model. The data for this 

377 example were taken from the first ebb phase of the spring-neap cycle considered. 

378 Complete knowledge of the flow velocities at any point was provided by the synthetic flow 

379 field. Therefore the covariances were calculated directly, by taking the time-average of 

380 the velocity fluctuation products over the duration of the synthetic flow field. The results 

381 show that the measured velocity covariances are well replicated by the SEM. By running 

382 one BEMT simulation for each of the velocity fields generated in this way, torque records 

383 were obtained and then used as inputs for the gearbox prognostic model.
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384

385 Figure 6 Comparison of ADCP-measured turbulence statistics (solid red line) and 
386 statistics of synthetic turbulence created using SEM (dashed black line) for a 
387 representative tidal phase. 

388

389 5 Data processing

390 The numerically simulated data was classified into ebb and flood groups based on flow 

391 direction; flood corresponding to the tide flow into shore while ebb refers to the tide 

392 draining away from shore. Each flow was assumed to represent 50% of the lifetime and 

393 each flow contained 7 load classes, each class being represented by ten minutes speed 

394 and torque data. The flow data used represents no-wave conditions. 

395 The measured tide speed [24] was employed in the numerical simulation for generating 

396 turbine speed and torque data for one tidal cycle (14 days).  This provided the load 

397 experienced by the transmission gearbox. A probability density function of the load was 

398 estimated by considering the cycle during each of the seven load classes which was then 

399 accumulated. This procedure was applied for both load and speed data as shown in 
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400 Figure 6 and Figure 7. The load and speed probability distribution was used as the basis 

401 for predicting the load experienced by the gearbox throughout its life.

402

403

404 Figure 7 Load data processing
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405

406 Figure 8 Speed data processing

407 6 Model output

408 The torque data from the numerical simulation was used to estimate the useful life based 

409 on the procedure described above. The calculations began by estimating the load spectra 

410 on the gears from the simulated torque and speed data. For the purposes of this 

411 illustration it was assumed the  gearbox was 100% efficient. The stress spectra for both 

412 contact and bending were then determined from the load spectra, see Figure 9.

413

414  The stress spectra, geometric features, fatigue resistance factors and the equations 

415 described previously were employed for estimating the damage index. For demonstration 

416 purpose the result of first stage sun gear is summarised in figure 9 and  table 3 .
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417 The analysis of the result shows that the sun gear of the first stage has a higher damage 

418 index for contact load (0.0032 )compared to the bending load damage index (0.0026). In 

419 addition the contact stress was higher than the bending stress (Figure 9) suggesting  the 

420 gears are expected to fail due to pitting as opposed to a tooth bending failure; the 

421 expected life of first stage sun gear under these loading conditions is 157 lunar cycle 

422 which corresponds to approximately 13 years.

423
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425 Figure 9 Sun gear stress spectrum over one tidal cycle

426

427

428 Table 3 First stage sun gear life

Sun Gear pitting life 157.8  lunar cycles

Sun Gear Bending life 194.82 lunar cycles

Sun Gear pitting Damage index for over 
one lunar cycle

0.0032

Sun Gear Bending Damage index 
consumption over one lunar cycle

0.0026

429
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430 Load cycle data reduction has an impact on the accumulated damage index, therefore  a 

431 sensitivity analysis on the effect of bin size when estimating the damage index was 

432 performed; the analysis was applied on the first stage sun gear and employed for one of 

433 load classes. The damage index was calculated using the different bin sizes of  load 

434 spectrum. Following analysis it was noted that the use of a low number of bins results in 

435 overestimating of life, and at higher number of bins the damage index converges towards 

436 a constant damage index value, see Figure 10. However the difference between lower 

437 and higher values of bin size is not significant (less than 1.2%), see Figure 11. This implies 

438 that the choice of bin size has a minor effect on life prediction.

439
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441 Figure 10 Damage index convergence

442



ACCEPTED MANUSCRIPT

25

443

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Bins

Va
ria

tio
n 

 %

444 Figure 11: Variation of result under different numbers of bins

445

446 The analysis described thus far, as applied to the sun gear, was then employed to all 

447 gears in the different stages within the gearbox. The results are summarised in table 4, 

448 and shows that the 3rd parallel stage has the shortest life whilst the highest damage index 

449 was noted on gears with the highest speed and smallest gear geometry. In addition results 

450 showed that the ring gears have a longer life due to the larger gear size. The result shows 

451 variations in the life and damage index of the gears which originate from geometrical 

452 variability and differences in stress cycles due to the differing rotational speeds.

453

454

455

456

457

458

459

460

461



ACCEPTED MANUSCRIPT

26

462 Table 4: Result of life prediction for gearbox component

Components Pitting 
life (No 
of lunar 
cycles)

Bending 
life (No 
of lunar 
cycles)

Pitting 
Damage 
index 
for over 
one 
lunar 
cycles

Bending 
Damage 
index for 
over one 
lunar 
cycles

Planets 
gear(1st stage)

232.05 335.82 0.0023 0.0014

Sun gear (1st 
stage)

157.8 194.8 0.0033 0.00257

Ring Gear (1st 
stage)

347.16 487.05 0.0015 0.0010

Planets 
gear(2nd  
stage)

238.25 356.8 0.0021 0.0001

Sun gear (2nd  
stage)

162.01 207.0 0.00311 0.0024

Ring Gear (2nd 
stage)

356.91 518.3 0.0014 0.0009

Pinion gear 
HSS

135.0 177.0 0.0038 0.0028

Wheel gear 
HSS

145.8 180.9 0.0035 0.0028

463

464 7     Experimental demonistration

465 It was thought prudent to perform some validation of the proposed prognostic model. The 

466 validation was based on tests performed by Khan et al. [50] in which two pitting tests were 

467 performed on two identical pairs of case-hardened low carbon steel gears. The gears 

468 were tested under two loading conditions and the useful life was estimated based on ISO 

469 6336-2 guidelines as described previously. The details of the gears used and the load 

470 conditions are summarized in Table 5.

471
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472

473

474

475 Table 5: Gear parameter according to design calculation (ISO6336.2) [50]
Gear Specification 
Helix angle 17.75 deg

Centre to distance 113.0 mm

No. of teeth 35.0

Reference diameter 110.2 mm

Load condition 1 6500 N

Load condition 2 4347 N

Speed 1000 RPM

Life estimated in load condition 1 5.985 X 105 cycles

Life estimated in load condition 2 9.67 X 105 cycles

476

477 The gear geometry and load conditions presented [48] were applied to the prognostic 

478 model developed by the authors and results showed pitting when the number of cycles 

479 reached 5.4 X 105 cycles during the first load condition and 1.08 X 106 cycles for the second 

480 load condition. Applying the Miner’s sum using equation (3), the damage level was 

481 estimated at 0.92 for test 1 and 1.034 for test 2, (see Table 6). Visible pitting after gear 

482 testing is shown in Figure 12 and Figure 13. Observations from Figure 12 and Figure 13 

483 show the presence of small pits at a time when the corresponding value of the Miner’s 

484 sum (damage index) was approximately 1. This observation offered validation of the 

485 proposed prognostic methodology albeit at fixed load conditions.

486

487
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488 Table 6: Model demonstration result

Test No. 1 Test No. 2

Actual Number of Cycles (from the test) 5.9 X 105 9.67 X 105

Predicted Number of Cycles 5.4 X 105 1.08 X 106

Predicted Damage Index 0.92 1.034

489

490 Figure 12 Visible pitting after test 1 [50]

491

492 Figure 13 Visible damage after test 2 [50]

493

Visible

 pitting

Vissible 
pitting
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494

495 8 Discussion

496 It has been shown that unsteady BEMT, in conjunction with SEM, can be used to predict 

497 some turbulence effects on TSTs, and to investigate how these effects can be 

498 ameliorated. The synthetic eddy method has been shown in figures 4 and 5 to yield a 

499 velocity field that, while non-physical, statistically reproduces measured turbulence. This 

500 means this research was able to simulate a Tidal Stream Turbine’s TST response to 

501 turbulence of known statistical properties without the need for either detailed velocity 

502 measurements or expensive computation.

503 The synthetic eddy method, although it provides satisfactory turbulent flowfields in a 

504 statistical sense, is not the only way of predicting fluctuating velocities on a TST. There 

505 are well-validated spectral methods that are widely used in the wind turbine industry, and 

506 some recent work has indicated that the spectral properties of tidal currents are 

507 sufficiently similar that these atmospheric methods could be adapted for use in marine 

508 flows [51]. A fruitful avenue of research, then, would be to attempt analysis of the test 

509 cases presented in this paper in the case where artificial turbulence is generated with 

510 spectral methods adapted for tidal flow, rather than with SEM.

511

512  The prognostics model developed focuses only on fatigue damage due to the contact 

513 and bending stresses. However, it should be noted that the effect of data sampling 

514 frequency in this analysis can lead to life overestimation due to the low sampling rate of 

515 synthetic data employed, especially for the high speed stage where a higher sampling 

516 frequency is required. The ISO standard for cycle counting states that [52], “The sampling 

517 frequency shall be such that every analog loading cycle is represented by at least 20 

518 digital points at least 20 times that of the observed maximum frequency of the real or 

519 expected analog signal’’. The sampling frequency for the data employed was 20 Hz, 

520 which satisfied the requirement for analysis of the low speed gearbox stage. However for 

521 the high speed gear stages a sampling frequency 20 times the rotational frequency (24 
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522 Hz) is required, and therefore the life expectancy of the high speed stage should be 

523 calculated with a higher sampled torque data which was not available for this 

524 investigation. Even with the known life overestimation, the high speed stage (HSS) life 

525 was shorter than the other stages, and therefore damage is expected to initiate firstly in 

526 the gears of the high speed stage. This finding supports the observations of wind turbines 

527 failure, in which HSS failure were the most [53]. This is beneficial in not only giving  an 

528 estimate for when maintenance ought to be scheduled, but also in identification of which 

529 components need to be redesigned or improved to lengthen the gearbox’s fatigue life. It 

530 is worth considering that eleven years may be too pessimistic an estimate for the gear’s 

531 lifespan, due to the fact that the probability distributions of load and speed that have been 

532 used are based on data from the fastest segments of flood and ebb phases across the 

533 spring-neap cycle, and thus they neglect both slack water and the less-intense portions 

534 of floods and ebbs. A probability distribution of loads that did incorporate these times with 

535 lower loading would almost certainly yield a longer fatigue life. 

536

537 The gear life prediction results showed that the transmission system exposed to tidal 

538 currents will experience a shorter life compared to that exposed to wind load conditions. 

539 The gearbox considered in this study was designed to operate for 20 years (1.5-2 MW)  

540 however this analysis showed a 13 year life expectancy if this gearbox was employed in 

541 a tidal turbine, reiterating the influence on gear life for the very different loading conditions. 

542 The prognostic concept was validated using constant load experimental data, however 

543 further experimental work is recommended to assess the prognostic model under variable 

544 load conditions.

545  

546
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547 9 Conclusion

548 A prognostic model based on the loading condition has been developed to predict the 

549 residual life of a gearbox during turbine operation. The model employed synthetic 

550 turbulence data generated for The Ramsey Sound region  [25]. The prediction model 

551 encompass an element of a physic based  (fracture mechanics) and data driven 

552 approach. The result shows life variations between the gears. These variations come from 

553 geometrical variability and differences in stress cycles due to the differing rotational 

554 speeds.

555 Furthermore it was noted that the high speed pinion has the highest damage index. This 

556 is mainly due to its higher number of cycles and lower number of teeth compared to the 

557 other gears. In addition the progression of  surface pitting damage is expected prior to 

558 any damage at the gear root. 

559 This study emphasizes that the life prediction depends on probability of loading condition, 

560 therefore a statstistical significant data set will enhance prediction. In addition continuous 

561 updates of load cycle during the turbine operation will contribute to life prediction 

562 accuracy. The model was validated using constant load pitting test data and an accurate 

563 prediction of life was proved. However further experimental investigation is recommended 

564 to verify the effect of variable load and speed. 

565
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Highligts

 Failures in gearboxes are essentially related to the uncertainty associated 

with loading condition during the design phase.

 A prognostic model based on the loading condition has been developed to 

predict the residual life of a gearbox during turbine operation.

 The model employed synthetic turbulence data generated for The Ramsey 

Sound region  

 The result shows life variations between the gears.

 The model was validated using pitting test data and an accurate prediction of 

life was proved


