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Prior to characterization of antifungal inhibitors that target this enzyme, 

Trichophyton rubrum CYP51 was expressed in Escherichia coli, purified 

and characterized. T. rubrum CYP51 bound lanosterol, obtusifoliol and 

eburicol with similar affinities (Kd values 22.7, 20.3 and 20.9 µM), but 

displayed substrate specificity insofar as only eburicol was demethylated 

in CYP51 reconstitution assays (turnover number 1.55 min-1, Km value 2 

µM). The investigational agent VT-1161 bound tightly to T. rubrum CYP51 

(Kd = 242 nM) with similar affinity as clotrimazole, fluconazole, 

ketoconazole and voriconazole (Kd values 179, 173, 312, and 304 nM, 

respectively), and with lower affinity than itraconazole (Kd = 53 nM).  IC50 

determinations using 0.5 µM CYP51 showed VT-1161 was a tight-binding 

inhibitor of T. rubrum CYP51 activity yielding an IC50 value of 0.14 µM 

compared to 0.26, 0.4 and 0.6 µM for itraconazole, fluconazole and 

ketoconazole, respectively. When tested against 34 clinical isolates, VT-

1161 was a potent inhibitor of T. rubrum growth with MIC50, MIC90, and 

geometric mean MIC values of ≤0.03, 0.06, and 0.033 µg ml-1, respectively. 

With its selectivity versus human CYP51 and drug metabolizing CYPs 

having already been established, VT-1161 should prove safe and effective 

in combating T. rubrum infections in patients. 
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 Infections of the ascomycete fungi Trichophyton spp. (e.g., onychomycosis 

or nail fungus, tinea pedis or athlete's foot, tinea corporus or ringworm) are some 

of the oldest human dermatological afflictions. Whilst not life-threatening, these 

infections can be of significant annoyance to the sufferer. T. rubrum is the most 

common dermatophyte infection in healthy individuals, accounting for up to 70% 

of skin infections (1) and up to 90% of nail infections (2, 3). Nail infections caused 

by T. rubrum affects around 10% of the population and are frequently intractable 

and prone to relapse upon termination of antifungal therapy (4, 5). T. rubrum 

infections of hair, skin and nails have increased over the past 70 years, 

especially in the elderly and in some countries also in children (6-8). Chronic skin 

infections caused by T. rubrum can become sites for secondary infection by other 

microorganisms, such as Candida spp., Cryptococcus spp., Aspergillus spp. and 

Staphylococcus aureus, which can become life-threatening in 

immunocompromised and immunosuppressed patients if the secondary infection 

becomes systemic (9-12).  

 Current therapeutic treatments against T. rubrum infection include azole 

antifungal agents, allylamines and thiocarbamates (all inhibiting ergosterol 

biosynthesis) administered orally or applied topically in creams and lotions. In 

chronic invasive and systemic fungal infections, especially amongst 

immunocompromised patients, amphotericin B (which disrupts fungal cell 

membranes) can be utilized intravenously. These antimycotic agents are most 

effective against the growing organism but are often ineffective against static 

phases of the organism, such as T. rubrum conidia, leading to reinfection unless 
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prolonged treatment regimens are adopted. Recently photodynamic treatments 

have been developed using photosensitizers in combination with UVA-1 radiation 

(340-400 nm) to kill both the mycelial form and conidia of T. rubrum (13) in topical 

dermal infections. The most commonly used antifungal agents against T. rubrum 

are ketoconazole, fluconazole, terbinafine and flucytosine (13). The prolonged 

treatment regimens often required have led to the emergence of azole resistant 

T. rubrum strains, especially against fluconazole (14-17).  

 In this study, we characterize the catalytic properties of recombinant T. 

rubrum CYP51 and compare the novel antifungal VT-1161 (18, 19) with clinical 

azole antifungal drugs in terms of potency and selectivity of binding to and 

inhibition of recombinant T. rubrum CYP51 and in inhibition of fungal growth in 

broth microdilution assays. 
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RESULTS 

 Expression and purification of Trub51. Following heterologous 

expression in E. coli, Trub51 protein was extracted by sonication in 2% (wt/vol) 

sodium cholate which yielded 240 (±80) nmoles per liter culture as determined by 

carbon monoxide difference spectroscopy (20). Purification by Ni2+-NTA agarose 

chromatography resulted in an 84% recovery of native Trub51 protein yielding a 

stock 48 µM solution after dialysis. SDS polyacrylamide gel electrophoresis 

confirmed the purity of the Ni2+-NTA agarose purified Trub51 to be greater than 

90% when assessed by staining intensity.  

 Spectral properties of Trub51. The absolute spectrum of the resting 

oxidized form of Trub51 (Fig. 1A) was typical for a low-spin ferric cytochrome 

P450 enzyme (21, 22) with α, β, Soret (γ) and δ spectral bands at 567, 540, 420 

and 361 nm. Reduced carbon monoxide difference spectra for Trub51 (Fig. 1B) 

gave the red-shifted heme Soret peak at 447 nm, characteristic of P450 

enzymes, indicating the Trub51 protein was isolated in the native form. The 

formation of the reduced CO-P450 complex with Trub51 was rapid (t0.5 = 0.18 

±0.06 min) although did not proceed to completion (hump visible at 422 nm).  

 Sterol binding properties of Trub51. Progressive titration of Trub51 with 

lanosterol, eburicol and obtusifoliol gave type I difference spectra with a peak at 

388 nm and a trough at 421 nm (Fig. 2). Type I binding spectra occur when the 

substrate or another molecule displaces the water molecule coordinated as the 

sixth ligand to the low-spin hexa-coordinated heme prosthetic group causing the 

heme to adopt the high-spin penta-coordinated conformation (22). The intensity 
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(∆Amax) of the type I binding spectra obtained with lanosterol was 7-fold lower 

than that obtained with eburicol and 3-fold lower than that obtained with 

obtusifoliol, suggesting that eburicol was the preferred substrate. However, Kd 

values of 20.3 ±1.2 µM, 22.7 ±3.6 µM and 20.9 ±0.3 μM were obtained for 

eburicol, lanosterol and obtusifoliol, respectively, indicating all three sterols 

bound with similar affinity.  

 CYP51 reconstitution assays. Trub51 did not catalyze the 14α-

demethylation of lanosterol under the stated assay conditions. GC traces for 

TMS-derivatized CYP51 assay metabolites show lanosterol and eburicol 

emerging from the GC column after 35.65 and 38.25 minutes (Fig. 3A), whereas 

the 14α-demethylated product of eburicol emerged after 39.15 minutes. 

Confirmation of the identity of product 'P' was obtained by the mass 

fragmentation pattern (Fig. 3B) as TMS-derivatized C14-demethylated eburicol 

(M+ 496). Trial Trub51 assays using 50 μM obtusifoliol yielded no detectable 

metabolites (data not shown). This is only the second time that such strict 

substrate specificity has been observed for a fungal CYP51 enzyme, with 

Mycosphaerella graminicola CYP51 previously being shown to demethylate 

eburicol but not lanosterol in vitro (23).  

 Mild substrate inhibition was evident from the eburicol velocity curve 

obtained for Trub51 (Fig. 4) with calculated Km and Ki values for eburicol of 2 μM 

and 225 μM, respectively. The maximum eburicol turnover number was 1.55 min-

1. The observed substrate inhibition suggests the presence of two distinct 

eburicol binding sites or binding orientations in Trub51 with one binding site / 
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orientation being catalytically productive whilst the other leads to the formation of 

an unproductive dead-end complex. However, no allosterism was observed in the 

eburicol type I difference binding spectra (Fig. 2B), suggesting eburicol binds in 

only one conformation that causes the displacement of the axial ligated heme 

water molecule responsible for the low- to high-spin state transition.  

 CYP51 inhibitor binding properties of Trub51. All five marketed 

imidazole and triazole antifungal agents and the novel tetrazole VT-1161 

produced type II binding spectra (24) with Trub51 (Fig. 5). Ligand saturation 

curves (Fig. 6) confirmed azole binding was tight with the rearranged Morrison 

equation providing the best fit to the data (25, 26). Trub51 bound itraconazole the 

tightest with a Kd value of 53 (±29) nM whilst clotrimazole, fluconazole, 

voriconazole, ketoconazole and VT-1161 all apparently bound less tightly to 

Trub51 with similar Kd values of 179 (±83), 173 (±53), 304 (±64), 312 (±36) and 

242 (±99), respectively. 

 CYP51 inhibitor IC50 determinations. IC50 determinations (Fig. 7) 

confirmed that fluconazole, itraconazole, ketoconazole and VT-1161 all inhibited 

T. rubrum CYP51 activity in vitro. VT-1161 caused the strongest inhibition (IC50 

0.14 µM), followed by itraconazole (IC50 0.26 µM), then fluconazole and 

ketoconazole (IC50 values 0.4 and 0.6 µM). Given the concentration of CYP51 

used in this assay was 0.5 µM, the expected IC50 value for an extremely tight-

binding azole antifungal would be 0.25 µM. Therefore, both VT-1161 and 

itraconazole bound extremely tightly to Trub51 whilst fluconazole and 

ketoconazole bound less tightly.  
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 CYP51 inhibitor MIC determinations. MIC determinations (Table 1) 

confirmed the potency of VT-1161, as the MICs ranged from less than or equal to 

the lowest concentration tested (0.03 µg ml-1) to the highest MIC values of 0.06 

µg ml-1. VT-1161’s MIC50, MIC90 and geometric mean values of <0.03, 0.06, and 

0.033 µg ml-1 were slightly less than those for itraconazole (0.06, 0.06, and 0.052 

µg ml-1, respectively), and both of these CYP51 inhibitors were significantly more 

potent that fluconazole (2, 16, and 2.3 µg ml-1, respectively). The GM MICs of 

VT-1161 and itraconazole were both significantly lower than that of fluconazole (p 

= 0.0018 for both comparisons) but were not significantly different between each 

other. 

 Phylogenetic comparison of fungal CYP51 enzymes. The primary 

amino acid sequence of T. rubrum CYP51 contained all twenty-three conserved 

CYP51 residues previously identified by Lepesheva and Waterman (27) in 

addition to the conserved heme-binding cysteine residue (supplementary figure 

S1). The degree of conservation between the six-substrate recognition sites 

(SRSs) (28) varied (supplementary figure S1) with SRS-1 being the most 

conserved and SRS-6 the least conserved. Both T. rubrum and M. graminicola 

CYP51 enzymes can turnover eburicol but not lanosterol (this study; 23). A. 

fumigatus CYP51 isoenzymes A and B turnover both eburicol and lanosterol, 

albeit with a 4- to 7-fold preference for eburicol in terms of measured velocity 

using purified proteins (29) or more than an 18-fold preference for eburicol using 

membrane fractions. C. albicans, C. neoformans and M. globosa CYP51 

enzymes, on the other hand, all readily turnover both eburicol and lanosterol (29-
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31). Analysis of the amino acid sequences of the six SRSs between the seven 

fungal CYP51 enzymes did not identify any residue changes that could be 

directly linked to the change in substrate specificity observed in the T. rubrum 

and M. graminicola CYP51 enzymes.  
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DISCUSSION 

 In preparation for studying antifungal inhibitors of this enzyme, we have 

fully characterized CYP51 from the most prevalent fungus causing human 

dermatophytosis, Trichophyton rubrum. The T. rubrum CYP51 (Trub51) Kd 

values for sterol substrates of 20 to 23 μM were comparable with CYP51 

enzymes from Candida albicans (11 to 28 μM) (32), Mycosphaerella graminicola 

(11 to 13 μM) (33), Aspergillus fumigatus CYP51B (9 to 23 μM) (29), 

Cryptococcus neoformans (12 to 21 μM) (30) and Malassezia globosa (23 to 32 

µM) (31). However, the Kd values for lanosterol and eburicol with Trypanosoma 

cruzei CYP51 were lower at 1.9 and 1.2 μM (34), and the Kd values for lanosterol 

with H. sapiens and Mycobacterium tuberculosis CYP51s were lower than 

Trub51 at 0.5 to 6 μM (28, 35) and 1 μM (21), respectively. However, Trub51 only 

catalyzed the 14α-demethylation of eburicol and not that of lanosterol and 

obtusifoliol and mirrors that previously observed for Mycosphaerella graminicola 

CYP51 (23). This narrow substrate specificity is in contrast to the broad substrate 

specificity observed previously for CYP51 enzymes from Candida albicans, 

Mycobacterium tuberculosis, Homo sapiens, Trypanosoma cruzi, Cryptococcus 

neoformans, and Malassezia globosa, (30, 31, 36). Additional CYP51 enzymes 

that exhibit narrow substrate specificities include obtusifoliol-specific 

Trypanosoma brucei CYP51 and plant CYP51 enzymes such as Sorgham bicolor 

CYP51 (36), whilst Aspergillus fumigatus CYP51A and CYP51B isoenzymes 

have a strong preference for eburicol (29). The Trub51 Km for eburicol of 2 μM 

was comparable to the substrate Km values previously obtained for CYP51 
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enzymes from C. albicans and Saccharomyces cerivisiae (32, 37, 38), but was 5- 

to 30-fold lower than those determined for CYP51 enzymes from Leishmania 

infantum, Homo sapiens, Mycosphaerella graminicola, and Malassezia globosa, 

(23, 31, 36, 39). The strict eburicol substrate specificity of Trub51 could not be 

directly attributable to changes in the primary amino acid sequence of the six 

substrate recognition sites (28) relative to fungal CYP51 enzymes that readily 

demethylate both eburicol and lanosterol (supplementary figure S1).  

 It has been long recognized that fungal CYP51 inhibitors derive much of 

their binding potency through an “azole”/heme iron interaction (40), and that this 

binding can be directly measured spectroscopically (41). Therefore, as expected, 

Trub51 bound imidazole-based ketoconazole and clotrimazole, triazole-based 

fluconazole, voriconazole, and itraconazole, and the novel tetrazole-based VT-

1161. Each compound displayed a type II binding spectra caused by the 

interaction of a heterocyclic ring nitrogen coordinating as the sixth ligand with the 

heme iron (24) to form the low-spin CYP51-azole complex resulting in a 'red-shift' 

of the heme Soret peak. Whereas, the specific nitrogen is known for the triazole 

inhibitors (N-4) (42) and imidazole inhibitors (N-3) (28), the interaction of VT-1161 

with the heme ferric ion is through either the tetrazole’s N-3 or N-4 nitrogen. The 

N-4 nitrogen was found to be more nucleophilic in heats of formation experiments 

(data not shown), and would therefore be the most likely atom to interact with the 

CYP51 heme iron.    

 The antifungal agents tested in this study bound Trub51 somewhat less 

tightly than to other fungal CYP51 enzymes, with the possible exception of 
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itraconazole. The relative differences observed in the Kd values, however, did not 

translate into equally large differences in IC50 values, with only a 4-fold increase 

in IC50 value being observed between VT-1161 and ketoconazole, and the IC50 

for VT-1161 being numerically but not significantly lower than that for 

itraconazole. Therefore, for Trub51, the CYP51 reconstitution assay proved to be 

better at assessing CYP51-inhibitor potency than direct ligand binding to 

aqueous purified enzyme and was in agreement with the intrinsic antifungal 

potency measured in broth microdilution assays which ranked VT-1161 as the 

most potent T. rubrum inhibitor, closely followed by itraconazole, with fluconazole 

being the least potent (Table 1).  

 The performance of the drug candidate VT-1161 against T. rubrum CYP51 

and T. rubrum itself was encouraging. We have shown biochemically that VT-

1161 bound to the heme iron in the active site of Trub51 and strongly inhibited 

Trub51 activity through tight ligand binding. VT-1161 cellular potency against T. 

rubrum ranged from <0.03 to 0.06 µg/ml, slightly more potent than for 

itraconazole (<0.03 to 0.12 µg/ml) and significantly more potent than for 

fluconazole (0.5 to >64 µg/ml). This MIC potency range for VT-1161 compares 

favorably to published MIC values for T. rubrum of 0.03 to 256 μg ml-1 for 

fluconazole, 0.008 to 0.25 μg ml-1 for itraconazole, 0.06 to 2 μg ml-1 for 

ketoconazole and 0.06 to 1 μg ml-1 for voriconazole (43-46). In addition, VT-1161 

was as effective as itraconazole in treating T. mentagrophytes-induced 

dermatophytosis in guinea pig when treatments were orally administered daily 

and superior to itraconazole when administered weekly (47). 
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 Equally important, the use of the tetrazole has allowed for the engineering 

of a more selective fungal CYP51 inhibitor relative to key human CYP enzymes 

(IC50 values against CYPs 3A4, 2C9, 2C19, and 51 ranging from 65 to ~600 µM) 

(19). This greater selectivity coupled with at least maintaining if not improving 

antifungal potency should translate into a greater clinical therapeutic window, 

which in turn could allow for higher doses and possible greater efficacy. To this 

end, VT-1161 has achieved proof-of-concept efficacy (48) in a Phase 2a study in 

treatment of tinea pedis (NCT01891305), and has just completed a Phase 2b 

study in the treatment of onychomycosis (NCT02267356) with interim data 

demonstrating antifungal and clinical efficacy in conjunction with an excellent 

safety profile (49). Phase 3 studies are currently being planned to support 

registration approval of VT-1161 as a novel agent to treat onychomycosis. 
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MATERIALS AND METHODS 

 Construction of the pCWori+:Trub51 expression vector. The T. rubrum 

CYP51 gene (Trub51 – UniProt accession number F2SHH3) was synthesized by 

Eurofins MWG Operon (Ebersberg, Germany) incorporating an NdeI restriction 

site at the 5' end and a HindIII restriction site at the 3' end of the gene cloned into 

pBSIISK+ plasmid. In addition, the first eight amino acids were changed to 

'MALLLAVF' (50) and a four-histidine extension (CATCACCATCAC) was inserted 

immediately before the stop codon. The Trub51 gene was excised by NdeI / 

HindIII restriction digestion followed by cloning into the pCWori+ expression 

vector. Gene integrity was confirmed by DNA sequencing.  

 Heterologous expression and purification of recombinant Trub51 

protein. The pCWori+:Trub51 construct was transformed into competent DH5α 

E. coli cells and expressed as previously described for Candida albicans CYP51 

(32). Recombinant Trub51 protein was isolated according to the method of Arase 

et al (51) except that 2% (wt/vol) sodium cholate was used as sole detergent in 

the sonication buffer with the addition of 0.1 mM phenylmethylsulfonylfluoride. 

The solubilized Trub51 protein was purified by affinity chromatography using 

Ni2+-NTA agarose as previously described (21, 32) followed by dialysis against 

20 mM Tris-HCl (pH 8.1) and 10% (wt/vol) glycerol. Protein purity was assessed 

by SDS polyacrylamide gel electrophoresis.  

 Cytochrome P450 protein determinations. Reduced carbon monoxide 

difference spectroscopy was performed (20) with carbon monoxide being passed 

through the cytochrome P450 solution prior to addition of sodium dithionite to the 
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sample cuvette (light path 10 mm). An extinction coefficient of 91 mM-1 cm-1 (52) 

was used to calculate cytochrome P450 concentrations from the absorbance 

difference between 447 and 490 nm. Absolute spectra were determined between 

700 and 300 nm (light path 4.5 mm). All spectral determinations were made using 

a Hitachi U-3310 UV/VIS spectrophotometer (San Jose, California).  

 Sterol binding properties of Trub51.  Stock 2 mg ml-1 solutions of 

lanosterol, obtusifoliol and eburicol were prepared in 40% (wt/vol) (2-

hydroxypropyl)-β-cyclodextrin (HPCD). Sterol was progressively titrated against 5 

μM Trub51 in a quartz semi-micro cuvette (light path 4.5 mm) with equivalent 

amounts of 40% (wt/vol) HPCD added to the reference cuvette which also 

contained 5 μM Trub51. The absorbance difference spectrum between 500 and 

350 nm was determined after each incremental addition of sterol (up to 75 μM). 

The sterol saturation curves were constructed from ΔA388-421 derived from the 

difference spectra. The substrate dissociation constants (Kd) were determined by 

non-linear regression (Levenberg-Marquardt algorithm) using the Michaelis-

Menten equation.  

 Azole binding properties of Trub51. Binding clotrimazole, fluconazole, 

voriconazole, itraconazole, ketoconazole and the drug candidate VT-1161 to 

Trub51 was performed as previously described (32, 53) using 4.5 mm light-path 

quartz split-cuvettes. Stock 0.05, 0.1 and 0.2 mg ml-1 solutions of the azoles were 

prepared in dimethylsulfoxide and progressively titrated against 2 μM of Trub51 

in 0.1 M Tris-HCl (pH 8.1) and 25% (wt/vol) glycerol. The difference spectra 

between 500 and 350 nm were determined after each incremental addition of 
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azole and binding saturation curves were constructed from ΔApeak-trough against 

azole concentration. The dissociation constants of the enzyme-azole complex 

(Kd) were determined by non-linear regression (Levenberg-Marquardt algorithm) 

using a rearrangement of the Morrison equation for tight ligand binding (25, 26). 

Tight binding is normally observed where the Kd for a ligand is similar or lower 

than the concentration of the enzyme present (54).  

 CYP51 reconstitution assays. The reconstitution assays (34, 55) 

contained 0.5 μM Trub51, 1 μM Aspergillus fumigatus cytochrome P450 

reductase isoenzyme 1 (AfCPR1 - UniProt accession number Q4WM67), 50 μM 

sterol substrate, 50 μM dilaurylphosphatidylcholine, 4% (wt/vol) HPCD, 0.4 mg 

ml-1 isocitrate dehydrogenase, 25 mM trisodium isocitrate, 50 mM NaCl, 5 mM 

MgCl2 and 40 mM MOPS (pH ~7.2). Assay mixtures were incubated at 37°C prior 

to initiation with 4 mM β-NADPHNa4 followed by shaking at 37°C for 15 minutes. 

Sterol metabolites were recovered by extraction with ethyl acetate followed by 

derivatization with 0.1 ml N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) : 

trimethylchlorosilane (TMCS) (99:1) and 0.3 ml anhydrous pyridine (2 h at 80°C) 

prior to analysis by gas chromatography mass spectrometry (GC/MS) (56). 

Trub51 Km value for eburicol was determined by varying the eburicol 

concentration in the CYP51 reconstitution assay between 3 and 100 µM whilst 

maintaining a constant HPCD concentration of 4% (wt/vol). The single substrate 

inhibition equation [v = (Vmax.[S])/{Km + [S].(1+[S]/Ki)}] (57) was used to fit the 

data and to determine Km and Ki values.  
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 Azole IC50 determinations. IC50 determinations were performed using the 

CYP51 reconstitution assay detailed above in which various fluconazole, 

itraconazole, ketoconazole and VT-1161 concentrations in 2.5 μl 

dimethylsulfoxide were added prior to incubation at 37°C and addition of β-

NADPHNa4. The IC50 assays contained 25 μM eburicol, 0.5 μM Trub51, 1 μM 

AfCPR1 and 4 mM β-NADPHNa4. 

 Minimum Inhibitory Concentration (MIC) determinations. Drug 

preparations were prepared according to the recommendation outlined in the 

Clinical and Laboratory Standards Institute (CLSI) document M38-A2; this 

includes testing in RPMI-1640 with L-glutamine, with 0.165 M MOPS as the 

buffer (pH 7.0) and without bicarbonate, an inoculum size of 1-5 x 104, and 

incubation at 35°C for 96 hours. The MICs were measured visually as the lowest 

concentrations of each antifungal agent that resulted in an 80% reduction in 

turbidity as compared to a drug-free, growth control wells. Stock solutions of each 

agent were prepared in DMSO. Further dilutions were made in RPMI-1640, and 

the final concentration of DMSO was 1% (vol/vol). The final testing 

concentrations for VT-1161 and itraconazole ranged from 0.03-16 µg ml-1, and for 

fluconazole from 0.125-64 µg ml-1. Trichophyton mentagrophytes (ATCC-MYA-

4439) served as the quality control organism, as recommended by M38-A2, was 

used on each day of testing. Results for this control isolate were within the 

appropriate range for each agent test. Thirty-four clinical Trichophyton rubrum 

isolates that were submitted to the Fungus Testing Laboratory (University of 

Texas Health Science Center at San Antonio, San Antonio, Texas) for antifungal 
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susceptibility testing and/or identification were used in this study. All strains were 

fresh clinical strains that had not been previously frozen. All MICs were 

measured once.  

 Phylogenetic analysis of fungal CYP51 proteins. Selected fungal 

CYP51 amino acid sequences were obtained from the UniProtKB database 

(http://www.uniprot.org) and were aligned using ClustalX software version 2.0.12 

(http://www.clustal.org/clustal2/). The fungal sequences compared were 

Aspergillus fumigatus CYP51 isoenzyme A (UniProt accession number 

Q4WNT5), Aspergillus fumigatus CYP51 isoenzyme B (Q96W81), Candida 

albicans CYP51 (P10613), Cryptococcus neoformans CYP51 (Q5KQ65), 

Malassezia globosa CYP51 (A8Q3I7), Mycosphaerella graminicola CYP51 

(Q5XWE5) and Trichophyton rubrum CYP51 (F2SHH3).  

 Data analysis. All ligand binding experiments were performed in triplicate 

and curve-fitting of data performed using the computer program QuantumSoft 

ProFit (version 6.1.12). Differences in geometric mean (GM) MIC values, 

calculated following log2 transformation of individual MIC values, between VT-

1161, itraconazole, and fluconazole were assessed for significance by ANOVA 

with Tukey’s post-test for multiple comparisons. A p-value of <0.05 was 

considered statistically significant. For MIC values that were greater than the 

highest concentration tested, the next higher dilution value was used in the GM 

MIC calculations (e.g., fluconazole MIC >64 µg ml-1, 128 µg ml-1 used).  For MICs 

that were equal to or lower than the lowest concentration tested the lowest 
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concentration tested was used (e.g., VT-1161 or itraconazole MIC < 0.03 µg ml-1, 

0.03 µg ml-1 used).   

 Chemicals. All chemicals, including clotrimazole, fluconazole, 

itraconazole, ketoconazole and voriconazole, were obtained from Sigma 

Chemical Company (Poole, UK). Growth media, sodium ampicillin, IPTG and 5-

aminolevulenic acid were obtained from Foremedium Ltd (Hunstanton, UK). Ni2+-

NTA agarose affinity chromatography matrix was obtained from Qiagen (Crawley, 

UK). VT-1161 was supplied by Viamet Pharmaceuticals, Inc. (Durham, North 

Carolina, USA). 
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Table 1.  MICs of VT-1161, itraconazole, and fluconazole against 34 clinical 

isolates of T. rubrum. 

________________________________________________________________ 
 MIC (µg ml-1) 
 ___________________________________________________ 
Drug 50% 90% Geometric 

mean 
Range 

________________________________________________________________ 
VT-1161 <0.03 0.06 0.033 <0.03 – 0.06 
Itraconazole 0.06 0.06 0.052 <0.03 – 0.12 
Fluconazole 2 16 2.3 0.5 – >64 
________________________________________________________________ 
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FIG. 1. Spectral characteristics of Trub51. Absolute spectra (A) were determined 
using 3 μM purified Trub51 in the oxidised resting state. Reduced carbon 
monoxide difference spectra (B) were determined using 3 μM purified Trub51 
with sequential measurements made every 45 seconds.  
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FIG. 2. Sterol binding properties of Trub51. Absorbance difference spectra (A) 
were measured during the progressive titration of 5 μM Trub51 with lanosterol, 
eburicol and obtusifoliol. Saturation curves (B) for lanosterol (filled circles), 
eburicol (hollow circles) and obtusifoliol (crosses) were constructed from the 
absorbance difference ΔA388-421of the type I difference spectra observed. Sterol 
binding data were fitted using the Michaelis-Menten equation. 
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FIG. 3. GC/MS analysis of Trub51 reconstitution assay metabolites. GC traces 
(A) for Trub51 reconstitution assays (37°C, 15 min) using lanosterol and eburicol 
as substrates are shown. In addition the mass fragmentation pattern (B) for the 
TMS-derivatized C14-demethylated eburicol (M+ 496 – 'P') product is shown. 
Abundance is expressed in units of one thousand (K). 
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FIG. 4. Km determination for eburicol. A velocity curve was constructed for 
eburicol with Trub51 using the CYP51 reconstitution assay (34, 55). The single 
substrate inhibition equation [v = (Vmax.[S])/{Km + [S].(1+[S]/Ki)}] (57) was used to 
fit the velocity curve. Mean values from three replicates and the associated 
standard deviation bars are shown.   
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FIG. 5. Type II azole binding spectra for Trub51. Clotrimazole, fluconazole, 
voriconazole, itraconazole, ketoconazole and VT-1161 were progressively titrated 
against 2 μM CYP51 protein with the difference spectra determined after each 
addition of azole. The resultant type II difference spectra obtained for each azole 
are shown. Each experiment was performed in triplicate although only one 
replicate is shown.  
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FIG. 6. Azole binding saturation curves for Trub51. Saturation curves were 
constructed from the absorbance difference ΔApeak-trough of the type II difference 
spectra (Fig. 5) for clotrimazole (circles), fluconazole (squares), voriconazole 
(triangles), itraconazole (diamonds), ketoconazole (asterisks) and VT-1161 
(crosses). A rearrangement of the Morrison equation (25) was used to fit the tight 
ligand binding observed. Each experiment was performed in triplicate although 
only one replicate is shown.  
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FIG. 7. IC50 determinations for antifungal agents. CYP51 reconstitution assays 
were performed using a CYP51:AfCPR ratio of 1:2 for 0.5 μM Trub51 with 25 μM 
eburicol as substrate at varying fluconazole (filled circles) itraconazole (hollow 
circles), ketoconazole (bullets) and VT-1161 (crosses) concentrations from 0 and 
8 μM. Mean relative velocity values are shown along with the associated 
standard deviation values. Relative velocities of 1.00 were equivalent to velocities 
of 1.55 min-1.  
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                             10         20         30         40         50         60                 
         ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
Af51B    --------MG LIAFILDGIC KHCSTQSTWV LVGIGLLSIL AVSVIINVLQ QLLFK--NPH   
Trub51   --------MG LLADIVSRFC ENCSTLSTAA LVASAISAFI VLSIVINVLQ QLLFK--DPT   
Mgram51  --------MG LLQEVLAQFD AQFGQTSLWK LVGLGFLAFS TLAILLNVLS QLLFRG-KLS   
Af51A    ---------- ---------- ----MVPMLW LTAYMAVAVL T-AILLNVVY QLFFRLWNRT   
Cneo51   MSAIIPQVQQ LLGQVAQFFP PWFAALPTSL KVAIAVVGIP ALIIGLNVFQ QLCLPR-RKD   
Mglob51  ---------- MLQEIG-AWP VWQQALT--- ----FLVGGL ALIVGINVLV QVLVPR-NKS   
Calb51   --------MA IVETVIDGIN YFLSLSVT-- ---QQISILL GVPFVYNLVW QYLYSL-RKD   
ClustalX                                                .  *:.  *            
 
                  70         80         90        100        110        120              
         ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
Af51B    EPPVVFHWFP FIGSTISYGI DPYKFFFDCR AKYGDIFTFI LLGKKTTVYL GTKGNDFILN   
Trub51   KPPVVFHWFP IIGSTISYGI DPYKFFDDCK EKYGDIFTFI LLGKKTTVFL GTKGNDFILN   
Mgram51  DPPLVFHWVP FIGSTITYGI DPYKFFFSCR EKYGDVFTFI LLGKKTTVCL GTKGNDFILN   
Af51A    EPPMVFHWVP YLGSTISYGI DPYKFFFACR EKYGDIFTFI LLGQKTTVYL GVQGNEFILN   
Cneo51   LPPVVFHYIP WFGSAAYYGE DPYKFLFECR DKYGDLFTFI LMGRRITVAL GPKGNNLSLG   
Mglob51  LPPMVFHWVP VVGSAITYGM DPYRFFFNCR EKYGDVFTFK LFGRNVTVAL GPKGSNLVFN   
Calb51   RAPLVFYWIP WFGSAASYGQ QPYEFFESCR QKYGDVFSFM LLGKIMTVYL GPKGHEFVFN   
ClustalX  .*:**::.*  .**:  **  :**.*:  *:  ****:*:*  *:*:  ** * * :* :: :.   
 
                 130        140        150        160        170        180           
         ....|...._________SRS-1________| ....|....| ....|....| ....|....|  
Af51B    GKLRDVCAEE VYSPLTTPVF GRHVVYDCPN AKLMEQKKFV KYGLTSDALR SYVPLITDEV   
Trub51   GKLKDVCAED VYSPLTTPVF GRHVVYDCPN SKLMEQKKFV KFGLTSEALR SYVTLITKEV   
Mgram51  GKLKDVNAEE IYSPLTTPVF GKDVVYDCPN SKLMEQKKFV KYGLTTSALQ SYVTLIAAET   
Af51A    GKLKDVNAEE VYSPLTTPVF GSDVVYDCPN SKLMEQKKFI KYGLTQSALE SHVPLIEKEV   
Cneo51   GKISQVSAEE AYTHLTTPVF GKGVVYDCPN EMLMQQKKFI KSGLTTESLQ SYPPMITSEC   
Mglob51  GRLTQVSAEE AYTSLTTPVF GKGVVYDVPN AVLMEQKRFV KSGLSMENFR MYVTQIESEV   
Calb51   AKLSDVSAED AYKHLTTPVF GKGVIYDCPN SRLMEQKKFA KFALTTDSFK RYVPKIREEI   
ClustalX .:: :* **:  *. ****** *  *:** **   **:**:*  * .*: . :.  : . *  *    
 
                 190        200        210        220        230        240           
         ....|....| ....|....| ....|....| ....|....| ....|....| ....|SRS-2  
Af51B    ESFVKNS--- PAFQG--HKG VFDVCKTIAE ITIYTASRSL QGKEVRSKFD STFAELYHNL   
Trub51   EQFFESS--- PIFKG--DSG VFNVSKVMAE ITIYTASRSL QGKEVRGKFD SSFAELYSDL   
Mgram51  RQFFDRNNPH KKFAS--TSG TIDLPPALAE LTIYTASRSL QGKEVREGFD SSFADLYHYL   
Af51A    LDYLRDS--- PNFQG--SSG RVDISAAMAE ITIFTAARAL QGQEVRSKLT AEFADLYHDL   
Cneo51   EDFFTKEVGI SPQKP---SA TLDLLKAMSE LIILTASRTL QGKEVRESLN GQFAKYYEDL   
Mglob51  KDFINNDAAF LPLQKGATSV TVDIFNVFSE ITILTASRTL QGKEVRESLD KTFAKLYHDL   
Calb51   LNYFVTDESF KLKEK--THG VANVMKTQPE ITIFTASRSL FGDEMRRIFD RSFAQLYSDL   
ClustalX  .:.  .                 ::  . .* : * **:*:*  *.*:*  :    **. *  *   
 
                 250        260        270        280        290        300           
         ___.|....| ....|...____SRS-3___| ....|....| ....|....| ....|....|  
Af51B    DMGFAPINFM LPWAPLPHNR KRDAAQRKLT ETYMEIIKAR RQAGSKKDSE -DMVWNLMSC   
Trub51   DMGFAAINFM FPWFPFPHNR KRDRAQRKMA QVYTDIIRQR RAAGGEKDSE -DMVWNLMSS   
Mgram51  DMGFTPINFM LPWAPLPQNR RRDYAQKKMS ETYMSIIQKR RESKTGEHEE -DMIHNLMQC   
Af51A    DKGFTPINFM LPWAPLPHNK KRDAAHARMR SIYVDIITQR RLDGEKDSQK SDMIWNLMNC   
Cneo51   DGGFTPLNFM FPNLPLPSYK RRDEAQKAMS DFYLKIMENR RK-GESD-HE HDMIENLQSC   
Mglob51  DSGFTPINFV IPNLPLPNNF RRDRAQRLMS DFYLGIIKKR RE-GNTEGTE HDMISALMEQ   
Calb51   DKGFTPINFV FPNLPLPHYW RRDAAQKKIS ATYMKEIKSR RERGDIDPNR DLIDSLLIHS   
ClustalX * **:.:**: :*  *:*    :** *:  :    *   :  * *     .  .   :   *      
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                 310        320        330        340        350        360           
         ....|....| .._______SRS-4_______ ....|....| ....|....| ....|....|  
Af51B    VYKNGTPVPD EEIAHMMIAL LMAGQHSSSS TASWIVLRLA TRPDIMEELY QEQIRVLG-S   
Trub51   VYKNGTPIPD IEVAHMMIAL LMAGQHSSSS TGSWIVLRLA SRPDILEELY EEQKRVLG-E   
Mgram51  KYKDGNAIPD KEIAHMMIAL LMAGQHSSSA TESWITLRLA SRPDIQDELL QEQKDMLG-V   
Af51A    TYKNGQQVPD KEIAHMMITL LMAGQHSSSS ISAWIMLRLA SQPKVLEELY QEQLANLGPA   
Cneo51   KYRNGVPLSD RDIAHIMIAL LMAGQHTSSA TSSWTLLHLA DRPDVVEALY QEQKQKLG--   
Mglob51  SYKNGRNIND REIAHMMIAL LMAGQHTSSA TGSWAMLRLA SRPEIIEELY EEQKRVYS--   
Calb51   TYKDGVKMTD QEIANLLIGI LMGGQHTSAS TSAWFLLHLG EKPHLQDVIY QEVVELLK--   
ClustalX  *::*  : *  ::*:::* : **.***:*::   :*  *:*.  :*.: : :  :*           
 
                 370        380        390        400        410        420           
         ....|....| ....|....| ....|....| ..__SRS-5_ ....|....| ....|....|  
Af51B    DLP----PLT YDNLQ-KLDL HAKVIKETLR LHAPIHSIIR AVKNPMAVDG ----------   
Trub51   DLP----PLT YEALQ-KLDL HNNVIKETLR LHAPIHSILR AVKSPMPVEG ----------   
Mgram51  NADGSIKELT YANLS-KLTL LNQVVKETLR IHAPIHSILR KVKSPMPIEG ----------   
Af51A    GPDGSLPPLQ YKDLD-KLPF HQHVIRETLR IHSSIHSIMR KVKSPLPVPG ----------   
Cneo51   NPDGTFRDYR YEDLK-ELPI MDSIIRETLR MHAPIHSIYR KVLSDIPVPP SLSAP-----   
Mglob51  DGTGGFAPLD YDIQKSSVPV LDAVIRETLR LHPPIHSIMR KVKSDMVVPP TLAAPISSKG   
Calb51   EKGGDLNDLT YEDLQ-KLPS VNNTIKETLR MHMPLHSIFR KVTNPLRIPE ----------   
ClustalX            *   . .:       ::**** :* .:*** *  * . : :                
 
                 430        440        450        460        470        480           
         ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
Af51B    ---TSYVIPT SHNVLSSPGV TARSEEHFPN PLEWNPHRWD EN-------- -IAASAEDD-   
Trub51   ---TNYVVPT SHNLLAAPGV PSRDPQYFPD PLVWNPHRWE NN-------- -VGVTVVEAS   
Mgram51  ---TAYVIPT THTLLAAPGT TSRMDEHFPD CLHWEPHRWD ESPSEKYKHL SPTTALGSIA   
Af51A    ---TPYMIPP GRVLLASPGV TALSDEHFPN AGCWDPHRWE NQ-------- ---ATKEQEN   
Cneo51   SENGQYIIPK GHYIMAAPGV SQMDPRIWQD AKVWNPARWH DEKG-----F AAAAMVQYTK   
Mglob51  SRDETYVIPK GHYVIAAPGV SQVDPKIWED ASRFDPHRWL GDK------- --ANVMNQTD   
Calb51   ---TNYIVPK GHYVLVSPGY AHTSERYFDN PEDFDPTRWD TAAA------ -KANSVSFNS   
ClustalX      *::*   : :: :**  .    . : :    ::* **                          
 
                 490        500        510        520        530        540           
         ....|....| ....|....| ____Heme-Cys_____...| ....|....| ....|....|  
Af51B    -EKVDYGYGL VSKGTNSPYL PFGAGRHRCI GEQFAYLQLG TITAVLVRLF RFRNLPG-VD   
Trub51   EEKTDYGYGL VSKGANSPYL PFGSGRHRCI GEQFAYVQLG TVTATLARLM RWKQVEGTKD   
Mgram51  EEKEDYGYGL VSKGAASPYL PFGAGRHRCI GEQFAYVQLQ TITATMVRDF KFYNVDG-SD   
Af51A    DKVVDYGYGA VSKGTSSPYL PFGAGRHRCI GEKFAYVNLG VILATIVRHL RLFNVDG-KK   
Cneo51   AEQVDYGFGS VSKGTESPYQ PFGAGRHRCV GEQFAYTQLS TIFTYVVRNF TLKLAVP---   
Mglob51  DAQEDFGWGM VSTGANSPYL PFGAGRHRCI GEQFAYLQLG TIISTFVRAF DWRLET----   
Calb51   SDEVDYGFGK VSKGVSSPYL PFGGGRHRCI GEQFAYVQLG TILTTFVYNL RWTIDGY---   
ClustalX     *:*:*  **.*. ***  ***.*****: **:*** :*  .: : ..  :              
 
                 550        560        570       
         ....|___SRS-6___....| ....|....| ... 
Af51B    GIPDTDYSSL FSKPLGRSFV EFEKRESATK A--  
Trub51   VVPPTDYSSL FSKPFGNPMV SWEKRKQASQ K--  
Mgram51  NVVGTDYSSL FSRPLSPAVV KWERREEKEE KN-  
Af51A    GVPETDYSSL FSGPMKPSII GWEKRSKNTS K--  
Cneo51   KFPETNYRTM IVQPNNPL-V TFTLRNAEVK QEV  
Mglob51  KLPAPDYTSM VVLPTQPANL VFTPRKNKA- ---  
Calb51   KVPDPDYSSM VVLPTEPAEI IWEKRETCMF ---  
ClustalX  .  .:* :: .  *     :  :  *.          
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Supplementary figure S1.  Sequence alignment of selected fungal CYP51 enzymes. 

This alignment shows the six substrate recognition sites (SRS) according to 

Strushkevich et al (1) and the twenty-three conserved CYP51 amino acid residues (2) in 

orange as well as the conserved heme-binding cysteine residue in red. The fungal 

CYP51 sequences aligned were Aspergillus fumigatus CYP51 isoenzyme A (Af51A – 

UniProt accession number Q4WNT5), Aspergillus fumigatus CYP51 isoenzyme B 

(Af51B – Q96W81), Candida albicans CYP51 (Calb51 – P10613), Cryptococcus 

neoformans CYP51 (Cneo51 – Q5KQ65), Malassezia globosa CYP51 (Mglob51 –- 

A8Q3I7), Mycosphaerella graminicola CYP51 (Mgram51 – Q5XWE5) and Trichophyton 

rubrum CYP51 (Trub51 – F2SHH3). ClustalX consensus sequence indicates absolutely 

conserved residues (*), conserved strong (STA, NEQK, NHQK, NDEQ, QHRK, MILV, 

MILF, HY, FYW) groups (:), and conserved weaker (CSA, ATV, SAG, STNK, STPA, 

SGND, SNDEQK, NDEQHK, NEQHRK, FVLIM, HFY) groups (.) (http://www.clustal.org/).  

 

 

REFERENCES 

1. Strushkevich N, Usanov SA, Park HW. 2010. Structural basis of human 

CYP51 inhibition by antifungal azoles. J Mol Biol 397:1067-1078. 

2. Lepesheva GI, Waterman MR. 2011. Structural basis for conservation in 

the CYP51 family. Biochim Biophys Acta 1814:88-93. 

 

 


