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Primate trichromatic colour vision has been hypothesized to be well tuned

for detecting variation in facial coloration, which could be due to selection

on either signal wavelengths or the sensitivities of the photoreceptors

themselves. We provide one of the first empirical tests of this idea by asking

whether, when compared with other visual systems, the information obtained

through primate trichromatic vision confers an improved ability to detect the

changes in facial colour that female macaque monkeys exhibit when they are

proceptive. We presented pairs of digital images of faces of the same

monkey to human observers and asked them to select the proceptive face.

We tested images that simulated what would be seen by common catarrhine

trichromatic vision, two additional trichromatic conditions and three dichro-

matic conditions. Performance under conditions of common catarrhine

trichromacy, and trichromacy with narrowly separated LM cone pigments

(common in female platyrrhines), was better than for evenly spaced trichro-

macy or for any of the dichromatic conditions. These results suggest that

primate trichromatic colour vision confers excellent ability to detect meaning-

ful variation in primate face colour. This is consistent with the hypothesis that

social information detection has acted on either primate signal spectral

reflectance or photoreceptor spectral tuning, or both.

1. Introduction
The selective pressures that led to the evolution of the unique form of trichromatic

colour vision in primates from ancestral mammalian dichromacy have been

debated for decades [1–4]. One puzzling feature of primate colour vision is

that peak sensitivities of photopigments to different wavelengths are not evenly

distributed across the visual spectrum, unlike the more regular distribution that

is known to occur in many other trichromatic (and tetrachromatic) animals,

including bees, hawkmoths, reptiles and passerine birds [5–9]. Cone photo-

pigments in catarrhine primates have peak sensitivities near 420 nm (S—short

wavelength, ‘blue’), 530 nm (M—mid wavelength, ‘green’) and 560 nm

(L—long wavelength, ‘red’), such that the maximum separation of peak sensi-

tivities between M and L cones is 30 nm, while the S cone is more distantly

tuned (110–140 nm away) [10]. While sensitivities of the female platyrrhine LM

cones also fall in the range of 530–560 nm [10,11], the separation can be even nar-

rower in a substantial proportion of individuals, depending on the specific

& 2017 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
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combination of polymorphic photopigments. Narrower distri-

bution of long-wavelength-sensitive photopigments leads to a

better discrimination of subtle variation in colours in the red or

green range at the expense of other hues. Various explanations

of the narrow tuning window in primates have been proposed,

including non-adaptive ones: (i) the shared origin of primate M

and L cones and phylogenetic constraint [12], and/or (ii) a

minimizing of the cost to luminance vision via chromatic

aberration because M and L signals are pooled to generate

a luminance signal [5,13–15].

Alternatively, there are potential adaptive explanations for

this narrow tuning. Natural selection may favour enhanced

discrimination of wavelengths within the greenish to reddish

range of the spectrum at the cost of greater global chromatic

discrimination that would be possible with more evenly

distributed opsins [5,16]. Two main adaptive hypotheses

to explain the evolution of primate trichromacy generally,

and the spectral tuning of receptors in particular, have

been proposed. A prominent adaptive hypothesis suggests

that discriminating among longer-wavelength hues is tuned

for the task of finding reddish ripe fruits or young leaves

against foliage background (the foraging hypothesis)

[2,17,18]. A second adaptive hypothesis proposes that primate

trichromacy is tuned to perceive skin colour variation related to

changes in blood flow or oxygenation levels, which can pro-

vide information about conspecifics’ emotional, breeding

or health status (the social signal hypothesis) [19]. Indeed,

several catarrhine primates exhibit prominent patches of bare

skin coloured by blood in the hindquarter, face or chest, and

colour changes in these patches act as socio-sexual signals

[20–24]. Whether such signalling could explain the evolution

and/or maintenance of trichromacy across primates more gen-

erally is unclear: large patches of bare skin are less common

in platyrrhines, which typically exhibit polymorphic colour

vision (both dichromatic and trichromatic individuals in the

same population) [11]. An exception is the strikingly red bald

uakari [25], although several species show small patches of

bare skin, especially around the eyes [19,26]. It is possible

that the original tuning of the photoreceptors in primates

was related to constraints, or adaptive feeding advantages,

with colour signalling benefits arising secondarily and contri-

buting to photoreceptor sensitivity maintenance [27]. Finally,

it is also possible that the adaptive significance of trichromacy

might be more general, such that detecting ripe fruits and/or

skin colour variation are only two among several benefits

(general advantage hypothesis) [16,28]. In contrast with the

foraging hypothesis [29–32], there has been very little assess-

ment of the social signal hypothesis [24,33,34], although the

hypothesis is receiving attention in work on humans [35–37].

In this study, our objective was to test a necessary condi-

tion of the hypothesis that the catarrhine trichromatic visual

system is well suited for detecting facial skin colour variation

in non-human primates. Although this prediction does not

distinguish between foraging or social signalling as the original

selective pressure influencing the evolution of primate trichro-

macy and the spectral tuning of the photoreceptors, testing

it helps establish whether the social signalling hypothesis

merits further investigation. We used an experimental

approach to examine whether common primate trichromacy

facilitates detection of biologically relevant changes in skin

colour in rhesus macaques (Macaca mulatta). In females of this

species, facial colour variation relates to intra-cycle fertility

variation, such that face colour becomes redder and darker

around the timing of the peri-ovulatory phase when females

are proceptive and fertile [34]. Our objective was to test

whether trichromacy increases a viewer’s ability to detect vari-

ation in reproductive status from rhesus macaque faces by

comparing the ability of different simulated visual systems to

discriminate proceptive and non-proceptive faces. We also

aimed to compare the performance of common catarrhine pri-

mate trichromacy, and the trichromacy exhibited by females of

many platyrrhine species, with other manipulated forms of

colour vision when distinguishing face colour variation. In

accordance with the social signal hypothesis, we predicted

that observers experiencing trichromatic conditions would

show better performance than those experiencing dichromatic

conditions, and that unmanipulated common trichromacy

would show the best performance among the three forms of

trichromacy conditions tested.

Specifically, we presented human participants with images

of the faces of proceptive and non-proceptive female rhesus

macaques manipulated such that the information available is

altered to reflect that available to different colour vision pheno-

types. We gave human observers the task of selecting a

proceptive female rhesus macaque face between two images

of the same monkey, and compared their performance in

doing so under six conditions. We tested performance of

three forms of trichromacy and three forms of dichromacy.

For trichromatic conditions, we tested: (i) an unmanipulated

catarrhine vision phenotype (common trichromacy); (ii) a

separation between L and M peak sensitivity that was divided

by two to simulate the narrower trichromatic colour vision fre-

quently observed in female platyrrhines [11]; and (iii) an evenly

distributed spectral separation to simulate a colour vision

system with greater global chromatic discrimination. This

allowed us to test whether the narrow separation in peak

sensitivity between L and M helps trichromatic primates

detect biologically relevant skin colour changes. For dichro-

macy, we simulated conditions in which we removed the

common trichromacy sensitivity (iv) to L (protanopia), (v) to

M (deuteranopia) or (vi) to S (tritanopia). The former two phe-

notypes have difficulty distinguishing between colours in the

green–yellow–red range of the spectrum, while the latter phe-

notype has difficulty distinguishing green from blue. This

allowed us to further test whether perception of chromatic

change is necessary for detecting these facial signals, or

whether detection of achromatic changes (e.g. changes in

darkness/lightness of the skin) is sufficient.

2. Material and methods
(a) Stimuli
We used digital photographs of 24 free-ranging adult female

rhesus macaques (3.5 years or older) taken on Cayo Santiago,

Puerto Rico. The monkey facial area was isolated from the rest

of each image for the present experiments. A stimulus image was

composed of a pair of faces of the same individual taken outside

and during the period of female behavioural proceptivity placed

side by side on a uniform grey background (figure 1). Stimulus

images were presented on a self-calibrating LCD monitor (EIZO,

Color Edge CG277), adjusted to maximal luminance ¼ 80 cd m22,

g ¼ 2.2 and white point¼ 6500 K, in a dark room. In total, 32

face pairs were created, with 16 pairs used as training pairs and

the other 16 as test pairs (electronic supplementary material,

figure S1). More than one face pair (two or three pairs) was created

for seven individuals according to image availability.
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(b) Colour vision conditions
In addition to an unmanipulated vision phenotype (common tri-

chromacy), five other colour vision phenotypes were simulated

using custom-written software, colour vision simulator (CVS)

[38]. The CVS transforms chromatic information available in

images to represent appearance for target colour vision types,

which have different cone peak sensitivities (lmax) from the

common type or that lack certain cone types. Using the lmax

values of the source (a common trichromat observer) and target

phenotype, the CVS generates shifted photopigment sensitivity

curves and performs a pixel-by-pixel colour transformation by

shifting the hue and saturation coordinates from the colour space

of a common trichromat to that of the desired phenotype [38]. We

assumed sensitivities of catarrhine L, M and S cones peak at 560

(L), 530 (M) and 420 nm (S). We simulated three dichromatic con-

ditions—protanopia, deuteranopia and tritanopia, which lack L,

M or S cones, respectively. We further simulated two putative tri-

chromatic conditions—trichromacy with a narrow LM spectral

separation (half of the common type) with peak sensitivities of

the M and L cones at 545 and 560 nm (LM-half trichromacy), and

trichromacy with peak sensitivity of the M cone half-way between

the S and L peaks at 490 nm (LMS-even trichromacy) (figure 1). The

LM-half trichromacy was intended to simulate the narrower

trichromatic colour vision frequently observed in platyrrhines [11].

(c) Participants
Sixty participants (30 women and 30 men) ranging from 19 to 41

years old (mean age¼ 23.2, s.d.¼ 4.3) with normal acuity and

normal (common trichromatic) colour vision as diagnosed by an

anomaloscope completed the experiment. Participants were ran-

domly assigned into one of six conditions, with 10 (5 women,

5 men) individuals assigned to each condition.

(d) Procedures
Participants were verbally instructed that during the experiment,

they would need to select as quickly as possible which of the

two face images of a given stimulus pair was collected during

the proceptive period, when females are seeking reproductive

opportunities (two-alternative forced choice). No a priori infor-

mation about face colour in the proceptive state was given. The

experiment was split into two parts: training and test trials. In

training trials, positive feedback was given when participants

selected a proceptive face, and negative feedback if a non-

proceptive face was selected. In this way, participants had the

opportunity to learn to attend to features of proceptive faces.

In test trials, positive feedback was always given, irrespective

of correctness, so that participants could not further learn critical

aspects of signals from test pairs.

Each participant conducted six sessions that consisted of one

training session and five subsequent test sessions. The training

session consisted of 32 training trials based on 16 training pairs

of faces replicated to counterbalance the location (left or right)

of a proceptive face. Each test session consisted of 64 trials in

total, with 32 training trials as above and 32 test trials based

on 16 test pairs of faces (here again duplicated to counterbalance

the location). We repeated the test session five times to examine if

any learning effects appear as sessions proceeded. The test trials

examined whether participants could generalize the important

aspects of proceptive faces learned during the training trials to

test pairs. The training trials in the test sessions served to keep

up the motivation of participants and to give further chance to

learn features of proceptive faces by giving positive and negative

feedback according to accuracy. The order of trials was random-

ized within each session. After all sessions were completed,

participants were asked to report which cues they relied on

during the task.

(e) Analysis
To examine the effect of colour vision type, the effect of learning

through sessions, the effect of trial type (training or test) and the

possible effect of sex, while controlling for participant identity

and stimulus image identity, we analysed all responses from 60

participants with generalized linear mixed models (GLMMs)

common

420–530–560 nm

 LM-half

420–545–560 nm

 LMS-even

420–490–560 nm

protanopia

420–530 nm

deuteranopia

420–560 nm

tritanopia

530–560 nm

trichromacy

dichromacy

wavelength

S M L

se
ns

iti
vi

ty

Figure 1. An example of face pair stimuli for common (unmanipulated) trichromacy and simulated colour visions. Numbers below each stimulus indicate the
combinations of cone peak wavelength sensitivities (lmax) used to create the test images. Schematic drawings of cone sensitivities are depicted for each condition.
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using the package lme4 in R statistical analysis software (R

v. 3.4.0). First, we analysed if the correct (proceptive) image

was selected in a GLMM model using a binomial distribution

with a logit link function. In this model, accuracy in each trial

was the response variable, colour vision condition, session,

trial type, sex, interactions between colour vision and other

factors and an interaction between session and trial type

were fixed effects, and participant IDs blocked by stimulus

image identity (face pair combinations) were random effects.

Maximum-likelihood with Laplace approximation was used for

the GLMM fitting. Type III Wald x2 tests were used to examine

the significance of each fixed effect specified in the model. Differ-

ences between colour vision conditions and between women and

men in each colour vision condition were analysed by post hoc

least-squares-means multiple-comparison tests with the Tukey

method for adjusted p-values. The reaction time (RT) in each

trial was similarly analysed with linear mixed models (LMMs)

after log transformation of positively skewed raw data. Restricted

maximum-likelihood (REML) was used for LMM fitting. The RT

(log scale) of each trial was the response variable, colour vision

condition, session, trial type, accuracy, sex and all interactions

were fixed effects, and participant IDs blocked by stimulus

image identity were again random effects.

In primates, the neural circuitry that extracts the redness signal

compares the outputs between M and L cone photoreceptors;

the neural circuitry that extracts lightness (achromatic) signal

is derived from the sum of outputs of M and L cones [5]. For

common trichromacy and tritanopia, whose redness and lightness

signals can be calculated from the output of common type M and

L photoreceptors, we conducted partial correlation analyses to

examine the relative contribution of redness and lightness differ-

ences between paired faces on accuracy and RT while controlling

for the influence of the other factor (redness or lightness). For each

face pair, we averaged the mean accuracy and RT across all partici-

pants in each condition during all trials. Redness and lightness were

calculated as (L 2 M)/(LþM) and (LþM)/2, respectively, where

M and L indicate input to each cone transformed from the camera’s

RGB values [39] and averaged across a portion of a face [40]. Redness

and lightness differences between faces in each pair were calculated

by subtracting the value of a non-proceptive face from that of a pro-

ceptive face. This yields positive redness difference and negative

lightness difference if the proceptive face is redder and darker. We

also conducted the Pearson correlation analyses between lightness

differences and mean accuracy or RT for protanope and deutera-

nope, whose lightness output was solely through the M or L cone,

respectively. The a-level was set to 0.05 for all analyses. The fre-

quency of reported cues that participants relied on during the

experiment was summarized for each colour vision condition

based on debriefing after the experiment. For more details on the

material and methods, see the electronic supplementary material.

3. Results
(a) Effects of colour vision on accuracy
Differences in performance among colour vision conditions

for training and test trials were reflected in accuracy, RTs

training test1 test2 test3 test4 test5 test1 test2 test3 test4 test5
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Figure 2. Transition of percentage accuracy and RT in each condition. The change of mean accuracy across participants through sessions for (a) training pairs and for
(b) test pairs. The change of mean RT across participants through sessions for (c) training pairs and for (d) test pairs . Note that test pairs were not included in the
training session. Error bars indicate 95% CI of the means, truncated at 100% for the accuracy variable. The sample size included in each plot is 10 individuals. Circle,
common trichromacy; diamond, LM-half trichromacy; square, LMS-even trichromacy; triangle, protanopia; inverted triangle, deuteranopia; arrowhead, tritanopia.
(Online version in colour.)
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and learning effects (figure 2). There were significant fixed

effects of colour vision, session and trial type on accuracy,

and significant interactions between colour vision and other

factors, and between session and trial type (all p , 0.0001

except for trial type: p ¼ 0.0053, type III test; table 1).

Post hoc multiple comparisons of least-squares means

showed that the accuracy of common (catarrhine) and LM-

half (platyrrhine) trichromatic conditions was significantly

higher than other conditions, but they were not different

from each other. Furthermore, the accuracy of tritanopia

was significantly higher than protanopia, deuteranopia and

LMS-even trichromatic conditions (all adjusted p , 0.05;

electronic supplementary material, table S1).

(b) Effects of colour vision on reaction time
There were significant fixed effects of colour vision, session,

accuracy and sex on RT (all p , 0.0001 except for accuracy:

p ¼ 0.0059; table 1). Interactions between colour vision and ses-

sion, between colour vision and accuracy, between colour

vision and sex, between session and trial type, and between

session and accuracy showed significant effects (all p ,

0.0001; table 1). Post hoc multiple comparison tests showed

that RT was significantly faster for common and LM-half tri-

chromatic conditions than for all other conditions and that

tritanopia was significantly faster than protanopia, deute-

ranopia and LMS-even trichromatic conditions (all adjusted

p , 0.05; electronic supplementary material, table S1). There

was no significant difference between common and LM-half

trichromacies, or among protanopia, deuteranopia and LMS-

even trichromacy, except that deuteranopia was significantly

faster than protanopia ( p , 0.05; electronic supplementary

material, table S1). A post hoc comparison showed that RT

was significantly faster in women than in men ( p , 0.05). How-

ever, multi-model comparisons using the Akaike information

criterion (AIC) and likelihood ratio tests suggested that colour

vision has a much stronger effect on performance than sex

(electronic supplementary material, table S2).

(c) Chromatic versus achromatic signal use
and participant feedback

There were significant positive partial correlations between red-

ness differences and accuracy for both common trichromacy

(partial r ¼ 0.56, p ¼ 0.029) and tritanopia (partial r ¼ 0.83,

p , 0.001) for training trials when lightness was controlled.

Similarly, significant negative partial correlations between red-

ness difference and RT were observed in common trichromacy

for training trials (partial r ¼ 20.80, p , 0.001), but only for

tritanopia for both training (partial r ¼ 20.82, p , 0.001) and

test trials (partial r ¼ 20.57, p ¼ 0.026). For lightness,

common trichromacy showed a significant negative partial

correlation with accuracy (partial r ¼ 20.66, p ¼ 0.008) when

redness was controlled, but a positive partial correlation

with RT (partial r ¼ 0.68, p ¼ 0.005). There were no significant

correlations between lightness difference and accuracy or RT

in either protanopia or deuteranopia (table 2; electronic sup-

plementary material, figure S2). All participants who

experienced common trichromacy, LM-half trichromacy and

tritanopia reported that they relied on the redness of faces to

determine proceptivity. Full details on participant feedback

are provided in electronic supplementary material, table S3.

4. Discussion
We used a functional substitution approach [38,41,42] to

examine whether primate trichromatic colour vision charac-

terized by narrow sensitivity between L and M wavelength

is well suited for detecting naturally occurring colour vari-

ation in female rhesus macaque faces. Our results indicate

that the separation of cones is an important factor for discri-

minating face colour variation in the context of detecting

reproductive status of female rhesus macaques. As predicted,

common catarrhine and LM-half (platyrrhine) trichromacy

enabled higher accuracy and faster identification (lower

RTs) when compared with other simulated colour vision

Table 1. Analysis of deviance table in Type III Wald x2 tests of the GLMM for accuracy and the LMM for RT.

accuracy reaction time

effect x2 d.f. Pr > x2 effect x2 d.f. Pr > x2

(intercept) 234.12 1 ,0.0001 (intercept) 1.68 1 0.19

colour vision 394.44 5 ,0.0001 colour vision 213.03 5 ,0.0001

session 15.90 1 ,0.0001 session 128.64 1 ,0.0001

trial type 7.77 1 0.0053 trial type 3.21 1 0.073

sex 0.0032 1 0.95 accuracy 7.57 1 0.0059

colour vision : session 51.97 5 ,0.0001 sex 164.39 1 ,0.0001

colour vision : trial type 29.20 5 ,0.0001 colour vision : session 164.49 5 ,0.0001

colour vision : sex 48.56 5 ,0.0001 colour vision : trial type 2.02 5 0.85

session : trial type 54.05 1 ,0.0001 colour vision : accuracy 38.98 5 ,0.0001

colour vision : sex 190.16 5 ,0.0001

session : trial type 63.03 1 ,0.0001

session : accuracy 15.72 1 ,0.0001

trial type : accuracy 2.50 1 0.11
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types, suggesting that having L and M cones with less than or

equal to 30 nm separation enables receivers to extract biologi-

cally important colour variation in facial signals. This type of

tuning between photoreceptors and signals has been

described in a taxonomically wide range of species, including

for example in Photuris and Photinus fireflies [43,44], and in

Heliconius butterflies [45].

The lack of significant differences between performance

under common and LM-half trichromatic conditions is

interesting because in platyrrhines, which have a sex-linked

multi-allelic opsin gene, many trichromatic females possess

narrowly separated LM cones which can be as little as

7–17 nm [11,46]. Our results suggest that both of these pheno-

types enable the extraction of meaningful skin colour variation,

although it is known that other various factors, including olfac-

tory, haptic, behavioural and auditory signals, may also play

important roles in sexual behaviour in female platyrrhines

[47–49]. The improvement of accuracy through sessions for

training pairs in protanopia, deuteranopia and LMS-even

trichromacy (figure 2a), and the lack of this effect for test

pairs (figure 2b), may reflect participant learning the correct

images of training faces according to feedback in the absence

of other reliable clues.

Interestingly, RT of women was faster than men (electronic

supplementary material, table S1 and figure S3). There were

also interactions between colour vision and sex (table 1), with

significantly higher accuracy in women under the LM-half

trichromatic condition where red–green colour signals are

available but less salient compared with the common trichro-

matic condition (electronic supplementary material, table S1).

These results may indicate a potential advantage for women

in detecting relatively weak redness signals [50]. However,

an opposite trend is observed in accuracy under the tritanopia

condition, where men showed significantly higher accuracy

than women (electronic supplementary material, table S1).

Investigating the underlying cause of this sex-biased difference

is an interesting topic for the future. It is important to mention

that due to the number of model parameters and our sample

size, there is potential for model overfitting. Consequently,

we ran simpler models without interaction terms and con-

firmed that the main effects of colour vision persisted.

Additionally, we ran separate analyses for women and men,

and demonstrate that the effect of colour vision is the robust

factor influencing performance (electronic supplementary

material, table S4). These analyses also showed similar differ-

ences among colour vision conditions as shown in electronic

supplementary material, table S1 (electronic supplementary

material, table S5).

Our experiments suggest that the spectral tuning of the

photopigments possessed by catarrhine primates is advan-

tageous for the detection of social signals. This is consistent

with a necessary condition of the social signal hypothesis,

which posits that photoreceptor sensitivities have been selected

for their ability to detect such signals. However, our exper-

iments do not assess whether fitness benefits due to social

signalling may have been involved in the original selective

pressures acting on photoreceptor sensitivities. One possibility

is that these sensitivities are related to evolutionary constraints,

or to adaptive fitness benefits in other domains such as feeding

advantages, with fitness benefits related to social signall-

ing subsequently being involved in their maintenance. For

example, frugivory is hypothesized to have played a key role

in shaping primate cognitive and sensory evolution [51], and

may have been an important initial selective pressure favour-

ing primate trichromacy [3,27,29]. Further, our experiment

does not distinguish between selection acting on the sensitivity

of photoreceptors versus the predominant wavelengths

of signals. Indeed, given the need for photoreceptors to be

used in a wide range of tasks, and given the plasticity of

signal expression, this latter scenario is perhaps a likely

explanation for our results. Comparative analysis of signal

and photoreceptor evolution across diverse primate taxa may

help to distinguish these alternatives. For instance, chromatic

changes around sexual skin during the reproductive period

are observed even in dichromatic lemurs [52] and platyrrhines

with polymorphic colour vision [53]. The functionality of these

chromatic changes as social signals in those species awaits

further study.

In addition to spectral tuning of the photoreceptors, con-

tribution of redness and lightness signals to performance is

another aspect that characterizes visual systems with differ-

ent colour vision. Partial correlation analyses revealed that

both redness and lightness differences between faces contrib-

uted to the performance of common trichromacy for training

Table 2. Relative contribution of redness and lightness difference to accuracy and RT. Partial correlation coefficients ( partial r) in common trichromacy and
tritanopia and correlation coefficients (r) in protanopia and deuteranopia are shown. Asterisks indicate p-values of significant correlations.

colour vision
condition trial type

accuracy reaction time

redness
difference

lightness
difference

redness
difference

lightness
difference

common trichromacy training 0.56* 20.66** 20.80*** 0.68**

test 0.20 20.12 20.34 0.19

tritanopia training 0.83*** 0.44 20.82*** 20.08

test 0.40 20.20 20.57* 0.08

protanopia training 0.22 0.12

test 0.21 20.19

deuteranopia training 20.09 0.30

test 20.20 20.25

*p , 0.05, **p , 0.01, ***p , 0.001.
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pairs. All participants who experienced common and LM-

half trichromatic conditions reported that they used facial

redness as a cue, the former reports being consistent with

the correlation analyses. Reflecting this use of redness cues,

individuals performed better in tritanopia compared with

LMS-even trichromacy and with the other dichromatic con-

ditions. Partial correlation analyses also show that lightness

differences correlated with the performance of participants

under common trichromacy, although this was not reported

by participants. Therefore, the difference in debriefing termi-

nology used may reflect how humans describe colour (i.e. a

tendency to report categorical colours such as red [54] instead

of reporting the nuance of colours in terms of their chromatic

and achromatic elements, despite the fact that lightness differ-

ences also contributed to the performance). The absence of

significant correlations between redness or lightness differences

and performance in test trials in common trichromacy is prob-

ably due to a ceiling effect of performance once observers are

experienced or due to lower colour variation in the test pairs

of faces (see electronic supplementary material, figure S2).

Although it might be desirable to conduct experiments in

which monkeys are the test subjects as well as the stimuli

(because post-receptor processing is not necessarily the same

in the humans and monkeys), our functional substitution

approach has many benefits over experiments using monkeys.

These include increased communicative abilities of humans,

ease of repeating experiments, the availability and standardiz-

ation of subjects, and the ability to control the conditions

under which images are observed. While primate experiments

are feasible, they are subject to more variation in the conditions

under which stimuli are viewed and in the underlying state of

the subject, and there are limitations on sample sizes, especially

when undertaking multiple conditions, as in the present study.

It should be noted, however, that our results were obtained

under fairly ideal conditions: simultaneous presentation, con-

stant lighting, pose and viewing distance, against a grey

background. Monkeys in the wild must assess face colour sig-

nals under varying lighting, pose and distances, and perhaps

even remember how the current face compares with others

viewed previously. Consistent with this, a prior study has

suggested a role of familiarity for improving male performance

in assessing the colours exhibited by females [55].

5. Conclusion
Overall, our results suggest that common trichromacy gives

individuals a clear benefit in exploiting the variation in

skin coloration associated with important aspects of individual

condition, such as intra-cycle variation in female fertility. To

our knowledge, this is the first empirical support that a necess-

ary condition of social signal hypothesis is met, indicating

that the relative spectral positioning of the M and L photo-

receptors in catarrhine trichromatic visual system is well

suited for detecting facial skin colour variation in non-human

primates. However, our results do not allow assessment of

whether this is a primary or a secondary function of primate

routine trichromacy. Indeed, an alternative explanation is that

routine trichromacy became fixed early on in catarrhine evol-

ution, due to fitness benefits from improved foraging ability,

and that subsequently the red–green colour channel became

co-opted for socio-sexual signalling [27]. Given the plasticity

of signals and the need for photoreceptors to fulfil many

tasks, it is highly plausible that selection has acted primarily

on primate signal wavelengths rather than the photoreceptors

themselves. Further studies of the proximate and ultimate fac-

tors influencing primate colour vision are needed to investigate

these different scenarios.
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