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ABSTRACT: The synergic effects of fumed-Si nanoparticles (Si-NPs) in combination with 

sodium dodecyl sulfate (SDS) surfactant as suitable agents for oil displacing in enhanced oil 

recovery (EOR) are evaluated using a 5-spot glass micromodel. Optimum oil recovery (45%) 

is obtained for SDS near the critical micelle concentration; however, the addition of fumed 

silica nanoparticles (Si-NPs) enables a further 13% enhancement in oil recovery for the 

maximum concentration of the SDS/Si-NPs (2.2 wt.%), as well as delaying the breakthrough 

point. The optimum mass ratio of SDS:Si-NP (1:11) suggests that the Si-NPs are aggregated 

by the SDS micelles; consistent with increased viscosity upon addition of Si-NPs. The 

presence of the Si-NPs also greatly increases the wettability on the glass surface, with a 

decrease in the contact angle from 73° for SDS (1800 ppm) to 11° for SDS/Si-NPs (1800 

ppm/2.0 wt.%). The effective changes in the oil sweeping mechanism are directly observed 

in glass micromodel and correlate to these physical measurements. The results demonstrated 

the addition of Si-NPs to SDS solutions made a significant improvement to oil recovery 

values and potentially beneficial in EOR applications.  

 

KEYWORDS: Fumed-silica nanoparticles; micro-model test; enhanced oil recovery; 

Sodium dodecyl sulfate 
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1. INTRODUCTION 

As oil fields mature the need to maximize production of existing capacity as opposed to 

develop new production becomes vital to meet the worlds increasing energy demands. 

Enhanced oil recovery (EOR), also known as tertiary recovery, is the application of different 

physical and chemical methods for increasing crude oil extraction. The injection of water has 

been used to aid mobility, which in combination with chemical additives allows for the 

reduction in the interfacial tension (capillary pressure) that hampers oil droplets from moving 

through a reservoir. This oil sweeping technique has shown an enormous potential through 

the use of novel surfactants, polymers, and nanomaterials.
1,2

 

Laboratory glass micromodel experiments have been applied to the study of particle 

movement, microgeometry, and physical characteristics of liquids, gases, and solids through 

porous media.
3-5

 Such micromodel experiments have been used to investigate the mechanism 

of the fluid flow on porous mediums via flow visualization, fluid interactions, pore space 

geometry, topology and heterogeneity effects, which are not possible to assess using 

traditional coreflood experiments. Recently, micromodels with various etched visible flow 

patterns have been utilized to cover the foam blocking mechanism and oil mobility control.6,7 

However, the viral pore shape pattern in the micromodel is triangular in structure, which has 

more similarity to the actual reservoir conditions of the NPs distribution in porous media.8  

Recent studies on etched-glass micromodels have shown insight into EOR 

mechanisms and oil displacing processes involving immiscible fluids.4,9 Wu et al.5 evaluated 

the pore-scale mobility, residual oil saturation and the rate of oil sweeping in the foam 

flooding with heavy oil. Mohammadi et al.3 demonstrated how to record the variation of oil 

sweeping in micromodels and they studied the influence of reservoir heterogeneity as an 

important parameter on oil recovery with a two-dimensional micromodel. The various 

common flooding methods that are often used in EOR (water, gas, WAG and surfactant 

flooding) for enhancing the sweep efficiency and oil displacement have been investigated.
10

 

Surfactant flooding studies using this model have displayed promising results for recovering 

trapped and residual oil.11 One of the important approaches to maximize oil sweeping is using 

an appropriate surfactant, which results in fluid viscosity alteration and the IFTs between 

rock-fluid and fluid-fluid.12 Key experiments have revealed that the presence of NPs and 

surfactants have a high potential to decrease the strong interactions taking place between 
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interfaces in porous mediums,13-18 while various nanomaterials such as clay, SiO2, MgO, 

TiO2, ZrO, NiO and Al2O3 have been employed using light to extra heavy oil in various EOR 

methods.
19-24

 

It has been reported that the use of fumed-Si nanoparticles (Si-NPs) in water flooding 

would increase the oil production from hydrocarbon reservoirs to around 50-75% in 

secondary and tertiary oil recovery.
25

 In this context, we report herein, the first use of Si-NPs 

in combination with SDS solutions for flood experiments in a five-spot micromodel. The 

behavior of NPs at various SDS concentrations was evaluated. The results of this paper are 

directed as a new approach and sheds light on the value of using Si-NPs in EOR applications.  

2. EXPERIMENTAL SECTION 

2.1. Materials. Fumed-silica (Aerosil 300), and sodium dodecyl sulfate 

(C12H24SO4Na, MW = 288.38) were purchased from Degussa Chemicals (Hanau, Germany), 

Central Drug House (P) Ltd. The fumed-silica nanoparticles (Si-NPs) had a measured mean 

particle diameter of 20-80 nm (Figure S1, see SI), with a specific surface area, pH, and SiO2 

purity of 300 m2.g-1, 3.7-4.7, and 99.8 wt.%, respectively. Sodium chloride (NaCl), sodium 

sulfite (Na2SO3), calcium chloride (CaCl2), magnesium chloride hexahydrate (MgCl2.6H2O), 

and sodium bicarbonate (Na2HCO3), and ethanol (C2H5OH) were used as received from 

Sigma-Aldrich. The oil sample (dead oil) was supplied from a heavy oilfields located in the 

South of Iran (API: 17° @ 25 °C) The density and viscosity of crude oil were measured as 

973 kg.m
-3

 and 1320 mPa.s, respectively. Distilled water was used throughout the 

experiments. A synthetic sea brine sample was used for experiment tests, with total dissolved 

solids (TDS) of 2 wt.% was as a mixture of NaCl (1.71 wt.%), Na2SO3 (0.01 wt.%), CaCl2 

(0.32 wt.%), MgCl2.6H2O (0.09 wt.%) and Na2HCO3 (0.02 wt.%). 

2.2. Characterization. The sample weight loss measurement determined by 

thermogravimetric/differential thermal analysis (TG/DTA) and was performed using a 

TGA/SDT A851 Mettler Toledo instrument. The samples were run in an open alumina 

crucible under continuous air flow. The heating profile was equilibrated at 50 °C and then 

ramped at 10 °C.min-1. Transmission electron microscopy (TEM) was carried out using a 

Phillips EM 208 to determine the size, and morphology of the nanoparticles. The viscosities 

of the samples were measured with Brookfield viscometer model DV-III Ultra (Brookfield 

Instruments) with a small scale sample adapter and spindle no. 21 at 25 °C. A thermostat 
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water bath was used to maintain the temperature of the sample through a water jacket fitted 

to the small sample adapter. The bath temperature was maintained with an accuracy of 1 °C. 

The viscosity measurements were repeated three times each and the averages of the readings 

were taken for the data analysis. Sessile Drop (Kruss G10, Germany) was used to measure 

the static contact angles of crude oil, SDS and SDS/Si-NPs solutions on a microscope glass 

at room temperature. The data are an average of five measurements taken from various 

positions on the surface. Nikon LV100D optic microscope was used for the pore-throat and 

solution pathways images. The electrical conductivity measurements were performed using a 

Crison conductivity meter (Basic 30). The conductometer probe was washed with distilled 

water and calibrated using standard solution after each measurement. Different 

concentrations of SDS solutions were made in water and their conductivities were measured 

at ambient condition.  

2.3. Micromodel Experimental. The micromodel was composed of two glass 

plates and two drilled ports (inlet and outlet; 3 mm). The etched plate and the cover plate are 

brought together and sealed by implementing a special technique to form an enclosed pore 

space. This technique can be used for various types of reservoir conditions (water, oil, and 

gas), and has a pattern area of 6.5×6.5 cm
2
 etched flow network.

20
 The properties of the 

resulting micromodel are shown in Table 1. 

Table 1. Properties of the glass micromodel.  

Pore diameter 

(µm) 

Throat diameter 

(µm) 

Permeability 

(mD) 

Porosity (%) Etched thickness 

(µm)  

650 280 4.5 33 45 

 

The schematic of the micromodel pattern is shown in Figure 1. The design of the 

micromodel is simple and contains a fluid injection section (a syringe pump), an optical 

system that exposures light on fluid pattern, and a micro-model holder. Various solutions 

with different pore volumes were prepared to run each test in a glass micromodel using a 

Quizix pump. At the beginning of each run, the micromodel was saturated with brine until the 

system became free of air and bubbles (i.e., water saturation). Oil constantly injected through 

the channels and system was fully saturated with oil (100% initial oil saturation). Then, the 

micromodel was aged in oil for two weeks (to be strongly oil-wet). Finally, SDS and SDS/Si-
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NPs solutions were injected using a pump at the constant injection flow rate (0.0006 

cm3/min) and residual oil saturation to assess the amount of oil remaining was carried out 

after each flooding test by differences between initial original oil saturation and residual oil 

saturation values using image processing. Finally, SDS and SDS/Si-NPs solutions were 

injected at a constant injection flow rate (0.0006 cm
3
/min). After each flooding, residual oil 

saturation to assess the amount of oil remaining was carried out. The residual oil saturation 

analyses in pores and pore-throats were studied using image processing. The micromodel was 

cleaned between each individual run: The relevant cleaning fluids (distilled water, methylene 

chloride, acetone, and toluene) were applied using a syringe pump. The micromodel was 

dried in an oven at 70 °C for 2 h. Pressure monitoring was measured by the high-sensitive 

resolution of transducer and high-accuracy low-flow-rate Quizix pump was used to control 

the injection fluids through the glass micromodel.8 

 

Figure 1. Schematic of micromodel experimental set-up.  

3. RESULTS AND DISCUSSION  

Prior to investigation of the synergic effects between the fumed-Si nanoparticles (Si-NPs) and 

the sodium dodecyl sulfate (SDS) surfactant, we determined the concentration effects of SDS 

concentration alone. The critical micelle concentration (CMC) of SDS solution was 

determined by measuring the break point in the conductivity plot (Figure S2, see SI).26,27, 28 
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Based on these results the CMC value of SDS is 1824 ppm under the conditions employed in 

the micromodel system (see Experimental). Thus, surfactant micromodel injection 

experiments were carried out at different SDS concentrations around the optimum CMC 

value, i.e., 1600, 1800 and 2000 ppm.  

The oil recovery (%) was measured using the micromodel system (see Experimental). 

Representative oil recovery values as a function of pore volume injected (PVI) for SDS 

solutions are shown in Figure 2. Due to the symmetry of pores in the micromodel, the path 

the injected liquid choses to follow when displacing the fluid inside the porous media is 

essentially constant for similar compositions making comparison between compositional data 

meaningful. As can be seen from Figure 2, the oil recover increases with SDS concentration 

between 1600 and 1800 ppm; however, no further increase is observed at greater 

concentrations. It is interesting to note that at the beginning of the experiments when SDS 

solution was injected (PVI = 1), the oil recovery increases by increasing the SDS 

concentration. However, at higher pore volumes (where a great amount of injected fluid is 

being produced) the oil recovery is not affected by the SDS concentration (2.1 - 2.2 PVI). As 

a result, and considering the cost of surfactants and the environmental issues of using 

chemicals, the smallest concentration at which the best results are obtained (1800 ppm SDS) 

was chosen for the follow-up experiments.  

 

Figure 2. Oil recovery (%) obtained using the micromodel set up using various SDS 

concentrations.  
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The effect of SDS/Si-NPs solutions on oil recovery was examined by adding three 

different Si-NPs concentrations to a constant concentration SDS solution (1800 ppm): 1.8, 

2.0 and 2.2 wt%. As can be seen in Figure 3, the addition of 1.8 wt% Si-NP to 1800 ppm 

SDS results in a similar recovery as SDS alone until a PVI of 2.3, above which there is a 

divergence with a concomitant shift in the breakthrough point (from 2.1-2.2 PVI for SDS to 

2.55-2.7 for SDS/Si-NP). The increase in oil recovery is further enhanced by an increase in 

the Si-NP content up to 2 wt%, above which no further enhancement is observed. The 

breakthrough appears to be unaffected by the Si-NP content. The results indicate an increase 

of up to 13% oil recovery for the maximum concentration of the SDS/Si-NPs (2.2 wt.%), 

compared to the SDS solutions alone. Cheraghian et al. has reported that titanium dioxide 

NPs improved oil recovery in the peresence of surfactans at around their CMC values.29 

 

Figure 3. Plot of oil recovery (%) as measured using the micromodel system, as a function of 

the pore volume injected, for various concentrations of Si-NPs (1.8, 2.0, and 2.2 wt.%) added 

to 1800 ppm SDS.  

A qualitative illustration of SDS and SDS/Si-NPs solutions injection at different 

stages are shown in Figure 4 and 5, respectively. Figure 4 shows the fluid distribution in the 

micromodel during SDS (1800 ppm) injection. The black areas are the micromodel pathways, 

which are saturated with oil before SDS injection. Based on the image, as the SDS solution 

comes in contact with oil and as time passes during the injection, the channeling caused by 

the surfactant solution increases toward the outlet (Figure 4c) due to relatively low viscosity 

of the displacing fluid (SDS solution). In contrast, the SDS/Si-NPs solution form more 
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uniform sweeping during the injection and larger oil areas are covered by the solution, as is 

illustrated in Figure 5. As shown in Figure 4 and 5, the frontal structure through the 

micromodel is affected by the choice of SDS versus SDS/Si-NPs. We propose that SDS 

flooding results in viscous fingering due to the low viscosity of SDS in water compared to the 

oil, whereas the results for SDS/fumed-SiNPs is owing to homogenous front in micromodel. 

Therefore, the decrease in the channeling during SDS/fumed-SiNPs injection (because of 

increase in viscosity of the displacing fluid and possibly adsorption of fumed-SiNPs at 

interfaces
30

) results in improved oil sweeping towards the outlet of the micromodel, and 

therefore higher percentages of oil recovery.  

 

 

Figure 4. Qualitative illustration effect of SDS injection (1800 ppm) in the micromodel 

setup, at three sequential displacement time stages of (a) 180s, (b) 480s, and (c) 1020s.  

 

 

 

Figure 5. Qualitative illustration effect of SDS/SiNPs injection (2.0 wt.%) at three sequential 

displacement time stages of (a) 180s, (b) 480s, and (c) 1020s.  
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Microscopic images of SDS and SDS/Si-NPs flooding through the pores of the glass 

micromodel are shown in Figure 6. Figure 6a shows the fluid distribution of SDS injection, 

which certainly affects the trapped oil and the amount of oil saturation after the surfactant 

flooding. Figure 6b shows the oil spreading through the micromodel pores in the presence of 

SDS solution. This condition shows the glass micromodel shifts toward water-wet than oil-

wet medium. The majority of oil had remained in the corner of the pores after flooding which 

comes from the strong adhesion forces, which avoids oil displacing through the pores with 

SDS flooding. As is shown in Figures 6c and d, SDS/Si-NPs flooding results in the 

improvement in oil sweeping especially changes towards a strong water-wet medium 

compared to SDS flooding alone. The visualization results have shown that the amount of 

residual oil saturation through the pores and pore-throats after SDS/fumed SiNPS flooding is 

lower than SDS flooding. These results suggest that change in surfactant adsorption and 

wettability (due to bonding interactions between surfactant and NPs)
31

 are possible 

mechanisms for 13% improvement in oil recovery in the presence of SDS/Si-NPs (over SDS 

alone). 
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Figure 6. Digital microscope images of solution injection in the micromodel showing the 

pore-scale configuration and distribution of wetting and non-wetting phases within an 

initially preferential oil-wet medium for (a and b) SDS (1800 ppm) and (c and d) SDS/Si-NPs 

(1800 ppm/2 wt.%). 

 

Clearly the addition of Si-NPs to SDS results in a significant enhancement on oil 

recovery (Figure 3) as well as enhanced pore clearing (Figure 6); however, the chemical 

interactions are of interest. The thermogravimetric/differential thermal analysis (TG/DTA) of 

the dried samples for SDS (1800 ppm) and SDS/Si-NPs (1800 ppm/2.0 wt.%) were carried 

out under air (Figure S3, see SI). The major affect of adding Si-NPs appear to be a shift to 

higher temperatures (350 °C) of the major exotherm observed for SDS decomposition (280 

°C), consistent with bonding of surfactant on the surface of Si-NPs.
32,33

  

As noted above, Figures 6 appears to suggest that the enhancement in oil recovery 

could be due to a change in wettability. In order to evaluate the effect of SDS and SDS/Si-

NPs on wettability, contact angle measurements were carried out (Table 2). The influence of 

fluid-solid interaction on contact angle measurements in glass micromodel systems has been 

investigated in previous literatures.34-36 Figures 7a and b shows the contact angles of crude oil 

and SDS solutions at around 102º and 73º, respectively. In contrast, the contact angle of 

SDS/Si-NPs decreased to 11º (Figure 7c). The presence of NPs significantly changes the 

strong physiochemical interactions taking place between fluid-solid interfaces and can result 

in positive wettability alteration for oil extraction.37,38  

Table 2. Contact angles (o) of liquid-solid interface of different solutions.  

Materials Contact angle (º) 

Crude oil  102.2 ±0.8 

SDS (1600 ppm) 76±1 

SDS (1800 ppm) 72.5±0.5 

SDS (2000 ppm) 68.8±0.2 

SDS/Si-NPs (1600 ppm/1.8 wt.%) 13.0±0.5 

SDS/Si-NPs (1800 ppm/2.0 wt.%) 11±1 

SDS/Si-NPs (2000 ppm/2.2 wt.%) 9.8±0.5 
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Figure 7. Contact angle measurement (a) crude oil, (b) SDS (1800 ppm), and (c) SDS/Si-NPs 

(1800 ppm/2.0 wt.%).  

Effective oil sweeping through porous media toward the production wells depends 

greatly on optimum fluid viscosity. Rheological measurements for SDS and SDS/Si-NPs 

solutions were characterized with a rotational viscometer at room temperature. Figure 8 

shows the effect of shear rate on viscosity for the SDS (1800 ppm) and SDS/Si-NPs (1800 

ppm/2.0 wt.%) samples. At a lower shear rate value (100 s-1) the viscosity of SDS/Si-NPs 

was significantly higher compared to the SDS solutions alone. Both samples fit the Power 

Law (or Ostwald) model (Eq. 1), where: η is the viscosity, ��  is the shear rate, Κ is the 

consistency (viscosity at a shear of 1 s-1) and n is the Power law index. As may be seen from 

Table 3 both samples behave as shear-thinning (pseudo-plastic) fluids; consistent with the 

observed non-linear relationship between shear rate and shear stress (Figure S2). However, 

SDS (1800 ppm) is closer to Newtonian that SDS/Si-NPs (1800 ppm/2.0 wt.%). Given that 

the mass ratio of SDS/Si-NPs in the 1800 ppm/2.0 wt.% sample is ca. 1:11 and that the 

typical SDS micelle is 2 nm in diameter as compared 20-80 nm for the Si-NPs, it 

unreasonable to propose that the SDS forms monolayer coverage of the Si-NPs. Instead it is 

more likely that the Si-NPs are aggregated by the micelles, forming large aggregates 

relatively stable aggregates.39  

     � � Κ�� 	��	      (1) 

Table 3. Power law (Ostwald) parameters.  

Materials Consistency (mPa.s) Power law (flow) index 

SDS (1800 ppm) 4.9 0.82 
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SDS/Si-NPs (1800 ppm/2.0 wt.%) 565 0.25 

 

 

Figure 8. Plot of viscosity (mPa.s) as a function of shear rate (s-1) for (a) SDS (1800 ppm) 

and (b) SDS/Si-NPs (1800 ppm/2.0 wt.%), R2 = 0.998 and 0.989, respectively.  

Additional insight into the mechanistic differences between SDS and SDS/Si-NP 

solutions is obtained by visual inspection of the cross section of the micro channels. Figure 9 

shows schematic representations (a and b) with representative photographic images (c and d). 

As shown in Figure 9a and c, the first mechanism is related to the effect of SDS injection 

through oil pathway. In this case, there are sufficient oil recoveries, stemming from the SDS 

injection through the glass micromodel. However, the relatively low viscosity of surfactant 

solutions compared to oil, leads to channel formation and maximum oil recovery is ~45%. 

Upon addition of Si-NPs, oil displacement has changed through the micromodel pathway, 

which is shown in Figure 8b and d, due to an increase in the viscosity of the solution and 

results in displacement the larger amount of oil toward the micromodel outlet (up to ~ 58%).  
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Figure 9. Displacement differences on five-spot micromodel (a) SDS injection (1800 ppm), 

and (b) SDS/Si-NPs injection (1800 ppm/2.0 wt%).  

4. CONCLUSIONS 

The effect of Si-NPs on surfactant (SDS) mediated oil recovery has been investigated using a 

5-spot triangular glass micromodel as a porous medium. The effect of Si-NPs on wettability 

and viscosity were also determined. The result indicated that the presence of Si-NPs 

significantly improved the heavy oil recovery in the micromodel test, possibly due to the 

improvement in SDS adsorption, in the presence of NPs during the surfactant injection.The 

addition of Si-NPs to the surfactant solution leads to flow modification due to a change in 

viscosity. The viscosity values of the SDS/NPs solution were more than double the values of 

the surfactant solution alone. The contact angle data indicated that SDS/Si-NPs injection 

altered the wettability from oil wet to water-wet condition as a result of the hydrophilic 

nature of SiO2 nanoparticles. Consequently, SDS/Si-NPs solution can be used as an additive 

towards effective wettability alteration in oil reservoirs. Laboratory results showed that 

ultimate oil recovery by injection of 2 wt.% SiNPs in SDS was 13% higher than the ultimate 

oil recovery by surfactant alone. The results of this work support an improved insight into the 

role of Si-NPs and surfactants in enhanced oil recovery and future use in EOR formulations. 

We note that is some oil field applications the cost of NPs is prohibitive;40 however, in the 

present case we suggest that the increased performance and change in sweep mechanism 

could possibly outweigh upfront cost issues.  
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