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[Abstract] 

Historically, small molecules, including steroid hormones and cytokines, have been attributed a role 

in paracrine and endocrine signaling, and now include a new player: biological nanoparticles, or 

‘exosomes’. Generated intracellularly, and defined simply as nano-particulate packages of signaling 

moieties, exosomes have emerged as vehicles for highly specialized local and distant intercellular 

communication. Exosomes are increasingly being recognized as contributing factors in many diseases, 

and their potential as biomarkers and in therapeutics is rapidly emerging. This review highlights recent 

advances in the exploitation of exosomes in diagnostic and therapeutic applications. We discuss 

various facets of nanoparticles, namely, the isolation and manipulation of exosomes, the construction 

of synthetic exosome-like particles in vivo, and their potential use in the treatment of various diseases. 

Trends box  

·        Exosome diagnostics, although available, remain un-approved by regulatory agencies, and thus, 
might be used in parallel with existing approved tests. 

·        Exosome approaches to therapeutic interventions are far-reaching; from packaging of 
therapeutic agents, to driving immune responses. Applications range from oncology to regenerative 
medicine, and commercial GMP production at therapeutically relevant quantities is underway. 

·        Exosomes can trigger positive and negative immunomodulatory effects, as observed in early 
exosome clinical trials for advanced non-small cell lung cancer, thus potentially impacting on disease 
progression. 

·        The effects of MSC delivery to patients showing therapeutic benefit appear to be exosome-
derived as exosomes purified from MSCs can promote similar effects to MSC based treatments. 

·        The potential for tumor-derived exosomes to control the establishment of organ-specific pre-
metastatic niche has been demonstrated through their ability to program bone marrow-derived cells 
towards a pro-metastatic phenotype. 
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Exploring the Clinical Potential of Exosomes 

Cellular communication pathways include direct cell-to-cell contact, inter-cellular molecular 

messengers and exosomes. These 30-130 nm membrane bound nanoparticles harboring biomolecular 

payloads, offer significant potential in both detecting and treating diseases. Efforts to capture the 

exosomes’ potential are far reaching, from trans-species signaling to immune-system priming and 

drug delivery. Moreover, understanding any side-effects of their use in humans is essential. Whilst the 

complexities surrounding their therapeutic potential continue to be unraveled, the use of exosomes 

as diagnostic tools is underway, with prostate cancer exosome diagnostics being used alongside FDA 

approved tests. Clinical trials have evaluated the therapeutic potential of exosomes, and whilst 

demonstrating safety, have yet to show efficacy (Tables 1-3). Trials have largely involved using 

manipulated exosomes, rather than harnessing properties of native exosomes. For example, 

autologous dendritic cell-derived exosomes loaded with MAGE (Melanoma Associated Antigen) 

peptides are being used in a Phase II non-small cell lung cancer trial (clinicaltrials.gov/NCT01159288). 

In contrast, some biotechnology companies are producing exosomes from non-engineered stem cells, 

which necessitates research into the inherent mechanisms by which native exosomes target specific 

tissues and cell types, and an understanding of how tissues recognize such nanoparticles. The 

development of therapeutic exosomes will likely follow both paths, and require refined approaches 

for exosome isolation, programming of exosomes in vivo using genetic or epigenetic approaches, 

encapsulating therapeutics within purified exosomes, or the synthesis of semi-synthetic, more highly 

defined exosome-like therapeutic nano-vehicles (Figure 1). Using these approaches, it may become 

possible to tailor exosome-based therapeutics to treat disease. Here, we provide a review of exosome 

biogenesis and structure, before considering therapeutic and other applications. Finally, we consider 

the dynamic nature of exosomes and their interactions in vivo, before concluding how synthetic 

exosomes may overcome some of the limitations of native exosomes in therapeutic applications.  

 

Exosome Structure and Composition 

Exosomes have an aqueous core and lipophilic shell, and their amphiphilic properties enable them to 

compartmentalize and solubilize both native and introduced hydrophilic and hydrophobic materials 

(Box 1) [1]. Cargos include proteins, lipids, and RNAs that can be distinct from the cell’s endocytic 

origin. The endocytic origin includes endosomal proteins involved in transport and fusion (annexins 

and flotillin), cell targeting (tetraspanins), multi-vesicular body (MVB) proteins (Alix and TSG101) [2], 

as well as various proteins linked to lipid metabolism [3]. Extracellular matrix and cell surface proteins 
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such as collagens, integrins, and galectins [4], cell surface receptors and signaling molecules, 

intracellular cytoskeletal components, as well as metabolic enzymes and G proteins are also present 

[5]. In contrast to their cells of origin, exosomes are enriched in cholesterol, ceramide, 

phosphoglycerides, and long and saturated fatty-acyl chains, all of which may provide structural 

stability [2]. Morphologically distinct MVBs within the same cell result in distinctive exosome 

populations with unique molecular and biophysical characteristics [6,7]. Differences and changes in 

exosome composition are widely observed in vitro and in vivo in response to localized environmental 

conditions. For instance, inflammatory signals including lipopolysaccharides, TNFα, and IFNγ strongly 

affect the composition of exosomes released by dendritic [8] or mesenchymal stem cells [9]. Hypoxia, 

observed in the core of large tumors can modify exosome composition of human endothelial [10] and 

patient-matched glioblastoma multiforme tumor [11] cells.  

 

 

Exosomes: Function and Design 

Exosomes satisfy a number of design criteria, including the ability to package small chemical and 

biomolecular agents, cross biological barriers such as the blood brain barrier [12]. Structural 

characteristics such as size, shape, and surface properties (surface charge/chemistry and ligand 

density) directly impact on their behavior in complex processes including protein opsonization, blood 

circulation, tissue penetration, cell interaction, and renal clearance [1]. For example, the size of nano-

particles used in systematic delivery should be large enough to avoid rapid renal clearance, and small 

enough to evade reticuloendothelial system (RES) uptake, as determined in mice  [13]. Moreover, for 

human cancer therapy such as Doxil® (PEGylated nano-liposomes), particles of 10–100 nm in diameter 

can take advantage of tumoral vascular alterations to passively reach the tumor site, through 

enhanced permeability and retention effects [14]. In addition, net surface charge determines the 

colloidal stability of nanoparticles and their interactions with biological systems [15]. Positively 

charged nanoparticles undergo fast protein opsonization, and are quickly cleared by RES from blood 

circulation by murine RAW264.7 macrophages, whereas neutral or slightly negative surfaces reduce 

RES clearance to provide more efficient delivery to tumor sites in SKOV-3 human ovarian cancer 

xenograft mouse models [16]. 

 

Exosomes in Health and Disease 
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In humans, exosomes play pivotal roles in normal physiological and pathological conditions (Figure 1) 
[29–31], through long range signaling via blood, cerebrospinal fluid, and breast milk to modulate 
target cell behavior [32,33]. Exosomes drive multiple biological processes including modulation of 
gene expression via RNA intercellular transfer [34] and immuno-suppressive or immuno-stimulating 
responses [35–37]. Moreover, these nanovesicles have been implicated in antigen presentation and T 
cell activation in different contexts, including in vivo bacterial infections [17]. The role of exosomes in 
angiogenesis has also been acknowledged and recent studies have suggested that exosomes present 
in human pericardial fluid can enhance therapeutic angiogenesis and vascular repair in ischemic mice 
[18]. This beneficial effect has also been observed for normal cardiovascular physiology, with 
mesenchymal stem cell (MSC)-derived exosomes conferring cardioprotection in mice, as 
demonstrated by reduced myocardial ischemia/reperfusion injury of such exosome-treated animals 
[19]. By contrast, human monocyte-derived exosomes have been found to induce programmed cell 
death of vascular smooth muscle cells under inflammatory conditions [20], an important process in 
human vascular diseases. 

 

In cancer, tumor-derived exosomes have been shown to induce apoptosis of human pancreatic tumor 
cells [21] while inducing apoptosis of cytotoxic T lymphocytes as a tumor escape mechanism in an in 
vitro model of prostate cancer cell lines [22]. It has been further suggested that exosomes might favor 
or counteract tumor progression via dissemination of oncogenes or tumor suppressors between cells, 
in a context-dependent manner [23]. Moreover, in diseases such as pancreatic ductal adenocarcinoma 
(PDAC), tumor dissemination may involve the mechanistic contribution of exosomes to form pre-
metastatic niches, as was determined in the liver of PDAC patients [24]. Of note, because exosomes 
can naturally cross the plasma membrane of recipient cells [25], their manipulation can lead to 
therapeutic molecule delivery in a selective manner, for example in mouse αv integrin-positive breast 
cancer cells [26]. Moreover, aside from being able to efficiently cross the blood-brain-barrier to induce 
potentially significant therapeutic effects [27] in contrast to most non-engineered small molecule 
drugs, exosomes can also be modified or functionalized with the addition of tumor target ligands, as 
has been proposed for folic acid to promote tumor size reduction in a human lung cancer mouse 

xenograft model [28].  

As for pathogen infections, these biological nanoparticles might either function as clearing vehicles to 
expel invading bacteria from infected cells [29], or as vector-transmitted virulence factors to spread 
infections, as in the case of cutaneous leishmaniasis [30]. Due to the heterogeneity of induced 
biological effects on recipient cells, which appear to be triggered by distinct exosome subpopulations 
with unique molecular compositions [22], exosomes may open new avenues for exosome-based 

diagnostics and innovative therapeutic strategies. 

 

Strategies for Therapeutic Deployment of Exosomes 
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Native Exosomes  

Cells introduced into recipients to exploit native exosomes for disease treatment potentially offer the 
most direct route to exosome therapeutics. Exosomes from stimulated platelets have been shown to 
play a role in athero-thrombotic processes, impeding platelet aggregation and reducing levels of the 
platelet activator CD36, which might be considered as a potential therapeutic option of suppressing 
occlusive thrombosis [31].  Similarly, when secreted from mesenchymal stem cell (MSCs), exosomes 
appear to be significant effectors of MSC responses, rather than influencing the differentiation of 
MSCs in tissue repair [32]. For instance, MSC-derived exosomes have demonstrated cardiac and 
vascular benefits, including suppression of pulmonary hypertension (PH), vascular remodeling and 
inflammation in murine models of PH [32], as well as modulating angiogenesis in a human placental 
endothelial cell in vitro model [33]. Furthermore, exosomes derived from rat bone marrow MSCs have 
been reported to protect cardiomyocytes from ischemic injury in a rat model of myocardial infarction 
[34]. Human MSCs, isolated from bone marrow or adipose tissue appear to produce native exosomes 
with a wide range of effects, including regenerative capacities in cutaneous wound healing in a mouse 
model of skin incision [35] and skeletal muscle regeneration in  mouse model of muscle injury [36]. 
However, the mechanism of action of these effects remains to be characterized, and caution must be 
exercised until specific effector molecule(s) contained within MSC-derived exosomes along with their 

mechanistic role are identified [37]. 

 

Modification of Content via Parent Cell Treatment 

Treatment of cells to produce modified exosome content in order elicit a disease specific response has 
produced significant advances; this has been achieved either through exposure to various exogenous 
compounds such as cytokines, and gene transfection or stable genetic manipulation of the exosome-
producing parent cell (Box 2). Specifically, treatment of human platelets with aspirin has resulted in a 
decrease in cargo protein levels in platelet-derived exosomes, without altering total levels of exosome 
numbers [38]. Furthermore, murine bone marrow derived dendritic cells treated with recombinant 
murine IL-10 protein, have produced exosomes harboring a significant immunosuppressive effect, as 
demonstrated in a delayed-type hypersensitivity mouse model leading to reduced inflammation,  or 
in a murine collagen-induced arthritis model where the onset was reversed/repressed[39]. Another 

study documented that human vascular smooth muscle cells, engineered to carry fetuin-A (a 
calcification inhibitor), produced this factor which could be encapsulated in the cell-derived exosome 
MVs, which triggered vascular calcification under extracellular calcifying conditions in vitro [40]. 
Others initially reported that pulsing murine dendritic cells (DCs) with tumor peptides resulted in an 
increased ability of DC-derived exosomes to prime cytotoxic T cell immune responses against murine 
tumors [41]. Content can also be modified via cell transfection to deliver proteins and nucleic acids 
into exosomes;  for example, upon transfection of synthetic double-strand miR-143 microRNA into 
human MSCs, exosome-formed miR-143 was shown to be secreted extracellularly from exosomes, 
and subsequently transferred into osteosarcoma cells, suppressing cell migration in vitro [42].  
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In addition, recent research has demonstrated that treatment of human ovarian cancer with sub-
cytotoxic levels of decitabine --  a DNA methyltransferase (DNMT)  epigenetic inhibitor (used to treat 
myelodysplastic syndromes and acute myeloid leukemia), --triggered cytokine release from tumor 
cells; this resulted in cytotoxic T cell recruitment and immune-cell mediated cancer cell death [43]. 
This process might likely to involve exosome signaling, but such a hypothesis remains to be 
demonstrated. 

 

Modification of Content via Treatment of Isolated Exosomes 

Loading exosomes with endogenous or exogenous content (Box 2) following exosome purification has 
been evaluated for effectiveness against Huntington’s, Parkinson’s and Alzheimer’s diseases [44,45]. 
Insertion of siRNA targeting BACE1 in DC-derived exosomes resulted in targeted suppression of BACE1 
mRNA and protein in wild-type neuronal cells in mouse brains [46]. In addition, peptide antigens were 
shown to enhance immune responses in mice where ovalbumin-loaded exosomes induced T-cell 
proliferation in vitro and in vivo [47]. Similarly, upon loading bone marrow-derived exosomes with 
lipid-derived molecules including α-galactosylceramide, NK cell and T-cell innate anti-tumoral immune 
responses were induced in vivo in a murine melanoma cancer model [48]. Another example is that of 
vexosomes, which are virus vector capsids associated with exosomes, which in the case of AAV have 
enabled efficient transgene expression in murine cerebellum Purkinje cells upon transduction [49]. 
Moreover, for drug delivery purposes, paclitaxel-encapsulated vesicles have been shown to be 
effectively delivered into multi-drug resistant murine lung carcinoma cells [50].  

 

Negative Effects of Exosome Exposure 

Whilst exosomes provide effective tools for transportation of anti-cancer drugs with lower toxicity 
[51], it is important to consider their function as immuno-stimulating or immuno-suppressing moieties 
[52]. Exosomes have been proposed to play a role in shaping the tumor microenvironment through 
their involvement in various biological processes including angiogenesis, immune escape, and 
triggering an epithelial-to- mesenchymal transition (EMT) leading to metastasis initiation [53]. For 
instance, melanoma-derived exosomes have been shown to transfer the C-Met oncoprotein to bone 
marrow progenitor cells, inducing vascular leakiness at pre-metastatic sites, and promoting metastasis 
in mouse tumor models [54]. They also appear to influence drug resistance; for instance, exosomes 
isolated from an adriamycin-resistant breast cancer cell lines have been found to transfer drug 
resistance to drug-sensitive human breast cancer cell lines upon delivery of miR-222 in vitro [55]. An 
association between exosomes and obesity-related insulin resistance has also been reported; in this 
study, adipocyte-derived exosomes were found to activate adipose-resident macrophages and secrete 
inflammatory cytokines (L-6 and TNF-alpha), leading to insulin resistance in a ob/ob obesity mouse 

model [56]. 

 



7 
 

Exosomes as Potential Biomarkers 

The opportunity to exploit exosomes as biomarkers is an area of intense investigation. Current trends 
are focused on specific internal micro RNA markers that can be detected by PCR, and surface protein 
markers. The first clinical exosome products to appear on the market are exemplified by the 
“ExoDx®Prostate (IntelliScore)” test for prostate cancer that analyses exosomes isolated from urine 
for RNA biomarkers, currently used in combination with conventional PSA diagnostic tests 

(http://www.exosomedx.com/prostate-cancer-0).  

Biobanking 

Being able to access an individual’s exosome profile through a biobank, would further our approaches 
to personalized medicine through detailed clinical classification of complex diseases including cancers 
and metabolic disease [57]. To enable this, a standardized international approach to exosome 
isolation, characterization and storage needs to be established. 

 

Benefits within Regulatory Frameworks  

The European Union and United States regulatory agencies consider human exosome-based 
therapeutics as biological medicinal products, and, depending on pre- or post-isolation manipulations 
-- such as the genetic-manipulation or cell expansion of parent cells -- might be classified as advanced 
therapy medicinal products (ATMPs) [58]. When compared to MSC therapies, exosomes might be able 
to overcome safety concerns surrounding continued MSC proliferation, whilst having the same 
therapeutic effect. Presumably, exosomes might present a lower risk than cell-based therapeutic 
approaches. Nevertheless, the limited number of clinical trials, (Tables 1-3) reflects the difficulties 
associated with fully understanding molecular functions triggered by exosomes in target cell 

responses, and highlights the continued need for mechanism of action studies. 

 

Future Outlook 

To fully exploit the potential of exosomes, it will be critical to accurately define the modes of delivery 

to diseased tissues, either via systemic or localized delivery, or via localized assembly (Box 3). These 

considerations may include transit to target tissues and uptake, as well as the precise composition of 

exosomes or synthetic similars. 

Exosome Dynamics in Circulation 

Following release of exosomes into the circulation (or upon injection), these can move to sites that 

are distant from their point of origin/introduction, as observed from experiments using fluorescently 

labeled exosomes to monitor accumulation of siRNA delivery to the murine brain [46].  Indeed, one 

study used exosomes functionalized with a luciferase (gLuc)-lactadherin fusion protein to track 
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exosomes in vivo, upon intravenous injection in murine models; whole body imaging data revealed 

that exosomes exhibited very short half-lives following systemic administration, with less than 5% of 

administered exosomes remaining in the serum at 5 min post-injection [59]. This report proposed that 

this might be due to rapid clearance of exosomes from the circulation and/or to organ sequestration 

(e.g. by the liver) [59]. Similarly, miR-155 was shown to traffic from CD63-enriched B cell-derived 

exosomes that had been loaded with synthetic miR-155, into murine liver, adipose tissue, lung and 

muscle, but were absent from the thymus and heart, with plasma levels peaking at 5 min [60]. 

Consequently, the biodistribution of engineered exosomes containing different markers has indicated 

that these exosomes are short-lived in the circulation and in organs (5-40 mins) [59]. 

 

Organotropism and Mechanisms of Exosome Uptake  

Signal transduction from exosomes to cells occurs through membrane fusion or endocytosis, where 

specific exosome surface molecules drive cell targeting and adhesion (Box 2). Many exosomes contain 

major histocompatibility complex (MHC) class I and class II molecules involved in antigen binding and 

presentation; however, the requirement for MHC components in targeting does not appear to be an 

absolute requirement, as MHCI-/- and wild type derived murine exosomes can both induce T cell 

responses  [61]. In addition, integrins, annexins and tetraspanins are also present in these exosomes 

[2,62]. For example, based on proteomic analyses, specific α- and β-integrin combinations, such as 

α6β4 and α6β1 have been reported to direct human lung cancer cell exosomes to organ-specific sites 

in mouse models (i.e. lung), preparing an area for metastasis by fusing with specific tissue -resident 

cells (e.g. fibroblasts and epithelial cells)  [63]. These integrins also induced S100 protein synthesis in 

recipient cells, thus promoting local pro-migratory and pro-inflammatory activity [63].  Thus, specific 

exosome membrane composition can lead to selective tropism as well as recognition by recipient cells 

[63]. 

 
Towards Synthetic Exosomes 
 
Exosomes possess significant advantages over synthetic nano-vesicles, carrying multiple surface 

ligands in native conformations for cell targeting. The complexity of exosome structures, and the 

relatively low quantities produced by cells, offers challenges that may be overcome through the 

development of semi-synthetic or synthetic systems. The generation of exosome-mimetic vesicles is 

an exciting and important prospect for future therapeutic approaches. Synthetic nanovesicles, 

fabricated by forcing cells through microfluidic channels, have been assessed for augmented 

proliferation in murine skin fibroblasts [64] and as RNA carriers [65]. Since these nanovesicles are 
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generated directly from cells by extrusion, they are made up of cellular components including plasma 

membrane, membrane proteins, and intracellular biomolecules generated by the original cells.  

Serial extrusion through filters with diminishing pore sizes has produced exosome-mimetic 

nanovesicles following the breakdown of monocytes or macrophages, enabling delivery of 

chemotherapeutics into malignant tumors following systemic administration in mice [66]. These cell-

derived nanovesicles presumably have an almost identical targeting ability relative to parent cells, 

maintaining plasma membrane topology and constituent proteins; they also exhibit similar 

characteristics to naturally occurring exosomes, including size and membrane composition (e.g. the 

CD63 membrane marker) [66]. Moreover, hybrid exosomes, synthesized by fusing cell membranes 

with liposomes through freeze-thawing techniques, and subsequent cellular uptake studies of these 

vesicles have confirmed that their delivery function can be modified by changing the lipid composition 

[67].  

Using a new de novo exosome synthesis system, a multi-component drug iNPG-pDox (injectable 

NanoParticle Generator with polymer-Doxorubicin conjugate), it may be possible to achieve long-term 

cures in preclinical murine models of triple-negative breast cancer with lung and liver metastases 

(human equivalent of 20+ years, disease-free) [68].  This drug’s multi-stage nature essentially mimics 

MVB [69]. Specifically, it is designed so that its components act in a prescribed time sequence to 

overcome metastasis-associated biological barriers, and deliver chemotherapeutic agents 

preferentially to the perinuclear region of cancer cells, thus escaping the multi-drug resistance action 

of cell membrane-based efflux pumps [70]. A key finding for this effect was that doxorubicin-

containing nanoparticles needed to be formed inside cancer cells, as it was not sufficient to inject 

them systemically in mouse models of metastatic breast cancer [70]. iNPG-pDox generates exosome-

like nanoparticles once it preferentially reaches the metastatic microenvironment, and  upon 

internalization by tumor cells, the nanoparticles are cleaved at the nuclei into doxycycline, avoiding 

excretion by drug efflux pumps [70].  Because of its similarity to physiological nanoparticles, iNPG-

pDox can effectively deliver a mortal blow to cancer cells with high efficacy to otherwise untreatable 

cancer lesions [70]. 

Collectively, these different approaches provide a logical basis for the generation of reconfigurable 

semi-synthetic or synthetic exosomes, thereby increasing pharmaceutical acceptability through a 

controllable assembly process. 

 

Concluding Remarks 

The potential value of exosomes as therapeutic systems is increasingly promising, and for many, the 

safety and feasibility has been demonstrated in clinical trials. Nevertheless, it is clear that further 
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robust studies are necessary to deliver clinical outcomes. Future steps include the fine-tuning of 

therapeutic payloads, as well as targeting behavior and bioinspired redesign. We anticipate that these 

steps may open exciting new avenues for therapeutic application and facilitate clinical translation of 

these multi-tasked sentinels (see Outstanding Questions and Box 4). Ultimately, bridging nature with 

synthetic biology and biophysics will uphold the natural evolvability of exosomes into reconfigurable 

therapeutic systems. 

Outstanding questions box 

 Characterization exosome content requires multiple analytical approaches; there is a 
significant challenge in relating the highly complex content of an individual exosome, or the 
heterogeneous content among exosomes, to the biological effect. Is full characterization 
required? Will regulatory agencies deem that unnecessary, and approve clinical use in a 
similar way to cell-based therapeutics based on functionality? 

 Recently, cancer cells treated with non-cytotoxic doses of decitabine (therapeutic 
epigenome modulator) have resulted in cytokine release, triggering immune-cell attraction, 
and subsequent cancer cell cytotoxicity.  It is likely that this ‘holy grail’ approach to cancer 
cell drug-initiated self-killing might also involve the release of modified exosomes, but this is 
a question that remains to be explored. 

 Do specific/clinically active exosomes exhibit target cell specificity and can we identify the 
responsible cell surface features? An increased understanding of the contribution of the 
biophysical properties of exosomes toward target cell recognition and reception (rather than 
simplistic receptor-driven principles), will likely inform our ability to modulate the properties 
of exosomes. 

 Polarized trafficking of exosomes through regulated cytoskeletal remodeling might enable a 
directed release of exosomes; it may also establish a concentration gradient corridor for 
their intercellular delivery. What will be the most direct approaches to determine this? 

 Where does the convergence lie between natural and synthetic exosomes? Might we 
consider the reconfiguration of autologous or allogenic exosomes, and/or the synthesis of 
more complex liposome-like structures? 

 

 

 
References 
1  Ren, J. et al. (2016) From structures to functions: insights into exosomes as promising drug 

delivery vehicles. Biomater. Sci. 4, 910–921 

2  Kourembanas, S. (2015) Exosomes: Vehicles of intercellular signaling, biomarkers, and vectors 
of cell therapy. Annu. Rev. Physiol. 77, 13–27 

3  Record, M. et al. (2014) Exosomes as new vesicular lipid transporters involved in cell-cell 
communication and various pathophysiologies. Biochim. Biophys. Acta 1841, 108–120 

4  Dutta, S. et al. (2015) Proteomics profiling of cholangiocarcinoma exosomes: A potential role 
of oncogenic protein transferring in cancer progression. Biochim. Biophys. Acta 1852, 1989–
1999 



11 
 

5  Ung, T.H. et al. (2014) Exosome proteomics reveals transcriptional regulator proteins with 
potential to mediate downstream pathways. Cancer Sci. 105, 1384–1392 

6  Palma, J. et al. (2012) MicroRNAs are exported from malignant cells in customized particles. 
Nucleic Acids Res. 40, 9125–9138 

7  Willms, E. et al. (2016) Cells release subpopulations of exosomes with distinct molecular and 
biological properties. Sci. Rep. 6, 22519 

8  Segura, E. et al. (2005) Mature dendritic cells secrete exosomes with strong ability to induce 
antigen-specific effector immune responses. Blood Cells Mol. Dis. 35, 89–93 

9  Kilpinen, L. et al. (2013) Extracellular membrane vesicles from umbilical cord blood-derived 
MSC protect against ischemic acute kidney injury, a feature that is lost after inflammatory 
conditioning. J. Extracell. vesicles 2, 1–15 

10  de Jong, O.G. et al. (2012) Cellular stress conditions are reflected in the protein and RNA 
content of endothelial cell-derived exosomes. J. Extracell. Vesicles 1, 1–12 

11  Kucharzewska, P. et al. (2013) Exosomes reflect the hypoxic status of glioma cells and 
mediate hypoxia-dependent activation of vascular cells during tumor development. Proc. 
Natl. Acad. Sci. U. S. A. 110, 7312–7317 

12  Yang, T. et al. (2015) Exosome delivered anticancer drugs across the blood-brain barrier for 
brain cancer therapy in Danio rerio. Pharm. Res. 32, 2003–2014 

13  Li, S.-D. and Huang, L. (2009) Nanoparticles evading the reticuloendothelial system: role of 
the supported bilayer. Biochim. Biophys. Acta 1788, 2259–2266 

14  Maeda, H. (2015) Toward a full understanding of the EPR effect in primary and metastatic 
tumors as well as issues related to its heterogeneity. Adv. Drug Deliv. Rev. 91, 3–6 

15  Ayala, V. et al. (2013) Effect of surface charge on the colloidal stability and in vitro uptake of 
carboxymethyl dextran-coated iron oxide nanoparticles. J. Nanopart. Res. 15, 1874 

16  Xiao, K. et al. (2011) The effect of surface charge on in vivo biodistribution of PEG-oligocholic 
acid based micellar nanoparticles. Biomaterials 32, 3435–3446 

17  Smith, V.L. et al. (2017) Exosomes function in antigen presentation during an in vivo 
Mycobacterium tuberculosis infection. Sci. Rep. 7, 43578 

18  Beltrami, C. et al. (2017) Human Pericardial Fluid Contains Exosomes Enriched with 
Cardiovascular-Expressed MicroRNAs and Promotes Therapeutic Angiogenesis. Mol. Ther. 25, 
679–693 

19  Lai, R.C. et al. (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion 
injury. Stem Cell Res. 4, 214–222 

20  Sarkar, A. et al. (2009) Monocyte derived microvesicles deliver a cell death message via 
encapsulated caspase-1. PLoS One 4, e7140 

21  Ristorcelli, E. et al. (2008) Human tumor nanoparticles induce apoptosis of pancreatic cancer 
cells. FASEB J. 22, 3358–3369 

22  Abusamra, A.J. et al. (2005) Tumor exosomes expressing Fas ligand mediate CD8+ T-cell 
apoptosis. Blood Cells. Mol. Dis. 35, 169–173 

23  Rak, J. and Guha, A. (2012) Extracellular vesicles--vehicles that spread cancer genes. Bioessays 
34, 489–497 



12 
 

24  Costa-Silva, B. et al. (2015) Pancreatic cancer exosomes initiate pre-metastatic niche 
formation in the liver. Nat. Cell Biol. 17, 816–826 

25  Tian, T. et al. (2013) Dynamics of exosome internalization and trafficking. J. Cell. Physiol. 228, 
1487–1495 

26  Tian, Y. et al. (2014) A doxorubicin delivery platform using engineered natural membrane 
vesicle exosomes for targeted tumor therapy. Biomaterials 35, 2383–2390 

27  Zhuang, X. et al. (2011) Treatment of brain inflammatory diseases by delivering exosome 
encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol. Ther. 19, 
1769–1779 

28  Munagala, R. et al. (2016) Bovine milk-derived exosomes for drug delivery. Cancer Lett. 371, 
48–61 

29  Miao, Y. et al. (2015) A TRP Channel Senses Lysosome Neutralization by Pathogens to Trigger 
Their Expulsion. Cell 161, 1306–1319 

30  Atayde, V.D. et al. (2015) Exosome Secretion by the Parasitic Protozoan Leishmania within 
the Sand Fly Midgut. Cell Rep. 13, 957–967 

31  Srikanthan, S. et al. (2014) Exosome poly-ubiquitin inhibits platelet activation, downregulates 
CD36 and inhibits pro-atherothombotic cellular functions. J. Thromb. Haemost. 12, 1906–
1917 

32  Lee, C. et al. (2012) Exosomes mediate the cytoprotective action of mesenchymal stromal 
cells on hypoxia-induced pulmonary hypertension. Circulation 126, 2601–2611 

33  Salomon, C. et al. (2013) Exosomal signaling during hypoxia mediates microvascular 
endothelial cell migration and vasculogenesis. PLoS One 8, e68451 

34  Kang, K. et al. (2015) Exosomes Secreted from CXCR4 Overexpressing Mesenchymal Stem 
Cells Promote Cardioprotection via Akt Signaling Pathway following Myocardial Infarction. 
Stem Cells Int. 2015, 659890 

35  Hu, L. et al. (2016) Exosomes derived from human adipose mensenchymal stem cells 
accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci. 
Rep. 6, 32993 

36  Nakamura, Y. et al. (2015) Mesenchymal-stem-cell-derived exosomes accelerate skeletal 
muscle regeneration. FEBS Lett. 589, 1257–1265 

37  Baglio, S.R. et al. (2015) Human bone marrow- and adipose-mesenchymal stem cells secrete 
exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res. Ther. 6, 127 

38  Goetzl, E.J. et al. Human plasma platelet-derived exosomes : effects of aspirin. FASEB J. 30, 
2058-2063 

39  Kim, S.-H. et al. (2005) Exosomes derived from IL-10-treated dendritic cells can suppress 
inflammation and collagen-induced arthritis. J. Immunol. 174, 6440–6448 

40  Kapustin, A.N. et al. (2015) Vascular smooth muscle cell calcification is mediated by regulated 
exosome secretion. Circ. Res. 116, 1312–1323 

41  Zitvogel, L. et al.  (1998) Eradication of established murine tumors using a novel cell-free 
vaccine: dendritic cell-derived exosomes. Nat Med. 4, 594-600 

42  Shimbo, K. et al. (2014) Exosome-formed synthetic microRNA-143 is transferred to 



13 
 

osteosarcoma cells and inhibits their migration. Biochem. Biophys. Res. Commun. 445, 381–
387 

43  Peng, D. et al. (2015) Epigenetic silencing of TH1-type chemokines shapes tumour immunity 
and immunotherapy. Nature 527, 249–253 

44  Liu, R. et al. (2013) Synthetic nucleic acids delivered by exosomes: A potential therapeutic for 
generelated metabolic brain diseases. Metab. Brain Dis. 28, 551–562 

45  EL Andaloussi, S. et al. (2013) Exosomes for targeted siRNA delivery across biological barriers. 
Adv.Drug Deliv.Rev. 65, 391–397 

46  Alvarez-Erviti, L. et al. (2011) Delivery of siRNA to the mouse brain by systemic injection of 
targeted exosomes. Nat. Biotechnol. 29, 341–345 

47  Qazi, K.R. et al. (2009) Antigen-loaded exosomes alone induce Th1-type memory through a B-
cell-dependent mechanism. Blood 113, 2673–2683 

48  Gehrmann, U. et al. (2013) Synergistic induction of adaptive antitumor immunity by 
codelivery of antigen with α-galactosylceramide on exosomes. Cancer Res. 73, 3865–3876 

49  Hudry, E. et al. (2016) Exosome-associated AAV vector as a robust and convenient 
neuroscience tool. Gene Ther. 4, 380–392 

50  Kim, M.S. et al. (2015) Development of Exosome-encapsulated Paclitaxel to Overcome MDR 
in Cancer cells. Nanomedicine Nanotechnology, Biol. Med. 12, 655–664 

51  Yu, D. D. et al. (2015) Exosomes in development, metastasis and drug resistance of breast 
cancer. Cancer Sci. 106, 959–964 

52  Robbins, P.D. and Morelli, A.E. (2014) Regulation of Immune Responses by Extracellular 
Vesicules. Nat. Immunol. 14, 195–208 

53  Roma-Rodrigues, C. et al. (2014) Exosome in tumour microenvironment: overview of the 
crosstalk between normal and cancer cells. Biomed Res. Int. 2014, 179486 

54  Peinado, H. et al. (2012) Melanoma exosomes educate bone marrow progenitor cells toward 
a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 

55  Yu, D. D. et al. (2015) Exosomes from adriamycin-resistant breast cancer cells transmit drug 
resistance partly by delivering miR-222. Tumor Biology 37, 3227–3235 

56  Deng, Z. et al. (2009) Adipose tissue exosome-like vesicles mediate activation of macrophage-
induced insulin resistance. Diabetes 58, 2498–2505 

57  Mora, E.M. et al. (2015) Biobanking of Exosomes in the Era of Precision Medicine: Are We 
There Yet? Int. J. Mol. Sci. 17, 1-13  

58  Hanna, E. et al. (2016) Advanced therapy medicinal products: current and future 
perspectives. J. Mark. Access Heal. Policy 4, 31036 

 

59  Takahashi, Y. et al. (2013) Visualization and in vivo tracking of the exosomes of murine 
melanoma B16-BL6 cells in mice after intravenous injection. J. Biotechnol. 165, 77–84 

60  Bala, S. et al. (2015) Biodistribution and function of extracellular miRNA-155 in mice. Sci. Rep. 
5, 10721 

61  Hiltbrunner, S. et al. (2016) Exosomal cancer immunotherapy is independent of MHC 



14 
 

molecules on exosomes. Oncotarget 7, 38707–38717 

62  McKelvey, K.J. et al. (2015) Exosomes: Mechanisms of Uptake. J. Circ. Biomarkers 4, 1 

63  Hoshino, A. et al. (2015) Tumour exosome integrins determine organotropic metastasis. 
Nature 527, 329–335 

64  Jeong, D. et al.  (2014) Nanovesicles engineered from ES cells for enhanced cell proliferation. 
Biomaterials 35, 9302–9310 

65  Jo, W. et al.  (2014) Microfluidic fabrication of cell-derived nanovesicles as endogenous RNA 
carriers. Lab Chip. 14, 1261–1269 

66  Jang, S.C. et al. (2013) Bioinspired exosome-mimetic nanovesicles for targeted delivery of 
chemotherapeutics to malignant tumors. ACS Nano. 7, 7698–7710 

67  Sato, Y.T. et al. (2016) Engineering hybrid exosomes by membrane fusion with liposomes. Sci. 
Rep. 6, 21933 

68  Xu, R. et al. (2016) An injectable nanoparticle generator enhances delivery of cancer 
therapeutics. Nat. Biotech. 34, 414–418 

69  Wolfram, J. et al. (2015) Multistage vector (MSV) therapeutics. J. Control. Release 219, 406–
415 

70  Xu, R. et al. (2016) An injectable nanoparticle generator enhances delivery of cancer 
therapeutics. Nat. Biotech. 34, 414–418 

71  Harding, C. et al. (1983) Receptor-mediated endocytosis of transferrin and recycling of the 
transferrin receptor in rat reticulocytes. J. Cell Biol. 97, 329–339 

72  Pan, B.T. et al. (1985) Electron microscopic evidence for externalization of the transferrin 
receptor in vesicular form in sheep reticulocytes. J. Cell Biol. 101, 942–948 

73  Trams, E.G. et al. (1981) Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. 
Biochim Biophys Acta. 645, 63–70 

74  Colombo, M. et al. (2014) Biogenesis, Secretion, and Intercellular Interactions of Exosomes 
and Other Extracellular Vesicles. Annu. Rev. Cell Dev. Biol 30, 255–289 

75  Babst, M. et al. (2002) Endosome-associated complex, ESCRT-II, recruits transport machinery 
for protein sorting at the multivesicular body. Dev Cell 3, 283–289. 

76  Buschow, S.I. et al. (2009) MHC II In dendritic cells is targeted to lysosomes or t cell-induced 
exosomes via distinct multivesicular body pathways. Traffic 10, 1528–1542 

77  Carayon, K. et al. (2011) Proteolipidic composition of exosomes changes during reticulocyte 
maturation. J. Biol. Chem. 286, 34426–34439 

78  Raposo, G. et al. (1996) B Lymphocytes Secrete Antigen-presenting Vesicles. J. Exp. Med. 183, 
1161–1172 

79  Chaput, N. and Théry, C. (2011) Exosomes: immune properties and potential clinical 
implementations. Semin. in Immunopathol. 33, 419-440 

80  Valadi, H. et al. (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel 
mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 

81  Liu, Y. et al. (2015) Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the 
treatment of morphine relapse. Sci. Rep. 5, 17543 



15 
 

82  Cho, J.A. et al. (2005) Exosomes: A new delivery system for tumor antigens in cancer 
immunotherapy. Int. J. Cancer 114, 613–622 

83  Rivoltini, L. et al. (2016) TNF-related apoptosis-inducing ligand (TRAIL)-armed exosomes 
deliver pro-apoptotic signals to tumor site. Clin. Cancer Res. 22, 3499–3512 

84  Delcayre, A. et al. (2005) Exosome Display technology: applications to the development of 
new diagnostics and therapeutics. Blood Cells. Mol. Dis. 35, 158–168 

85  Rountree, R.B. et al. (2011) Exosome targeting of tumor antigens expressed by cancer 
vaccines can improve antigen immunogenicity and therapeutic efficacy. Cancer Res. 71, 
5235–5244 

86  Smyth, T. et al. (2014) Surface functionalization of exosomes using click chemistry. Bioconjug. 
Chem. 25, 1777–1784 

87  Villarroya-beltri, C. et al. (2014) Sorting it out: regulation of exosome loading. Semin Cancer 
Biol 28, 3–13 

88  Hoshino, D et al. (2013) Exosome secretion is enhanced by invadopodia and drives invasive 
behavior. Cell Rep. 5, 1159–1168 

89  Caldieri, G. and Buccione, R. (2010) Aiming for invadopodia: organizing polarized delivery at 
sites of invasion. Trends Cell Biol. 20, 64–70 

90  Sinha, S. et al. (2016) Cortactin promotes exosome secretion by controlling branched actin 
dynamics. J Cell Biol. 214, 197-213 

91  Gangoda, L. and Mathivanan, S. (2016) Cortactin enhances exosome secretion without 
altering cargo. J Cell Biol. 214, 129–131 

92  D’Souza-Schorey, C. and Clancy, J.W. (2012) Tumor-derived microvesicles: shedding light on 
novel microenvironment modulators and prospective cancer biomarkers. Genes Dev. 26, 
1287–1299 

93  Muralidharan-Chari, V. et al. (2009) ARF6-regulated shedding of tumor cell derived plasma 
membrane microvesicles. Curr Biol. 19, 1875–1885 

94  Muralidharan-Chari, V. et al. (2010) Microvesicles: mediators of extracellular communication 
during cancer progression. J Cell Sci. 123, 1603–1611 

95  Mittelbrunn, M. et al. (2015) Organizing polarized delivery of exosomes at synapses. Traffic 
16, 327–337 

96  Aoyagi, K. et al. (2005) The activation of exocytotic sites by the formation of 
phosphatidylinositol 4,5-bisphosphate microdomains at syntaxin clusters. J. Biol. Chem. 280, 
17346–17352 

97  Martin, T.F. (2015) PI(4,5)P₂-binding effector proteins for vesicle exocytosis. Biochim Biophys 
Acta. 1851, 785–793. 

98  Morse, M.A. et al. (2005) A phase I study of dexosome immunotherapy in patients with 
advanced non-small cell lung cancer. J. Transl. Med. 3, 9 

99  Escudier, B. et al. (2005) Vaccination of metastatic melanoma patients with autologous 
dendritic cell ( DC ) derived-exosomes : results of the first phase I clinical trial. J. Transl. Med. 
3, 10 

100  Dai, S. et al. (2008) Phase I clinical trial of autologous ascites-derived exosomes combined 



16 
 

with GM-CSF for colorectal cancer. Mol. Ther. 16, 782–790 

 

Box 1. Biogenesis of the Exosome 

Exosomes were independently discovered in 1983 by P. Stahl [71] and R. Johnstone [72], when 

maturing red blood cells from rat and sheep were shown to jettison ~30-100nm diameter globules 

into the extracellular matrix. Receptor-bound transferrin was sequestered into nano-vesicles that 

formed inside bigger multi-vesicular endosomes (MVE), some of which fused with the cell membrane 

and discharged the transferrin containing nano-vesicles outside the cell [71]. Years later, those nano-

vesicles were termed “exosomes” [73] in order to differentiate this new class of organelle from 

endosomal shuttles. 

 

Exosomes are formed by invagination of the limiting membrane of “sorting” vacuolar endosomes 

towards the lumen of these compartments, thus forming intraluminal vesicles (ILVs); endosomes are 

then referred to as MVEs or multi-vesicular bodies (MVBs) (Figure I) [62,74]. Across species, MVB and 

ILV formation is driven by the highly conserved, thirty protein subunit, endosomal sorting complex 

required for transport (ESCRT) complexes 0-III ESCRT-0, -I, -II and -III) [75]. An alternate mechanism 

also exists where lipids generated in the limiting membrane of MVBs induce inward budding, thus 

forming  ILVs in an ESCRT-independent manner [76].  Analysis of exosome content released during rat 

reticulocyte maturation has revealed the existence of three distinct sorting pathways for proteins and 

lipids into exosomes [77]. The first pathway relies on the protein Alix and either ESCRT complexes 

and/or lysobisphosphatidic acid, while the second and third pathways are associated with membrane 

lipid microdomains enriched in ceramides, and aggregating factors such as lectins, respectively [77].  

 

The observation of the immunomodulatory function of B lymphocyte exosomes in triggering CD4+ 

specific T cell responses, revealed a role for exosomes as transporters of MHC class II-peptide 

complexes between immune cells [78]. Subsequently, exosome release from dendritic cells was 

demonstrated where exosomes expressing MHC class I, class II and T-cell costimulatory molecules 

were shown to suppress growth of established murine tumors in a T cell-dependent manner, paving 

the way for the clinical consideration of exosomes as cell-free ‘vaccines’ in cancer immunotherapy 

[41,79]. recently, exosomes were revealed to contain functional RNA (mRNA and microRNA (miRNA)) 

[80]. Moreover, when murine exosomes were transferred into human cells in vitro, murine proteins 

were detected in these cells, showing that mRNA shuttled via exosomes could be translated to 



17 
 

functional proteins[80]. Such exosomal RNA content was absent from the cytoplasm of donor cells, 

suggesting that  protein production stemmed exclusively from extracellular signaling [80]. 

 

Box 2. Regulating Targeted Exosome Uptake  

Exosome manipulation as a consequence of cell treatment with a specific targeting antigen has 
resulted in antigen display on the exosome surface. For instance, a study used exosomes carrying 
neuron-specific rabies viral glycoprotein (RVG) peptide on the membrane surface to “ship” opioid 
receptor mu (MOR) siRNA into mouse brains as a model to treat morphine addiction, further 
demonstrating the capacity of exosomes to cross the blood brain barrier [81]. Moreover, the 
expression, in two MHC type-distinct mouse cell lines of the target tumor antigen human MUC1 
(hMUC1) -- a glycoprotein (mucin) overexpressed in different types of tumors--  produced exosomes 
which expressed that same peptide on their surface [82]. These exosomes were capable of stimulating 
immune cells and suppressing of hMUC1-expressing tumor growth in mice in a MUC1-specific and 
dose-related manner [82]. Another study showed that exosomes surface-armed with TRAIL (TNF-
Related Apoptosis-Inducing Ligand) targeted different tumor types, inducing apoptosis and inhibiting 
cell growth in tumor-bearing mice [83]. Others have also reported that the display of exosomal 
membrane protein (Lamp2b) fused to αv integrin-specific iRGD peptide, could deliver Doxorubicin to 
αv integrin-positive breast cancer cells in mice [26]. To enhance this approach, glycosylation motifs 
have since been introduced at various positions in surface antigens in cell lines, arresting protease 
mediated degradation, and enhancing targeting-antigen stability, whilst retaining their ability to 
interact with target proteins [80]. As such, the concept of the exosome glycome  has emerged [81], in 
which assumes that the glycome contributes significantly to exosome function, including the control 
of surface charge through  modulation of silicate molecules on glycan structures in the cell membrane 

[1]. 

Other techniques have been developed to enrich exosome surfaces, including Exosome Display, a 
methodology that exploits the ability to express non-naturally occurring proteins on these vesicles 
[84]. This approach has proved to be resourceful for engineering exosome surfaces to display 
multimeric, trans-membrane or soluble antigens which are not normally present. For instance, 
exosome-surface localized lactadherin has been achieved by binding its C1C2 domain to exosome 
lipids; as such, antigens or extracellular domains of membrane proteins can be displayed on exosomes 
after fusion with the C1C2 domain, and this has been used in the fabrication of anti-tumor antibodies 
[84,85]. Similarly, Click Chemistry has proved efficient for the conjugation of small molecules, such as 
Azide-Fluor 545, to the exosome surface, showing no alteration of the size or association of small 

molecules with recipient cells, and ensuring a reliable functionalization method [86]. 

 

Box 3. Force-Generating Mechanisms of Exosome Secretion 
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The involvement of actin and actomyosin-mediated forces in exosome secretion in invasive cancer 
cells occurs from protrusive actin-rich structures called invadopodia that establish docking sites for 
MVBs [87–89]. By inhibiting actin polymerization at invadopodia sites, polarized delivery of MVBs to 
invadopodia and exosome secretion can become impaired [87,88]. 

The regulation of actin filament dynamics is a means of exosome secretion modulation in different 
cancer model systems. Cortactin, an activator of the actin polymerizing complex Arp2/3 has been 
shown to enhance MVBs docking at the plasma membrane with subsequent exosome release; this 
occurs via assembly and stabilization of actin filament branches in invadopodia-like structures [90]. Of 
note, cortactin knockdown or overexpression in head or neck squamous cancer cells in vitro has been 
shown to induce the release of exosomes from invadopodia without altering significantly exosome 
biogenesis [90,91]. Actomyosin-mediated contractility at the cell cortex has also been reported to 
facilitate actin-bound MVB movement toward the plasma membrane by a mechanism that depends 
on the pulling force of non-muscle myosin II on the sides of future docking sites for MVBs [87,92–94]. 
Such subcellular dynamics are dependent on interactions with cytoskeleton-based force generating 
systems (such as microtubules, actin and actomyosin),  which is in turn are regulated by Rab proteins 
and their effectors [95].  At initial maturation stages, endosomes are transported along microtubules 
to the center of the cell by dynein/dynactin molecular motors[95], whereas translocation of MVBs to 
the plasma membrane requires kinesin-dependent movement towards microtubule plus ends [87], in 
coordination with actin and actomyosin cytoskeleton, GTPases and lipid second-messengers [87,95]. 
In polarized cells, such as lymphocytes, neurons and epithelia, specific lipid components, including 
cholesterol, sphingomyelin, and phosphoinositides domains of the plasma membrane harbor an 
increased capacity to recruit specific proteins that regulate the cytoskeleton, as well as those within 
signaling cascades that control vesicle tethering, membrane fusion and excision (Figure II) [96,97]. 

The docking and fusion of MVBs to specific points in the plasma membrane strongly depend on the 
structural organization and polarity of the cytoskeletal trafficking machinery, as well as on lipid 
composition and distribution; consequently, regulating these functions and properties may indeed  
lead to advantageous delivery of exosomes for signal confinement and enhanced uptake by recipient 
cells [95]. 

 

Box 4. Clinician’s Corner  

·        Exosomes, 30-100nm extracellular vesicles produced by all cells in the body, are biological 
signaling systems that function to facilitate short and long range intercellular communication 
including the transfer of molecules (DNA, RNA, proteins, lipids) and therefore molecular information 
between cells. 

·        Exosomes are being evaluated for their potential as disease specific biomarkers, vectors for 
drug delivery, and therapeutic agents per se, with clinical trials currently being undertaken for these 
applications. 

·        GMP stem cells therapeutics have the potential to also provide excellent sources of therapeutic 
exosomes. For example, when cultured in specific media CTX cells from ReNeuron have been shown 
to preferentially enrich a set of microRNAs contained within their exosomes which demonstrate 
anti-cancer properties in pre-clinical models. 

·        Exosomes could be responsible for problems associated with lack of response to current 
therapeutic approaches. HER2 presenting exosomes have been isolated from HER2-expressing 
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breast cancer models, and inhibition of Trastusumab activity through the presence of these 
exosomes has been shown. By extension this could also lead to decrease in activity to the ADC 
Trastuzumab emtansine (Kadcyla®). 

 

Glossary  

Nanoparticles: particles with dimensions ranging from 1 to 100nm. 

Multi-vesicular endosomes (MVE): Intra-luminal vesicles formed by inward budding of endosomal 
membranes as a function of the ESCRT machinery. 

Amphiphilic: a term describing a chemical compound possessing both hydrophilic 
and lipophilic properties. 

Opsonization: a process in which a supramolecular structure is functionalized or coated with a 
substance called an opsonin, marking the structure for selective cell or tissue recognition. 

Reticuloendothelial system (RES): also known as macrophage system, is a part of the 
immune system that consists of the phagocytic cells located in reticular connective tissue. 

Colloidal stability: a physical state that characterizes the relative ability of particles to remain 
dispersed in solution at equilibrium. 

Vexosomes: endogenously enveloped adeno-associated virus (AAV) vectors into exosomes. 

Exosome Display: a methodology enabling the manipulation of exosome protein content based on 
the identification of specific protein domains that mediate the distribution of proteins on exosomes. 

Click Chemistry: organic chemistry methodology that uses highly reliable and selective reactions 
designed to rapidly join small modular units together in high yield, without offensive by-products. 

Anisotropic: describes physical properties of a structure that exhibits different values depending on 
the direction from which they are measured. 

Invadopodia:  actin-rich protrusions of the plasma membrane; they are associated with degradation 
of the extracellular matrix in cancer invasiveness and metastasis. 

 

Figure legends 

Figure 1. The Multi-Faceted Exosome. Exosomes are composed of two major functional 
compartments, the external bilayer (yellow circle) and the internal ‘cargo bay’. Exosomes can be 
broadly classified into two groups; native (produced internally by an organism) or modified externally 
(blue arrows), through cell growth in conditioning media, reprogramming of content and/or 
membrane composition by cell treatment with external agents (drugs, genetic modification), and 
loading of novel content (blue boxes). Exosomes, administered exogenously, or endogenously from 
implanted or endogenous cells, can have short or long distance effects targeting specific cells and 
inducing a positive molecular modulation (e.g. triggering cancer cell death) to the target (green) as a 
function of either exosome content or bilayer composition/biophysical effect. In addition exosomes 
have also been shown to activate immune responses to initiate immune-protective functions. 
Exosomes can also have a negative effect, including pacifying the immune system so as for diseased 
cells to evade recognition, and in triggering the establishment of niche environments for metastatic 
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cancer. Such exosomes as well as others simply originating from diseased cells, but without yet a 
defined function, will make effective biomarkers for disease identification and monitoring. 

 

Figure I (in Box 1). The Formation of Exosomes. Inward budding of the plasma membrane originates 
the formation of early endosomes (not shown), which then mature into late endosomes or multi-
vesicular bodies (MVBs). Intraluminal vesicles (ILVs) are generated by invagination of MVBs. MVBs 
release their content extracellularly after fusion with the plasma membrane, and secreted ILVs are 
now, designated exosomes. Inset: transmission electron microscopy image of neural stem cells 
releasing extracellular vesicles of various sizes. Scale bar corresponds to 1μm.  “Courtesy of ReNeuron, 
UK”.  



21 
 

 

Figure II (in Box 2). Cell Manipulation for Polarized Exosome Secretion. Exosome release normally 
occurs following the fusion of MVBs at random points in the cell membrane due to the anisotropic 
arrangement of the cytoskeleton along which MVBs transit (top). The establishment of actin-rich 
invadopodia targets MVBs, directing exosome release (bottom), which can be inhibited by blocking 
the function of cortactin.  Direction of MVB and exosome movement/transport (arrows). 
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Table 1. Current or Recently Completed Registered NIH Clinical Trials Involving Exosomes as 
Diagnostic Agents (clinicaltrials.gov).  

Study Title Disease Study Design Start Date Reference 

Circulating Exosome As Potential Prognostic  
And Predictive Biomarkers In Advanced  
Gastric Cancer Patients: A Prospective  
Observational Study ("EXO-PPP Study")  

Gastric Cancer  Prospective Trial  
Observational  

Phase not provided  
(currently recruiting)  

Jan 2013  NCT01779583 
 

An Observational, Single-Institution  
Pilot/Feasibility Study of Exosome Testing as a 

Screening Modality for Human  
Papillomavirus-Positive Oropharyngeal Squamous Cell 

Carcinoma  

Oropharyngeal 
Cancer  

  

Prospective Trial  
Observational  

Phase not provided  
(currently recruiting)  

Feb 2015  NCT02147418 
 

LRRK2 and Other Novel Exosome Proteins in  
Parkinson's Disease  

Parkinson’s 
Disease  

Prospective Trial  
Observational  

Phase not provided  
(ongoing, not 

recruiting)  

Jan 2013  NCT01860118 
 

Clinical Research for the Consistency Analysis of PD-L1 
in Cancer Tissue and Plasma Exosome   

Non-small cell 
lung cancer  

  

Prospective Trial   
Interventional  

Phase not provided  

Oct 2016  NCT02890849 
 

Clinical Research for the Consistency Analysis of PD-L1 
in Lung Cancer Tissue and Plasma Exosome Before and 

After Radiotherapy  

Non-small cell 
lung cancer  

  

Prospective Trial   
Interventional  

Phase not provided  

Oct 2016  NCT02869685 
 

Pilot Study With the Aim to Quantify a Stress Protein in 
the Blood and in the Urine for Early 
Diagnosis of Malignant Solid Tumors 

Breast cancer, 
ovarian cancer,   
non-small cell 
lung cancer. 

Interventional  
Phase not provided  

  

Sep 2015  NCT02662621 
 

Detection of Circulating Biomarkers of Immunogenic 
Cell Death After Radiotherapy and Chemotherapy: An 

Exploratory Study 

Non Small Cell 
Lung Cancer  

  

Interventional  
Phase not provided  

  

Nov 2016  
  

NCT02921854 
 

Early Biomarkers of Tumor Response in High Dose 
Hypofractionated Radiotherapy Word, Package 3: 

Immune Response 

Carcinoma,  
Hepatocellular  

Colorectal 
Neoplasms  
Melanoma  

Kidney 
Neoplasms  

Interventional  
Phase not provided  

  

Sep 2015  
  

NCT02439008 
 

Anaplastic Thyroid Cancer and Follicular Thyroid 
Cancer-derived Exosomal Analysis Via 

Treatment of Lovastatin and Vildagliptin and Pilot 
Prognostic Study Via Urine Exosomal 

Biological Markers in Thyroid Cancer Patients 

Thyroid Cancer  
  

Prospective Trial  
Observational  

Phase not provided  
  

Aug 2016  NCT02862470 
 

NCT - ClinicalTrials.gov registry number 
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Table 2. Current or Recently Completed Registered NIH Clinical Trials Involving Exosomes as 
Therapeutic Agents (clinicaltrials.gov).  

NCT - ClinicalTrials.gov registry number 

 

  

Study Title Disease Study Design Start Date Reference 

Effect of Plasma Derived Exosomes on  
Intractable Cutaneous Wound Healing: Prospective 

Trial  

Ulcer  Prospective Trial   
Interventonal 

Phase 0  

Sep 2015  NCT02565264 
 

Phase I Clinical Trial Investigating the Ability of Plant 
Exosome to Deliver Curcumin to  

Normal and Malignant Colon Tissue  

Colon Cancer  Clinical Trial  
Interventional 

Phase 1  

Jan 2011   
NCT01294072 

 

Phase 1 Study of The Effect of Cell-Free Cord  
Blood Derived Microvesicles On β-cell Mass in Type 1 

Diabetes Mellitus (T1DM) Patients  

Diabetes 
Mellitus Type  

1  
  

Clinical Trial  
Interventional 

Phase 2  
Phase 3  

Apr 2014  NCT02138331 
 

Preliminary Clinical Trial Investigating the Ability of 
Plant Exosomes to Abrogate Oral Mucositis Induced by 

Combined  
Chemotherapy and Radiation in Head and Neck Cancer 

Patients  

Head and Neck 
cancer Oral 
Mucositis  

Preliminary Clinical Trial  
Interventional 

Phase 1  

Aug 2012  NCT01668849 
 

Vaccination of metastatic melanoma patients with 
autologous dendritic cell (DC) derived exosomes: 

results of the first phase I clinical trial  

Melanoma  Clinical Trial  
Interventional 

Phase 1  

Mar 2005  
 

[99] 

A phase I study of exosome immunotherapy in patients 
with advanced non-small cell lung  

cancer  

Lung Cancer  Clinical Trial   
Interventional 

Phase 1  

Feb 2005  
 

[98] 

Phase I clinical trial of autologous ascites derived 
exosomes combined with GM-CSF for colorectal cancer  

Colorectal 
Cancer  

Clinical Trial   
Interventional  

Phase 1  
  

Apr 2008  [100] 
 

Phase II Trial of a Vaccination With Tumor Antigen-
loaded Dendritic Cell-derived Exosomes on Patients 

With Unresectable Non Small Cell Lung Cancer 
Responding to Induction Chemotherapy 

Non Small Cell 
Lung Cancer  

Clinical Trial   
Interventional  

Phase 2  
  

  

Dec 2009  
 

NCT01159288 
 

Phase II Study of Tumor Cell-derived Microparticles 
Used as Vectors of Chemotherapeutic Drugs to Treat 

Malignant Ascites and Pleural Effusion  

Malignant 
Pleural Effusion  

Malignant 
Ascites  

Clinical Trial   
Interventional  

Phase 2  
  

May 2013  NCT01854866 
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Table 3. Current or Recently Completed Registered NIH Clinical Trials Involving Exosomes as 
Observational and Molecular Mechanisms (clinicaltrials.gov).  

NCT - ClinicalTrials.gov registry number 

Study Title Disease Study Design Start Date Reference 

Pilot Study of Exosomes Before and After BRAF 
Inhibitor Therapy in Patients With Advanced 

Unresectable or Metastatic BRAF Mutation-positive 
Melanoma  

Metastatic 
Melanoma  

  

Interventional  
Phase not provided  

  

Dec 2014  
  

NCT02310451 
 

Isolation and Characterization of the Extracellular 
Vesicles Secreted by the Human Endometrium to the 

Endometrial Fluid  

Healthy  Prospective Trial   
Observational  

Phase not provided  
  

Apr 2016  
  

NCT02797834 
 


