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Abstract: We develop an effective-field-theory (EFT) framework to analyze the spectra

emerging from lattice simulations of a large class of confining gauge theories. Simulations

of these theories, for which the light-fermion count is not far below the critical value for

transition to infrared conformal behavior, have indicated the presence of a remarkably light

singlet scalar particle. We incorporate this particle by including a scalar field in the EFT

along with the Nambu-Goldstone bosons (NGB’s), and discuss the application of this EFT

to lattice data. We highlight the feature that data on the NGB’s alone can tightly restrict

the form of the scalar interactions. As an example, we apply the framework to lattice data

for an SU(3) gauge theory with eight fermion flavors, concluding that the EFT can describe

the data well.
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1 Introduction

Lattice simulations of strongly interacting gauge theories indicate that infrared conformal

behavior sets in with a sufficiently large number of light fermions [1–14] . In addition, a

remarkably light singlet scalar particle appears in the spectrum of recent simulations as

this number is increased toward the critical value for the transition to conformal behavior

(the “bottom of the conformal window”) [15–19]. This has led to the suggestion that the

light scalar should be interpreted as a dilaton, and that this interpretation could become

even more accurate as the fermion number is taken closer still to the transition value.

Lattice simulations for gauge theories of this type have been carried out for a set of

small fermion masses m, with extrapolation to m = 0 typically discussed by fitting the

results to continuum chiral perturbation theory. This is equivalently an interpretation in

terms of a chiral-Lagrangian EFT consisting of (pseudo) Nambu-Goldstone bosons (NGB’s)

with a small mass m2
π ∝ m.

A more general approach is to employ an EFT consisting of the NGB’s together with

a description of a light singlet scalar consistent with its interpretation as a dilaton. Several

authors have begun this program [20–24]. In this paper, we develop such a framework for

comparison with existing lattice results as well as future simulations. Lattice results have

so far been obtained for m values such that the NGB mass is of the same order as the

scalar mass [15–19]. These, in turn, are relatively small compared to the masses of other

composite states, so that the use of an EFT consisting of only these degrees of freedom

should provide a good first approximation. If and when simulations can be done at even

smaller values of m, such that the NGB mass drops clearly below the scalar mass, which

in turn remains well below the other physical scales, the framework will remain reliable.

The EFT we employ involves decay constants fd for the scalar and fπ for the NGB’s.

In the EFT, fd enters as the order parameter for scale symmetry breaking. Both constants
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descend from the underlying, confining gauge theory with m = 0, and we expect them to

have values set by the confinement scale. A small scalar mass parameter md also descends

from the underlying, m = 0 theory. Under proper conditions, to be discussed, quantum

loop corrections are small, and are neglected in this paper. We instead provide a fit to

existing lattice results, and a framework for future simulations, employing the EFT at only

the classical level. A notable feature of the framework is that lattice data on only the

NGB’s (their mass and decay constant), which are currently measured most precisely, are

sufficient to determine a key parameter of the EFT and tightly restrict the form of the

scalar potential.

In Section 2, we describe the EFT, employing a general form for the scalar potential.

In Section 3, we discuss the application of the EFT to lattice data and then describe a

fit to current data from the LSD collaboration, drawing some conclusions about the form

of the EFT for that case. In Section 4, we develop simple, linearized expressions to fit

future lattice data over a small range of fermion masses m. We summarize and conclude

in Section 5.

2 The EFT

The low-energy EFT is built from the scalar field χ and a set of NGB fields πa. The

latter arise from the spontaneous breaking of chiral symmetry, and the former, to the

extent that it can be interpreted as a dilaton, arises from the spontaneous breaking of

conformal symmetry. The purely scalar part of the EFT consists of a kinetic term along

with a potential arising from the explicit breaking of conformal symmetry in the underlying

theory, which we take to be small:

Ld =
1

2
∂µχ∂

µχ − V (χ) . (2.1)

We assume that the potential has a minimum at some value fd, and that it is comparatively

shallow, so that the mass md of the fluctuations around the minimum satisfies md � 4πfd.

A specific choice of the potential amounts to supplementing the EFT with partial

information from the underlying dynamics. Two examples from the literature are

V1 =
m2
d

2f2
d

(
χ2

2
−
f2
d

2

)2

, (2.2)

V2 =
m2
d

16f2
d

χ4

(
4 ln

χ

fd
− 1

)
, (2.3)

normalized such that in each case md is the scalar mass. The first is a weakly-coupled

potential such as the one appearing in the standard model. It can arise from the deforma-

tion of an underlying conformal field theory (CFT) by relevant operators. The second has

been proposed in Ref. [25] as a way to model the behavior of a CFT deformed by a nearly

marginal operator (see also Ref. [20]). Unlike in previous approaches [20–22], we do not

make an assumption about the specific functional form of the potential and instead allow

it to be determined by the lattice data. This is a key element of novelty in our framework.
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The NGB’s arising from the spontaneous breaking of chiral symmetry are described in

terms of a field Σ transforming as Σ→ ULΣU †R, with UL and UR the matrices of SU(Nf )L
and SU(Nf )R transformations. (This approach can be adapted to other symmetry groups

and breaking patterns). The Σ field satisfies the nonlinear constraint ΣΣ† = I. We hence

write:

Lπ =
f2
π

4

(
χ

fd

)2

Tr
[
∂µΣ(∂µΣ)†

]
, (2.4)

where the coupling to the dilaton field (introduced here as a compensator field to maintain

the scale invariance of this term in the Lagrangian) is dictated by the fact that the Σ

kinetic term has scaling dimension d = 2. The Σ field can be parametrized through

Σ = exp [2iπ/fπ] where π =
∑

a π
aT a and T a are the N2

f − 1 generators of SU(Nf )

normalized as Tr [T aT b] = 1
2δ
ab. In contrast with the linear-sigma-model description of

chiral symmetry breaking, more generally fd and fπ are independent, as the underlying

strong dynamics may involve condensates besides the chiral-symmetry-breaking one.

In lattice calculations of particle masses and decay constants in the underlying gauge

theory, chiral symmetry (as well as conformal symmetry) must be explicitly broken by

the introduction of a small fermion mass term of the form mψ̄ψ. The explicit breaking is

implemented in the EFT through the term

LM =
m2
πf

2
π

4

(
χ

fd

)y
Tr
[
Σ + Σ†

]
, (2.5)

where m2
π = 2mBπ, with Bπ determined by the chiral condensate of the underlying theory

(Bπ = 〈ψ̄ψ〉/2f2
π). The product mBπ is RG-scale independent, with each factor typically

defined at the UV cutoff (the lattice spacing). The parameter y has been argued to be

the scaling dimension of ψ̄ψ in the underlying theory [24]. This scaling dimension is an

RG-scale dependent quantity, which could vary from 3 at UV scales where the theory

is perturbative to smaller values near the confinement scale. Analyses of near-conformal

theories have suggested a scaling dimension ≈ 2 at this scale [26]. We keep y as a free

parameter to be fitted to the lattice data.

Expanding LM around πa = 0 gives

LM =
Nfm

2
πf

2
π

2

(
χ

fd

)y
− m2

π

2

(
χ

fd

)y
πaπa + · · · , (2.6)

generating a negative contribution to the scalar potential as well as an NGB mass term.

The new contribution to the scalar potential shifts both the VEV and the mass of the

scalar field χ. The shifted VEV will, through Eq. (2.4), re-scale the NGB kinetic term,

and hence the NGB decay constant.

3 Comparison To Lattice Data

3.1 General Discussion

Lattice simulations are currently carried out for SU(Nc) gauge theories with fairly small

Nc (= 2, 3). For these cases, Nf cannot be too large if the theory is to be in the confining
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phase. Our program is to use the full EFT Ld + Lπ + LM to describe current and future

lattice results for the NGB’s and the light 0++ scalar, the latter having already been

observed for example in the Nf = 8 SU(3) simulations. The parameters fd, fπ, y, and the

scalar potential V (χ), have no dependence on the fermion mass and are held fixed as the

parameter m2
π = 2mBπ is varied. In this paper, this will be done using the EFT at only

the classical level. We discuss this approximation further in Section 5.

When comparing the predictions of our EFT to the lattice data, we assume through-

out that lattice discretization and finite volume effects are small. We therefore add no

additional terms to the EFT Lagrangian to represent such effects. Neglecting these lattice

artifacts should introduce only a small systematic error.

A set of m2
π-dependent quantities F 2

d , M2
d , F 2

π and M2
π emerge from a tree level analysis

of the EFT. The quantity Fd is defined to be the χ-value that minimizes the full potential

W (χ) = V (χ)− (Nfm
2
πf

2
π/2)(χ/fd)

y. (3.1)

Fd is finite assuming only that V (χ) is stable and increases at large χ more rapidly than

χy. In the case of the potential V1 given by Eq. (2.2), Fd is determined by the equation(
F 2
d

f2
d

)2−y/2 [
1−

(
f2
d

F 2
d

)]
=
yNff

2
π

f2
d

(
m2
π

m2
d

)
, (3.2)

whereas for the potential V2 in Eq. (2.3), it is determined by(
F 2
d

f2
d

)2−y/2
ln

(
F 2
d

f2
d

)
=
yNff

2
π

f2
d

(
m2
π

m2
d

)
. (3.3)

In general, Fd depends on the interplay between the two parts of the potential W (χ).

The physical scalar mass M2
d is determined by the curvature of the full potential at its

minimum. The remaining two quantities, F 2
π and M2

π , can be identified after properly

normalizing the NGB kinetic term. They are given in general by simple scaling formulae:

F 2
π

f2
π

=
F 2
d

f2
d

, (3.4)

M2
π

m2
π

=

(
F 2
d

f2
d

)y/2−1

(3.5)

(see also Ref. [20]). For a given value of Nf , the dependence of each of the four quantities

F 2
d , M2

d , F 2
π , and M2

π on m2
π ≡ 2mBπ is described in terms of the four parameters fd, fπ,

m2
d, y, and whatever additional parameters enter the scalar potential V (χ). One immediate

prediction is that Fd and Fπ have the same functional dependence on m2
π.

We stress that F 2
π/f

2
π and the other ratios in the scaling relations (3.4) and (3.5) are

not restricted to be close to unity. These ratios, entering at the classical level, can become

large due to the increase of Fπ and Fd with m2
π/m

2
d (see Eqs. (3.2) and (3.3)). The ratio

M2
d/m

2
d also increases in this limit. Importantly though, quantum loop corrections can be

small even when these ratios are large. The quantum corrections depend on the quantities
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M2
π/(4πFπ)2 and M2

d/(4πFd)
2. These can remain small when each of the capitalized scales

increases as m2
π/m

2
d is increased. The upper limit on the range of validity of the EFT,

determined by 4πFπ and 4πFd, increases commensurately.

The four capitalized quantities are directly related at tree level to physical processes

involving the NGB’s and the scalar. Three of them are measured by lattice studies of the

underlying, microscopic gauge theory. The masses Mπ and Md can be found by measuring

the exponential fall of appropriate correlation functions, and Fπ can be extracted from

simulations of the axial-vector current correlator. It is defined using the same conventions

as in [15]. The extraction of Fd from a lattice measurement of a correlation function in the

underlying gauge theory has not yet been reported. The connection between correlation

functions in the gauge theory and the Fd of our EFT requires further renormalization

analysis. While Fd enters our framework as the VEV of the scalar field, we do not require

its numerical value in our fit to the LSD data.

The comparison to lattice data will focus first on the quantities F 2
π and M2

π , which are

currently known most precisely. For this purpose, it is helpful to note that the two scaling

relations, Eqs. (3.4) and (3.5) give

M2
π(F 2

π )(1−y/2) = Cm , (3.6)

where C = 2Bπ(f2
π)(1−y/2). Fitting lattice data to Eq. (3.6) can allow an accurate deter-

mination of y.

Another key question is to what extent the form of the scalar potential V (χ) can be

determined by a fit to lattice data. With the small amount of data available so far, only

limited progress can be made on this “inverse-scattering” problem. We will find it helpful,

even with the current data, to consider the slope of the scalar potential V (χ) at the value

of χ (χ = Fd) that minimizes the full potential W (χ). From Eqs. (3.1) and (3.4),

∂V

∂χ

∣∣∣∣
χ=Fd

=
yNff

2
π

2f2
d

M2
πFd =

yNffπ
2fd

M2
πFπ . (3.7)

Since Fπ ∝ Fd, a plot of the data for M2
πFπ versus Fπ provides a measure of the slope of

V (χ) at χ = Fd versus Fd itself. This slope vanishes in the chiral limit m = 0, corresponding

to Fπ = fπ, since then Fd = fd (the minimal point of V (χ) itself). As Fπ(∝ Fd) is increased,

the slope of V (Fd) increases through positive values. We use Eq. (3.7) to analyze data from

the LSD collaboration in the next sub-section.

This procedure can be taken to the next stage by bringing the lattice data on M2
d

into the analysis. From Eqs. (3.4), (3.5) and (3.7), together with the definition M2
d ≡

∂2W/∂χ2|χ=Fd , one can derive an expression for the second derivative of V at χ = Fd:

∂2V

∂χ2

∣∣∣∣
χ=Fd

= M2
d +

y(y − 1)Nff
2
πm

2
π

2f2
d

(
F 2
d

f2
d

)y/2−1

= M2
d +

y(y − 1)Nff
2
π

2f2
d

M2
π . (3.8)

Thus data for M2
d could be used in the analysis alongside the M2

π and F 2
π data, to allow

a fit that can better constrain both the scalar potential, and the other free parameters of

the Lagrangian.
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(a) The squared masses of the NGB’s and scalar. (b) The squared NGB decay constant.

Figure 1. Data from the LSD collaboration [15, 27]. Error bars represent only the statistical

uncertainty in the data. The lattice spacing is denoted by the parameter “a”.

3.2 Application to the LSD Data

We next apply our EFT framework to the LSD collaboration data for the SU(3) gauge

theory with Nf = 8 [15]. These data, which cover the smallest fermion mass range studied

as of yet for this theory, are currently limited to M2
d , Fπ, and M2

π . They are shown in

Figs. 1a and 1b. A list of the numerical values and errors has been provided to us by

the LSD collaboration. We first note that the lattice data for M2
π and F 2

π are remarkably

linear throughout the range of m values. We also note that M2
π/(4πFπ)2 � 1 throughout

the range of the data, indicating that loop corrections are small. The data for M2
d are

compatible with linearity but the errors are large. The M2
π data are consistent with an

expected intercept of 0. A finite intercept is expected in the case of the F 2
π data.

The linearity of the M2
π data combined with the substantial variation of F 2

π with m

leads, through the scaling relation Eq. (3.6), to a determination of y and C. Since the data

for M2
π is itself near-linear in m and F 2

π is varying substantially, y must be close to 2. We

fit the data assuming that an additional, conservative 2% systematic uncertainty should be

assigned to it, for both F 2
π and M2

π . This is consistent with the estimate of finite-volume

and lattice-discretization artifacts reported in Ref. [15]. In addition, there are systematic

uncertainties associated with the EFT we employ. We discuss these briefly in Section 5,

but do not include them in our fit. The result of our fit to Eq. (3.6), treating both y and

C as free parameters, is

y = 2.1± 0.1, (3.9)

with 1σ uncertainty and χ2/N = 0.34 (where N = 3). The fit value for C is 7.2 ± 1.8.

The result for y is not inconsistent with y = 2 and therefore with M2
π = m2

π ≡ 2Bπm (the

zeroth-order chiral perturbation theory formula for M2
π)1. By contrast, the substantial

variation of Fπ with m looks nothing like zeroth-order chiral perturbation theory. In our

EFT, its variation with m is naturally accommodated at the classical level.

1If the lattice data for M2
π were not so linear in m, they could still be consistent with the scaling relation

Eq. (3.6), but with y 6≈ 2.

– 6 –



0

0.001

0.002

0.003

 0  0.01  0.02  0.03  0.04  0.05  0.06

afπa3 M
2 πF

π 
   
α

   
 d

V/
dχ

aFπ

Data:
Fit to V1:

Figure 2. Lattice data for the product M2
πFπ (proportional to the slope of the scalar potential at

χ = Fd) versus Fπ (proportional to Fd.) The red line represents a fit to Eq. (3.10) which derives

from the potential V1. The lattice spacing is denoted by the parameter “a”.

The near-linearity with m of the F 2
π data provides more detailed information. Through

Eq. (3.4), it implies that F 2
d must also be near linear in m. This suggests a relation similar

to that of Eq. (3.2) which arises from the V1 potential, together with y ≈ 2, but it doesn’t

rule out other forms for the potential. To proceed, we use Eq. (3.7) relating the slope of

V (χ) at χ = Fd to the product M2
πFπ. In Fig. 2, we plot the LSD data for M2

πFπ against

Fπ . Error bars representing the 2% systematic uncertainty are shown. Since each point

on the vertical axis is proportional to the slope of V (χ) at χ = Fd and each point on the

horizontal axis is proportional to Fd, the points in the figure display the shape of the scalar

potential V (χ) for the Nf = 8 theory.

The data indicate clearly that V (χ) increases with χ for a range of χ beyond its

minimum at a rate much faster than χ2, confirming that the scalar sector of the EFT is

self-interacting. The data are in fact consistent with the large-χ behavior V (χ) ∝ χ4 as

in V1 Eq. (2.2). For this potential, Eqs. (3.4) and (3.7) give

M2
πFπ =

Fπ
A

(F 2
π − f2

π), (3.10)

where A ≡ (yNff
4
π)/(m2

df
2
d ). The data can be fit to this form, with fπ and A treated

as independent parameters. The best fit is represented by the red line in Fig. 2. The fit

parameters are afπ = 0.01± 0.002, A = 0.05± 0.005, χ2/N = 1.1 (where N = 3). From

Fig. 2, it can also be seen that F 2
π/f

2
π � 1 throughout the range of the data.

A fit deriving from other forms of the scalar potential qualitatively similar to V1 is also
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possible. An example is V2, for which

M2
πFπ =

F 3
π

A
ln

(
F 2
π

f2
π

)
. (3.11)

This can also lead to a good fit, but only with a smaller value of fπ. Here, we don’t show

this fit or others based on alternative forms of the potential. While potentials qualitatively

unlike V1 can be ruled out, the limited amount of data available does not yet allow us

to distinguish between a variety of similar forms. As more data points become available,

spread over a larger range of fermion masses, the above method can be used to determine

the functional form of the scalar potential with increasing precision, over a larger range of

field values. We note again that the NGB lattice data alone (F 2
π and M2

π) can provide this

information.

To take this analysis further, the lattice data for M2
d shown in Fig. 1a can also be

included in the fits. Because of the large statistical errors currently associated with these

points, they don’t yet add precision to the analysis of the form of the scalar potential, but

they are sufficient to provide some approximate information about the parameter fd and

the associated physical quantity Fd. It can be seen that for y ∼ 2 and for any potential

with the large-χ behavior of V1 or V2, the relation M2
d ∼ Nff

2
πm

2
π/f

2
d holds in the range

of the lattice data. Using the fact that m2
π ≈ M2

π ∼ M2
d in this range, we have the rough

prediction F 2
d /F

2
π = f2

d/f
2
π ∼ Nf throughout the range. In the future, more information

about the potential V can also be found by including M2
d data. Eq. (3.8) then provides a

measure of the second derivative of V at the minimum Fd of the full potential W .

It is important to note that while the parameter y can be accurately determined

directly from lattice data using Eq. (3.6), the parameters fπ, fd, and md are extrapolated

quantities. The size of these parameters depends upon the form of the scalar potential in

the vicinity of its minimum. The increasingly accurate determination of V (χ) will require

lattice data at decreasingly small values of m. The current lattice data lie in a regime

where Fπ/fπ � 1, Fd/fd � 1 and M2
d/m

2
d � 1. The second term in the potential W (χ)

(Eq. 3.1) begins to dominate the mass term in V (χ) since m2
π ≈M2

π � m2
d.

4 Small Mass-Shift Approximation - A Side Note

Looking to the future, lattice data for the SU(3) gauge theory with Nf = 8 could extend to

smaller m values as well as include more densely spaced points in the range of Figs. 1a and

1b. There will also be data for F 2
d as a function of m. Simulations of other theories could

produce additional interesting data for each of the masses and decay constants. These

results could appear linear as a function of m or exhibit nonlinear behavior. For future

analysis of such data sets using our EFT and allowing for a general form of the scalar

potential V (χ), it could be helpful to linearize the physical quantities about a reference

value mr ≡ m2
π r/2Bπ. In this section, we briefly describe this approach.

With m restricted to a small enough neighborhood of mr, the quantities of interest

will be sensitive to the shape of the full potential W (χ) only in the neighborhood of its

– 8 –



minimum with m = mr. The full potential can therefore be approximated as

W (χ) = Wr(χ)− Nf∆m2
πf

2
π

2

(
χ
fd

)y
, (4.1)

with

Wr(χ) ≈ 1
2M

2
d r(χ− Fd r)2 + gr

3!
M2
d r

Fd r
(χ− Fd r)3 + . . . , (4.2)

where Fd r is the minimum of the scalar potential for the reference value mr and ∆m2
π r ≡

2∆mBπ ≡ 2(m −mr)Bπ. M2
d r is the scalar mass at the reference value and gr is a free

parameter controlling the strength of the scalar cubic self-interaction. We expect it to be

O(1).

We make the replacements

f2
π = F 2

π r

f2
d

F 2
d r

, m2
π r = M2

π r

(
f2
d

F 2
d r

)y/2−1

, ∆m2
π = M2

π r

∆m

mr

(
f2
d

F 2
d r

)y/2−1

,

where ∆m = m − mr. The quantities F 2
d , M2

d , F 2
π , and M2

π then have the following

dependence on ∆m/mr:

F 2
d

F 2
d r

= 1 + 2αr
∆m

mr
+O

(
∆m2

)
, (4.3)

M2
d

M2
d r

= 1 + αr(gr + 1− y)
∆m

mr
+O

(
∆m2

)
(4.4)

F 2
π

F 2
π r

=
F 2
d

F 2
d r

, (4.5)

M2
π

M2
π r

= 1 + [1 + αr(y − 2)]
∆m

mr
+O

(
∆m2

)
, (4.6)

where

αr =
yNfF

2
π rM

2
π r

2F 2
d rM

2
d r

. (4.7)

One can fit lattice data as a function of ∆m/mr using these formulae and their ex-

tensions to higher order. The expansion is reliable providing αr∆m/mr � 1. The four

parameters F 2
d r, M

2
d r, F

2
π r, and M2

π r are simply the values of F 2
d , M2

d , F 2
π , and M2

π at the

reference point. The additional two parameters y and gr can be determined by the slope of

the curves at the reference point. At higher orders, additional parameters describing the

shape of the potential W (χ) will enter.

The parameter gr is itself sensitive to the shape of the potential. In the absence of the

chiral-symmetry-breaking second term in Eq. (3.1), we have gr = 3 for V = V1 and gr = 5

for V = V2. Away from the chiral limit, at some reference value mr, the contribution of

the second term must be taken into account. The value of gr will depend on the shape of

V , the value of y and the other parameters, and the choice of the reference mass mr. For

the case V = V1, it will remain the case that gr = 3 if y = 2.
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5 Summary and Conclusion

We have developed a simple EFT framework for the interpretation of lattice results for

confining gauge theories, in which the light-fermion count is near to but below the critical

value for transition to conformal behavior. The lattice studies indicate that a remarkably

light scalar appears in the spectrum along with the NGB’s and higher-mass states. Inter-

preting the scalar as a dilaton, we have included only it and the NGB’s in the EFT, and

allowed a general form for the dilaton potential.

The presence of a small fermion mass m in the underlying gauge theory, necessary for

lattice simulations, leads to a chiral-symmetry-breaking term in the EFT. The coupling of

this term to the scalar field is described by a parameter y, to be fit to lattice data. We

provided expressions for the masses and decay constants of the scalar particle and NGB’s

appropriate for comparison to lattice data, noting that the data can be used to determine

y as well as the shape of the scalar potential above its minimum.

We applied this framework at the classical level to the current LSD collaboration data

for an SU(3) gauge theory with Nf = 8, which covers the smallest fermion-mass range

studied for this theory. Even with the limited data available so far, we concluded generally

from a fit to the data for F 2
π , and M2

π that y ≈ 2 and that the scalar potential V (χ) grows

approximately like χ4 beyond its stable minimum. Among the other parameters fd, fπ, md

of our EFT, we have so far provided only an estimate of fπ (following Eq. (3.10)), for the

case of the V1 potential . The data for M2
d are currently less accurate than for F 2

π , and M2
π .

We have used them so far only to predict roughly that Fd/Fπ = fd/fπ ∼
√
Nf . This is

consistent with our starting assumption that the scalar particle is weakly self-interacting,

that is md � 4πfd. As more data points become available, our method can be used to

determine the functional form of the scalar potential with increasing precision, over a larger

range of field values, and to extract more accurately the chiral-limit parameters fd, fπ, md.

For purposes of analyzing future lattice data, we developed expressions for the masses

and decay constants of the scalar and NGB’s, linearized in m about a reference value mr.

This framework is well suited to analyze future data that are dense in the neighborhood

of a reference value. The scalar potential is obtained from data as a Taylor series, making

it possible to exclude potentials that are inconsistent with data in a systematic way.

The EFT we have employed neglects the effects of heavier states such as the vector

and axial-vector bound states produced by the underlying gauge theory. In the case of

the LSD data for the SU(3) gauge theory with Nf = 8, the masses of these states have

been measured for each of the m values in Fig. 1. Throughout this range, M2
π/M

2
V ≤ 0.2

dropping to ≤ 0.1 for the lowest value. The data for M2
d , with their larger statistical errors,

also satisfy a similar bound. The axial state is still heavier leading to corrections that are

even more suppressed.

Our framework has also neglected higher order corrections in perturbation theory aris-

ing from loops of NGB’s and the scalar. By inspection of the lattice data in Fig. 1, one

can see that for all but one of the points, M2
π ∼ M2

d . It is also the case for all of our fits

that throughout the range, F 2
π . F 2

d . Thus, from the data, one can see that the loop-

expansion quantities M2
π/(4πFπ)2 and M2

d/(4πFd)
2 are small. The loop expansion also has
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counting factors that can grow with Nf , as well as chiral logarithms, and these have to

be included in a full analysis of these corrections. This is beyond the scope of the present

paper. We note here only that the order of magnitude of these corrections varies very little

throughout the mass range of Figs. 1a and 1b, so that their systematic effect should be

possible to control. Loop level effects, and the effects of heavier states can be incorporated

into higher-dimension operators correcting our EFT that are suppressed by a cutoff scale

Λ ∼MV .

More generally, our EFT framework can be applied to lattice data from any strongly

coupled gauge theory with a light-fermion count below the bottom of the conformal window,

but close enough to exhibit a light scalar in the spectrum. A current example could be

the SU(3) gauge theory with a doublet of fermions in the symmetric-tensor representation.

Our framework and analysis can be refined further as the amount and quality of lattice

data increases, with the ultimate goal of a full “inverse-scattering” reconstruction of the

scalar potential from the data.
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