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Abstract Novel cell-centred finite-volume formulations
are presented for incompressible and immiscible two-phase
flow with both gravity and capillary pressure effects on
structured and unstructured grids. The Darcy-flux is approx-
imated by a control-volume distributed multipoint flux
approximation (CVD-MPFA) coupled with a higher reso-
lution approximation for convective transport. The CVD-
MPFA method is used for Darcy-flux approximation involv-
ing pressure, gravity, and capillary pressure flux operators.
Two IMPES formulations for coupling the pressure equa-
tion with fluid transport are presented. The first is based on
the classical total velocity V¢ fractional flow (Buckley Lev-
erett) formulation, and the second is based on a more recent
Va formulation. The CVD-MPFA method is employed for
both V¢ and Va formulations. The advantages of both cou-
pled formulations are contrasted. The methods are tested
on a range of structured and unstructured quadrilateral and
triangular grids. The tests show that the resulting methods
are found to be comparable for a number of classical cases,
including channel flow problems. However, when gravity
is present, flow regimes are identified where the Va for-
mulation becomes locally unstable, in contrast to the total
velocity formulation. The test cases also show the advan-
tages of the higher resolution method compared to standard
first-order single-point upstream weighting.
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1 Introduction

Novel cell-centred finite-volume Implicit Pressure-Explicit
Saturation (IMPES) formulations are presented for the solu-
tion of incompressible, immiscible two-phase flow prob-
lems involving gravity and capillary pressure on structured
and unstructured grids. The Darcy-flux is approximated by
a control-volume distributed multipoint flux approximation
(CVD-MPFA) [6] coupled with a higher resolution approx-
imation for convective transport [1, 5]. The symmetric
CVD-MPFA method is used for Darcy-flux approxima-
tion including pressure, gravity, and capillary pressure flux
components.

The IMPES method is one of the key solution strategies
for solving coupled systems of multi-phase flow equations
in petroleum reservoir simulation, e.g., [13], and has the
advantage of reducing the size of the linear systems to be
solved, compared to a fully implicit (FI) method. However,
we note that by definition, sequential methods cannot sat-
isfy all of the flow equations exactly at each time step of the
computation, further discussion is given in [2]. Two formu-
lations for coupling the pressure equation with fluid trans-
port are presented. The first is based on the classical total
velocity Vt fractional flow (Buckley Leverett) formulation
and the second is based on a more recent Va formulation,
proposed by Karimi-Fard and Firoozabadi [4] and used in
[8, 9, 15]. The CVD-MPFA method is employed here for
both V¢ and Va formulations. A well-known fundamental
point in favour of the total velocity formulation is that V¢
is spatially constant in one dimension and slowly varying
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in higher dimensions, making this a natural candidate for
IMPES splitting [2]. The V¢ formulation also enables for-
mal identification of the respective hyperbolic, parabolic and
elliptic character types of the flow equations that are rou-
tinely embedded in the coupled system, and consequently
aids optimal design in approximation of the resulting
fluxes. The saturation equation can be solved numerically by
Godunov’s finite-volume method [11]. Brenier and Jaffre
[16] compared several numerical schemes for flow with
gravity, including Godunov’s method, and an explicit ver-
sion of the upstream mobility (UM) scheme is introduced.
It is shown that the viscosity of the UM scheme is greater
than that of the Godunov method. In [17], Kaasschieter used
the Godunov method to solve BL equation with gravity,
and analysed the entropy conditions for solution uniqueness.
Local Lax Friedrichs (LLF)-based methods for two-phase
and three component two-phase flow with gravity segrega-
tion are presented in [7], using both global and local central
non-upwind schemes for a range of gravity numbers. In
the work presented here, capillary pressure is considered
together with gravity and convective forces and coupled via
a time splitting formulation that enables the time-step size
to only be governed by the convective CFL condition, while
capillary pressure terms are computed implicitly.

In this paper, the advantages of both coupled formula-
tions are contrasted. The methods are tested on a range
of structured and unstructured quadrilateral and triangular
grids. The tests show that the resulting methods are found
to be comparable for a number of classical cases, includ-
ing quarter five spot and channel flow problems. However,
when gravity is present, flow regimes are identified where
the Va method becomes locally unstable, in contrast to the
total velocity formulation. The test cases also show the
advantages of the higher resolution method compared to
standard first order single point upstream weighting.

2 Incompressible and immiscible two-phase flow

Incompressible and immiscible two-phase flow is consid-
ered in this paper with water as wetting phase and oil as
non-wetting phase. Following [13] the phase velocities are
given by Darcy’s law:

N k
o = —K—2(Vpo — pogVh) (1
Mo

Uy = —

— pwgVh) (2)

together with the continuity equation for each phase:

as,

CDB_ +V-9,=¢q, 3)
dsy
q)a_ +V. vw = qw 4)
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where the convention here for the positive of the
z-coordinate, i.e., i, is in the vertical downward direction
along the z-axis. The subscripts 0 and w represent the
non-aqueous and aqueous phases respectively. The phase
saturations satisfy the volume balance

Sw + 5o = 1. %)

Capillary pressure is the difference between the oleic and
aqueous phase pressures:

Pc = Po — Pw- (6)

The Vt and Va formulations of the governing equations (1)—
(6) are presented below.

2.1 Governing equations: V¢ formulation

The governing equations are written in the V# fractional flow
form with:
The pressure equation

V.-ir=¢q (N

and the water phase saturation equation

as
q)al+v Uw-‘]w (8)
where
Vw = fu (Ir + roApgKVh + A,KVp,), &)

and the total velocity v is defined by
7 = —ATKVp + (hyypw +2000) gKVh + 4, KV pe. (10)

Here, p = p, is the oleic pressure, s = s, is the
aqueous phase saturation, f,,(s) = Ay /A7 is the fractional
flow involving the ratio of aqueous phase mobility A, to
total mobility A7 = Ay + Ao, Ay = ’; Ay = ’;
and K, Vp., ®, g, are the absolute permeability, capillary
pressure gradient, porosity and aqueous source term respec-
tively. The definition of the total source term is given by
q = qo + qu, the density difference is Ap = py, — py, and
oil saturation s, is deduced from (5).

2.2 Governing equations: Va formulation

The governing equations are now written in the Va “frac-
tional flow” form with:
The pressure equation

—V . AWKV, + 1, KV¥,) = g (11)

and the water phase continuity equation

as -
QE‘FV'(waa) = qu, (12)
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Fig. 1 stencils for reconstrcution and limiting in unstructured mesh

where

Uy = —ATKV Y, (14)
with the flow potential variable defined as

V. = pc + Apgh, (15)

which was first introduced in [4]. Here, A7, K, p, ® and
q are the total mobility, absolute permeability, non-aqueous
pressure, porosity and total source term, s and f,, = Ay /AT
are the aqueous saturation and fractional flow.

Fig. 2 Capillary pressure
function as saturation with 40

The Va formulation has some clear advantages when trea-
ting capillary pressure, e.g., Hoteit and Firoozabadi [9], Friis
et al. [8], Bastian [15]: Apart from convective terms, the need
for nonlinear (Newton) iteration is eliminated due to the expli-
cit treatment of capillary pressure in the Va formula-
tion, which is an advantage computationally and from
the implementation point of view. The Va formulation
also facilitates a much more straightforward CVD-MPFA
implementation of the capillary pressure operator. This
task is more challenging for the standard Vr formulation
which also includes a non-linear capillary pressure diffu-
sion operator which has to be approximated via a CVD-
MPFA operator, and requires implicit nonlinear iteration
to overcome the explicit diffusivity time step limit. The
Va formulation involves upwinding the saturation flux of
Eq. 12 according to the sign of the Va wave speed, and when
gravity is considered an upwind mobility approximation is
used for the second term in the pressure Eq. 11, to ensure
stability. The Va formulation time step is dependent on a
CFL condition based on v,, whereas the V¢ formulation time
step depends on the actual wave speed. We also note that
in contrast, the standard approach involves upwinding on
phase velocities, Aziz and Settari [13], further methods are
also proposed, e.g., Wheeler et al. [18].

2.3 The IMPES method

Further details of the IMPES method can be found in e.g. [12]
and [13]. Here, we discuss aspects of the Vt and Va formula-
tions. The pressure and saturation equations are formulated
as shown in the respective sections 2.1 and 2.2 above, and

Capillary pressure function P_c(s)

different permeability;
coefficient ¢ = 1.0
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(a) CASE 2: 800 cells

Fig. 3 Triangle mesh in Unit domain used by test cases 2 and 5

they are solved sequentially following the IMPES philoso-
phy; First, the pressure equation is solved implicitly, then
the saturation equation(s) are solved explicitly. When solv-
ing the pressure equation, saturation-dependent quantities
such as mobilities and capillary pressure are approximated
by values at the old time-level (initial data is used for
the first time step). The Generalized Minimum Residual
(GMRES) algorithm is used to solve the sparse linear sys-
tem resulting from the discrete pressure equation and the
discrete capillary pressure equation discussed in the next
section. The total velocity is calculated after solving the
discretised pressure equation and then used in defining
the phase continuity equation finite-volume fluxes via the
CVD-MPFA formulation. Further details of the discretisa-
tion of the saturation equation are given in the next section.
We note that by definition, sequential methods cannot sat-
isfy all of the flow equations exactly at each time step of the
simulation, e.g. [2].
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(a) CASE 3

Fig. 4 1800 triangle cells in domain [0, 2] x [0, 0.9]
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(b) CASE 5: 968 cells

3 Convective and diffusive flux approximations
3.1 Upwind schemes and entropy satisfaction

The upwind scheme is used with dependence on the direc-
tion of the derivative of the convective flux (characteristic
speed e.g. [10]). When gravity is included, counter-current
flow can occur and requires the use of an entropy sat-
isfying flux. Here, we use the method of [7], where for
the V¢ formulation, the upwind scheme is combined with
a Local Lax-Friedrichs(LLF) flux to treat counter-current
flow. This is used locally for an entropy fix by the tra-
ditional expansion-shock detection method, e.g., the Van
Leer Entropy-fix [10], however the wave speed in the LLF
scheme is sampled at the Gauss points [7]. In contrast,
we have not found any discussion or application in the
literature of the Va formulation when gravity is present, and
the current Va formulation lacks an entropy condition. The

(b) CASE 4
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Fig. 5 Isotropic case; M = 1.0; time = 0.5pvi; 200 triangle cells; Saturation contours

comparison between the V¢ and Va formulations in the pres-

ence of gravity with counter current flow is one of the key
contributions presented below.

3.2 Higher-resolution reconstructions
Here, we summarize the convective upwind flux approxima-

tions and the Barth and Jespersen limiter [1] that is employed
in this work. The model equation concerned here is

/cbs, +div-FdV =0,
Q

(16)

where F = Sfuw@T + 2o ApgKVh) and approximation of the
capillary pressure term is discussed in the next sub-section.

We let index i represent the left hand side cell, j repre-
sent the right hand side cell and ij the face between i and
j cells. The discrete integrated V¢ numerical flux used in
approximating the divergence term of Eq (16) is denoted by
F,'j (S,',j, Sj,,') and defined by

1
Fij(Sij, Sji) = 5[(F(Sj,i) + F(Si, ;) — IAI(S),i — Sij)]

a7
where for the V¢ formulation F(S; ;) and F(S; ;) are inte-
grated point values of F, and A = % is computed along the
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Fig. 6 Implicit CVD-MPFA
Tests of two-phase flow on an
unstructured mesh; Mesh size:
hsize = 0.05

Saturation

normal of each face. Note for the first-order upwind method
Si.j = Siand S;; = §;. If counter current flow is detected
then || is replaced by |Appr| following [7]. In contrast
the integrated Va numerical flux used in approximating the
divergence term of Eq (12) depends on upwind data defined
according to the sign of 9, at each control-volume interface.

In constructing the higher order approximations for both
Vt and Va formulations, we now focus on the data approx-
imations either side of a control-volume face or triangle
/quad edge. For the left state of edge ij, the higher order
left state saturation is initially unconstrained and defined
by Si;j = S; + L;j(S) where L;; = Ax;;VS;, Ax;; is the
length from cell i’s centroid to mid-point of edge ij and
the gradient VS; is computed via least squares using the
local triangle gradients associated with triangle i. Similarly
the higher order right state saturation is initially defined
by S;; = S§; + Lj;(S) where L;; = Ax;;VS;, Axj; is
the length from cell j’s centroid to mid-point of edge ij

1 ),
L ——e—— Reference
o8l o dt=1.2d-02
| a dt=1.0d-02
i v dt=8.0d-03
l dt=6.0d-03
dt=5.0d-03
c -
5 0.6 i
=
®©
© L
S
® T
w04 b
- ¢
: 3
0.2 &
L \
0 | | 1 | 1": L 1

1
-1

:
N

1 2
X

and VS is the least squares gradient computed with respect
to cell j. The limiter proposed by Barth and Jespersen [1] is
designed to make sure the reconstructed values satisfy:

A: The reconstruction must not decrease below the minimum
or exceed the maximum of the neighbouring cell averages;

B: The difference in the interpolated values at the ij-th
edge and the difference in the corresponding cell-averages
should have the same sign.

The Barth-Jespersen Limiter is defined by:

: M;—S; .. .
min (1.0, Sij*Si)’ Sij > S

M= min (10, 4=%), s <5, (18)

1.0, otherwise

where
m; = minjeNl.Sj, Ml' = maxjeNiSj,

1 Z2cN

Reference

0.8 dt=3.0d-03
dt=2.5d-03
dt=2.00-03
dt=1.5d-03
dt=1.0d-03

c

§ 06

=

©

g

=]

2

©

® 04

0.2

, O

1 1 L | |
-1 0

X

Fig. 7 Implicit CVD-MPFA Tests of two-phase flow on an unstructured mesh; Mesh size left: hgi;, = 0.1; right: hize = 0.05
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Table 1 Configurations: hsize = 0.1, tour = 2.0 The local formulation for the reconstruction with respect
Test index Ateap Max iterations Diff-Num to edge ij then uses the r.espectlve slope llmltgrs to define
the higher order left and right hand state saturations:
Test 1 1.2-1072 2 0.920
Test 2 1-1072 2 0.767
Test 3 8-1073 2 0.613 Sij = i + il (5) (19)
€S . .
3 Sji =S8; +TI;L;; ()
Test 4 6-10~ 2 0.460
Test 5 5-1073 2 0.383
and the flux is a function of the left and the right hand
states, c.f. Eq (17), with upwind direction chosen accord-
ing to the sign of the local wave speed normal to edge
N; is the set of direct neighbours of cell i, and I1; =  jj. The stencil for reconstruction and limiter is depicted in
minjen; [I1;]. Fig. 1.
I
08 =
06 =
> -
B Saturation Saturation
04 2
- 2
L 18
16
- 14
02 12
1
B 08
- 0.6
- 0.4
0.2
i
X
(a) Va; Saturation contours
I
08
Saturation PV
Saturation
ggE 095
06 Les )¢5
08 08
075 075
- 07 7
0.65 065
08 15
04 055 055
05 05
0.45 045
035 055
0.2 835 ggs
0.2 0.2
015 0.15
0.1 0.1
0.05 0.05
0

(c) Vt; Saturation contours (d) Vt; Saturation Isosurface

Fig. 8 CASE 2: M = 1.0; time = 0.5; 800 triangle cells; FOU
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Fig. 9 The domain tested,The middle layer in the domain is least
permeable

3.3 Semi-implicit CYD-MPFA method for the unsteady
capillary pressure equation

In the V¢ formulation, an explicit capillary flux approxima-
tion adds further restriction to the CFL condition for the
saturation equation. In the formulation presented a Godunov
time-splitting based strategy is adopted, with an explicit
convective update followed by an implicit diffusive (capil-
lary pressure) update. The convective flux is approximated
using the above methods of Sections 3.1 and 3.2. Here, we now
focus on the diffusive flux. In the explicit case a severe diffusiv-
ity time-step limit is imposed as a result of the unsteady capil-
lary pressure flux. To overcome the explicit diffusivity limit an
implicit method is used. In this formulation, the CVD-MPFA
method is used to approximate the capillary pressure opera-
tor, with capillary pressure p. and capillary flux assumed to
be continuous across medium interfaces. When treating the
diffusive capillary update, the nonlinear capillary pressure
function p. = W (s), is rearranged and saturation is formally
expressed as s = p-l (pc), which is assumed to be unique,
and now the unknown p. is determined in this step. The

Saturation
0.95

85

o

o

o

o

ey

o

=

o

equation splitting is expressed in semi-discrete form with
respect to time as follows:

o LY () = g, 20)
q)(an—_s*) +V. ((f o) (s"THKV p "+1) =0. 21
At wo C .

For an implicit formulation equation (21) is rewritten in
terms of p. as
et — v pg
At
+V - (furo@ T PRV ) =0, 22)

P

For an implicit method using Backward-Euler, two time
discretization variants have been considered for approxima-
tion of the non-linear terms, (i) Newton-Raphson Iteration
and (ii) a Predictor-Corrector linearisation: We found the
latter to be far more efficient and it is expanded below.

Predictor-corrector fixed-point iteration method An
iterative linearisation is presented, which does not explic-
itly depend on W~'(p.). The linearisation employs the
derivative approximation (see Peaceman [12]) where

ds . .
(P (prit!
Pc

R = peh. (23)

to form an iterative method to solve Eq. 22 written as

QI ds i i ‘ .
" (sn,t+d_pc(pzl,l)(pg,l+ _pzl,z _sn,
4 / Fuko) KV GidA =0, (24)
Q2

Saturation

(b) FVBJ

Fig. 10 Saturation contours; M = 1.0; time = 1.0; no-capillary pressure; on triangle mesh; 1800 cells
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Saturation

(a) Va Explicit

Saturation

(b) Vi splitting Semi-Implicit

Fig. 11 Saturation contours; M = 1.0; capillary pressure coefficient ¢ = 1.0; time = 1.0; FVBJ; on triangle mesh; 1800 cells

and rearranged in the form

(D|Q| ds n,i n,i n,i n,i =
ST+ [ [Gura) DR 1
- Q
d)|Q| ds n,iy n,i n,0 n,i
— s s 0 _ o, i 25
Ar (de(PC )pe +s s (25)

where in the above equations the boxed coefficients are
approximations that converge as the iteration converges with
(p?"—|rl — pi'y = 0. The initial iteration condition is
nO _ % n0 _ %
pe = pl,s™Y =s*.
The algorithm is described below:
Step 1: s™' = s*, p¢'' = pk.
Step 2: solve the global equations (25) through the domain.
Step 3:

. . ni+1__ .n,i
s"TL = it i max (”bm T )) <TOL;
smi = gmitl pni — il then repeat from Step 2,
otherwise.
y
Isotropic layer
X
Y, 4
XI
X Anisotropic layer
y
X Isotropic layer

Fig. 12 Domain with a full permeability tensor in the middle layer

We note that [14] employed a similar linearisation with
constant derivative in the iteration applied to a global pres-
sure formulation and convergence of the iterative process
was shown. We now consider a variety of tests on structured
and unstructured grids.

4 Results

The first test case demonstrates the effectiveness of the higher
resolution method. The second case demonstrates the effec-
tiveness of the linearisation. The other cases that follow con-
trast the performance of V¢ versus Va for convective flow,
and convective flow with gravity and capillary pressure. In
these test cases, the capillary pressure function is defined as

W(s) = —%ln(s), (26)

_ vk
and the inverse functioniss = W (p,) = e ¢ P =X | —
*/7]; pe, wWhere ¢ is a specified constant in the tests. Example
curves are shown in Fig. 2 in this work we assume 1, =
(1 — )™, Ay = 5™, where m = 2.

The first-order upwind method is denoted by FOU while
the higher resolution finite-volume Barth-Jesperson method
is denoted by FVBJ. The meshes used in the following tests
are shown in Figs. 3 and 4. Unless stated otherwise, for
all test cases the initial water saturation is 0.0001 through-
out the field, at inflow saturation is unity and reflection
conditions apply on solid walls. Here py, = 1 and p, = 0.8.

4.0.1 CASE 0: quarter-five spot

We begin with a comparison of results obtained using
the respective first order upwind and the higher resolution

@ Springer
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Saturation

(c) Vt; FOU; Saturation contours

uonemes

Saturatic

(d) Vt; FVBIJ, Saturation contours

Fig. 13 M = 1.0; time = 0.8; capillary pressure coefficient ¢ = 0.0; on triangle mesh; 1800 cells

methods applied to the classical quarter-five spot problem,
with the initial condition of saturation isSo(X) = Sye =
0.0001, X € [0, 1] x [0, 1]. An isotropic rock permeability
matrix is considered with K,, = I. The problem involves
an injection well( bottom left), with specified flow rate
g = 0.1, a production well (top right) where pressure is
specified, and solid wall conditions imposed on all bound-
aries. The results of this non-linear case are shown at 0.5 pvi
in Fig. 5. We note that since capillary pressure and gravity
are absent, then in this case the V¢ and Va formulations are
identical.

4.0.2 CASE 1: 1D capillary pressure convergence
tests

This case involves a demonstration of the performance of
the implicit capillary pressure linearisation (used in the V¢
formulation) on a well established one dimensional problem
[3, 8], that is driven by capillary pressure effects governed
by Eq. 22. The domain is a rectangle (x,y) € [—2,2] x

@ Springer

[0, 0.2], and an unstructured mesh is used. The permeability
field is given by:

4.2025,x < 0.0
ko) = { 0.5625, x > 0.0 @7)
The initial conditions for saturation are
0.999,x < 0.0
So®) = { 0.001, x > 0.0 28)

water and oil viscosity are set to be v,, = 1.0, v, = 1.0.
For simplicity, the porosity of the medium is set to be ® =
1.0, and sy = sor = 0.0. The capillary pressure via the
inverse function of s = ¥ (p,) is used as the unknown, and
the above linearisation is adopted, Results are computed at
t =2.0.

The results are shown at sample position y = 0.1, and
are presented in Figs. 6 and 7. Table 1 demonstrates the
efficiency of the iteration method.
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(c) Vt; FOU; Saturation contours
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(d) Vt; FOU;, Saturation Isosurface

Fig. 14 M = 1.0; time = 0.8; capillary pressure coefficient ¢ = 0.05; on triangle mesh; 1800 cells

The diffusivity number on a 2D triangle mesh is defined
by:
Diff-Num = max;e[1,n)

At I fwroVpe)(si) -
{Hmaqumj {Ki% i, (29

where N is the total number of cells in the domain, vol; is
the cell volume, and n j is the outward normal of the j-th
edge, scaled by the edge length. As noted in, e.g., [19], the
stability condition Diff-Num < % must be satisfied when an
explicit scheme is used (on a 2D cartesian grid this would
be }1). Here this condition is removed by using the implicit
scheme.

4.1 Comparisons between V¢ and Va Formulations

CASE 2: channel flow with gravity Water is injected at
the left-hand side boundary where a Neumann condition
is imposed with flux f; = 1.0. A Dirichlet condition is
specified on the right boundary, p, = 1.0. Solid wall con-

ditions apply on upper and lower boundaries. Gravity acts
in the vertical direction. The permeability tensor is isotropic
with a unit diagonal tensor. The results from using the
respective Va and V¢ formulations are shown in Fig. 8. The
results in Fig. 8a, b show that the Va formulation is unable
to resolve counter-current flow, with incorrect upwinding
causing a build up of water saturation adjacent to the solid
wall. In contrast the V¢ formulation with entropy fix is able
to resolve the interaction of convective and gravity forces,
as shown in the results in Fig. 8c, d.

CASE 3: layered channel flow We consider displacement
of oil by water in a 3 layered rectangular domain, initially
filled with oil, which is shown in Fig. 9. The permeability
is isotropic with value 0.01 in the middle layer and 1 other-
wise. Water is injected uniformly at the left hand boundary.
The boundary conditions involve a Neumann flux f; = 1.0
on the left hand boundary, and a Dirichlet condition, p, =
1.0 on the right hand boundary. Solid wall conditions apply
on upper and lower boundaries.
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(b) No capillary, entropy-fix

(c) explicit capillary, ¢ = 0.01, entropy-fix

(d) implicit capillary, ¢ = 0.01, entropy-fix

Fig. 15 Saturation contours; Vt; M = 1.0; time = 1.25; FOU; 968 triangle cells

The results for convective two-phase flow without gravity
or capillary pressure are shown in Fig. 10 and demonstrate
the benefit of the higher resolution method. Two-phase flow
results with capillary pressure (zero gravity) are shown in
Fig. 11, this case compares with [8]. In this case, Va and V¢
yield similar results. The effect of capillary pressure is seen
by contrasting Fig. 11 with Fig. 10.

CASE 4: layered channel flow with gravity and a discon-
tinuous full permeability tensor The domain is comprised
of three horizontal layers, shown in Fig. 12. The upper and

@ Springer

lower layers have unit isotropic permeability, while the cen-
tral layer has a full permeability tensor with principal values
(K1, K2) = (10, 1) rotated at an angle 6 of 30 degrees to
the horizontal. The permeability tensor is defined by

- cosf —sinf K 0O cosO sinb
k= [sin@ cosd :| |: 0 Kz] [—sin@ cos9:| (30)
Gravity acts vertically and capillary pressure is included

and tested, results for coefficient strengths ¢ = 0.0, 0.05 are
shown, respectively. Water is injected at the left-hand-side
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boundary, with boundary conditions as follows: Left bound-
ary, Neumann flux f; = 1.0. On the right-hand boundary,
the Dirichlet condition p, = 1.0 is imposed. Solid wall con-
ditions are applied on the top and bottom boundaries. The
Va formulation results in Figs. 13a, b and 14a, b show that
the Va formulation is unstable without capillary pressure ¢ =
0.0 and with capillary pressure ¢ = 0.05. In contrast, the V¢
formulation results of Fig. 13c, d (which also shows the higher
resolution result) and Fig. 14c, d show that the V¢ formulation
is stable and resolves the resulting flow for both cases.

CASE 5: shale barrier with gravity driven flow This case
is purely gravity driven and defined over a square domain

0 0.2 04 0.6 0.8 1
X

(b) FVBJ; 20x20 quad cells

0 0.2 04 0.6 0.8 1
X

(d) FVBJ; 64x64 quad cells

Fig. 16 Vr Saturation contours, Low order versus Higher order FVBJ; M = 1.0; zero capillary pressure ¢ = 0.0; time = 1.25

of unit length [0, 1]X[0, 1]. Water is initially on top of oil
forming two fluid layers with an interface at y = 0.75 above
a solid shale barrier defined at y = 0.5, for [0.5 < x < 1].

€29

10075
Y71 0.1, otherwise

The permeability is isotropic and set to unity. A Dirichlet
condition for pressure is specified at the lower boundary
with p, = 1.0. Solid wall conditions are imposed at other
boundaries.

The necessity of the entropy fix used for the V¢ formu-
lation is illustrated by comparing the results of Fig. 15a,
b, where Fig. 15a is computed without an entropy fix and

@ Springer
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Fig. 15b is computed with the entropy fix. The effect of the
saturation dependent capillary-pressure flux time level on
the V¢ formulation results is illustrated in Fig. 15¢, d, where
the result of Fig. 15¢ is computed with an explicit capillary
pressure flux, while that of Fig. 15d is computed with an
implicit flux. All other V¢ formulation results in this paper
involving capillary-pressure are computed with an implicit
capillary-pressure flux.

The benefit of the higher resolution V¢ formulation versus
the first order Vt formulation (with zero capillary pres-
sure) is shown in Fig. 16 where improved resolution of
the saturation field is obtained by the FVBJ method. The
results of Fig. 17 show Va Fig. 17a, b versus Vt Fig. 17c,

0.8
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(a) Va; Saturation contours
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(c) Vt; Saturation contours

d when capillary pressure (small coefficient ¢ = 0.01) is
added. The Va results of Fig. 17a, b show that for small
(or zero) capillary pressure, the Va method which lacks
an entropy condition cannot resolve counter-current flow.
Comparing the V¢ results of Figs. 16a and 17c shows that
the added capillary pressure still has a significant effect
on results, where the shock front is seen to start spreading
in (Fig. 17c) due to the diffusive capillary effect. The Va
method begins to resolve the flow for higher capillary pres-
sure (¢ = 0.05) as shown in the comparison between Va and
Vtin Fig. 18. However, even at higher capillary pressure, the
Va results indicate some instability c.f. Fig. 18b compared
to Vt Fig. 18d.
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(d) Vr; Saturation Isosurface

Fig. 17 M = 1.0; capillary pressure coefficient ¢ = 0.01; time = 1.25; FOU; 968 triangle cells
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Fig. 18 M = 1.0; capillary pressure coefficient ¢ = 0.05; time = 1.25; FOU; 968 triangle cells

5 Conclusions

An unstructured cell-centred higher resolution finite-
volume framework for porous media flow simulation is
presented. Two formulations V¢ and Va, are presented and
contrasted for simulation of two-phase flow including grav-
ity and capillary pressure. The implicit linearisation proves
effective for the capillary pressure term. The CVD-MPFA
method is used for Darcy-flux approximation including
pressure, gravity and capillary-pressure flux components.
Test cases are presented for comparison of the two for-
mulations. The V¢ formulation proves to be robust for all
cases tested. When computing solutions involving gravity

with counter-current flow, the Va formulation, which lacks
an entropy condition, yields unstable results. For problems
with smaller gravity to capillary force ratios and conse-
quently less dependence on an imposed entropy condition,
stability of the Va formulation may improve. However, the
results presented show that the Va formulation can prove to
be unstable when gravity is present in the flow problem. The
benefit of the higher resolution V¢t method compared to the
first order method is also demonstrated.
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