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Abstract
We investigate the effect of including the second mode of natural vibration on the computed response of a
forced nonlinear gravity-loaded beam-mass structure used for non-linear piezoelectric energy harvesting. By using
the method of assumed-modes and Lagrange equations, we develop the discretized equations of generalized
coordinates of the system including the electro-mechanical equation. The equation of motion is further simplified to
find the single-mode approximation. The phase-portraits, time-histories, Poincaré sections, and frequency-response
curves of the system are computed. It is shown that the number of mode-shapes affects the response and it is
required to include higher modes to improve the analytical-computational results. The system shows distinct behavior
varying from a linear single-frequency response to a multi-frequency chaotic response. The average power across
the load resistor consequently shows a noticeable variation depending on the characteristics of the overall system
response.

Keywords
energy harvesting, piezoelectric, bi-stable, non-linear dynamics

Introduction

Ideally environmental energy harvesting is combined with
wire-less technologies to produce self-powered devices
(Paradiso et al. 2005). As a result, either the energy is
directly used by the device or used to re-charge the battery
for future usage. Ordinarily, linear direct resonance has
been the fundamental method for environmental energy
harvesting (Priya and Inman 2009). To this end, the energy
harvesting system must be designed such that its resonance
frequency matches closely the environmentally induced
excitation, obviously placing restrictions on the device
performance and usefulness. Technically speaking, a linear
system under resonance would have a limited bandwidth
and may not generate a high power unless excited near the
resonance frequency or by a high amplitude excitation.

Various methods and mechanisms have been introduced
to remove the limitations associated with linear energy
harvesting. One approach is to integrate several cantilevers
into the system to optimize the harvesting system. Ferrari
et al. (2008) used several cantilevers with different lengths
to widen the harvesting spectrum for a battery-less sensor
package. Similarly, to create a multi-frequency spectra Xue
et al. (2008) employed an array of piezoelectric bimorphs
harvesters connected either in parallel or in series. Another
possibility to widen the peak-performance area, is to use

nonlinear energy harvesting methods (Cottone et al. 2009;
Mann and Sims 2009). Essentially based on the bi-stable
system of Moon and Holmes (1979), many harvesters have
been designed and used to rectify issues associated with
linear harvesters, e.g. Stanton et al. (2009); Erturk and
Inman (2011). A brief review of the use of bi-stability for
energy harvesting is given by Harne and Wang (2013).

To realise a bi-stable energy harvester, Friswell et al.
(2012) proposed a standing beam carrying an end mass.
The end (tip) mass induced axial load may be chosen to
force the structure into a post-buckled configuration where
two stable equilibrium points exist. The beam may oscillate
around the stable undeformed position before buckling or
around either of two stable non-zero equilibrium states
after buckling. It may also settle to a large stable orbit
visiting both equilibrium points during each period. The
system provides an opportunity to harvest energy from low
frequencies. The single-degree-of-freedom model proposed
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by Friswell et al. (2012) suffers from inaccurate estimation
of the response compared with the experimental results.

In this paper we choose a different approach and
develop both one- and two-degree-of-freedom models
of the standing beam-mass system. We investigate the
effect of the second mode on the system response and
demonstrate how the predictions differ from the single-
mode approximation. The effects of the higher mode on the
response and the average harvested power are examined by
computing the time-histories, Poincaré section, bifurcation
diagram, and frequency response curves. It is shown that
the higher mode may need to be included to compute the
system output for certain system parameters but not for all
of them.

Mathematical model of the system

The schematic of the energy harvesting system is shown
in Figure 1 including the standing uniform beam carrying
an end-mass. In practice, the piezo patch, not shown in the
picture, is attached to the beam near its clamped end. For
the structure under investigation the main parameter values
are listed in Table 1. For this study, the tip-mass is varied
in the range 0g to 16g, and the beam’s effective length
is fixed at 275mm. The piezo-electric patch can be added
to the beam in either unimorph or bimorph configurations
by changing the piezo-electric constant appearing in the
moment equation (Crawley and De Luis 1987; Park et al.
1996). For this analysis, the piezocomposite patch operates
in the unimorph 31-mode configuration to maximize the
power output (Friswell et al. 2012). Therefore, the induced
moment by a voltage V (t) across the piezoelectric layers is
written as

Mc(s, t) = ΥcV (t) (1)

where for a unimorph piezoelectric patch

Υc = Ecd31bc

(
h+

hc
2

− z̄

)
(2)

and h is the beam’s thickness, hc is the piezo’s thickness, bc
is the piezo’s width, and z̄ is the effective neutral axis (Park
et al. 1996).

The kinetic energy is expressed in the form

K =
1

2
ρA

∫ L

0

(
∂

∂t
vp (s, t) +

d

dt
z (t)

)2

+

(
∂

∂t
up (s, t)

)2

ds

+
1

2
M

((
d

dt
v (t) +

d

dt
z (t)

)2

+

(
d

dt
u (t)

)2
)

+
1

2
J

(
d

dt
φ (t)

)2

(3)

P

z t z t( ) = cos0 �

u

v

vp

up
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Figure 1. The schematic of the cantilever-mass system with
horizontal base-excitation. The figure is not drawn to scale.

and the potential energy in the form

P =
1

2
EI

∫ L

0

κ (s, t)
2
ds− ρAg

∫ L

0

up (s, t) ds−Mg u (t)

(4)

where the curvature is computed by the following
approximation

κ (s, t) ≈ ∂2

∂s2
vp (s, t)

(
1 +

1

2

(
∂

∂s
vp (s, t)

)2
)

(5)

and the slope is computed from (Friswell et al. 2012)

φp (s, t) = arcsin

(
∂

∂s
vp (s, t)

)
≈ ∂

∂s
vp (s, t) +

1

6

(
∂

∂s
vp (s, t)

)3

. (6)

The work done by the piezoelectric patch is given by

W =

∫ Lc

0

MΛ (s, t)κ (s, t) ds (7)

where Lc is the active length of the patch attached near
the beam’s clamped-end. Substituting equation (1) into
equation (7) and employing equation (2), we find the
final form of the work done by the piezo. The axial
displacement relates to the transverse deflection through the
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in-extensibility condition given by

up (s, t) =
1

2

∫ s

0

(
∂

∂ξ
vp (ξ, t)

)2

dξ (8)

The multi-mode approximation of the response is

v(s, t) =

N∑
n=1

ψn(s) qn(t) (9)

where N indicates the number of linear modes, ψn(s),
which are obtained by solving the linear eigenvalue
problem for a simple clamped-free beam with the same
dimensions as in Table 1. Of course the response of the
beam will be non-linear and these linear modes do not
represent the actual response of the system. However the
linear modes define a subspace onto which the non-linear
response is projected; if sufficient linear modes are retained
then the reduced order model will capture the dynamics of
the full non-linear model.

Inserting equation (9) into equations (3)-(8) and
substituting the discretized kinetic and potential energies
and the piezo work into Lagrange’s equations results in
the following two-degree–of-freedom model including the
harvesting circuit equation:(
Φ1q

2
1 + 2Φ2q2q1 +Φ3q

2
2 +Φ4

)
q̈1 + (Φ1q1 +Φ2q2) q̇

2
1

+
(
Φ14 q

2
2 +Φ15

)
q1 +Φ11 q

3
1 +Φ12 q2q

2
1 − Φ16q2

+
(
Φ5q

2
1 +Φ6q2q1 +Φ7q

2
2 +Φ8

)
q̈2 +Φ13q

3
2

+ (2Φ2q1 + 2Φ3q2) q̇2q̇1 + (Φ9q1 +Φ10q2) q̇
2
2

+Υc

(
3

2
σ2q

2
1 + σ4q2q1 + 2σ5q2q1 + σ6q

2
2

+
1

2
σ7q

2
2 + σ1

)
V (t) = −Φ17z̈ (10)(

Ψ1q
2
1 + 2Ψ2q2q1 +Ψ3q

2
2 +Ψ4

)
q̈2 + (Ψ3q2 +Ψ2q1) q̇

2
2

+
(
Ψ13q

2
1 −Ψ14

)
q2 +Ψ11 q

3
2 +Ψ12q1q

2
2 −Ψ16q1

+
(
Ψ5q

2
1 +Ψ6q2q1 +Ψ7q

2
2 +Ψ8

)
q̈1 +Ψ15q

3
1

+ (2Ψ4q2 + 2Ψ1q1) q̇1q̇2 + (Ψ9q2 +Ψ10q1) q̇
2
1

+Υc

(
3

2
σ8q

2
2 + 2σ6q2q1 + σ7q2q1 + σ3

+
1

2
σ4q

2
1 + σ5q

2
1

)
V (t) = Ψ17z̈, (11)

Υc

((
3

2
σ2q

2
1 + σ4q2q1 + 2σ5q2q1 + σ6q

2
2

+
1

2
σ7q

2
2 + σ1

)
q̇1 +

(
3

2
σ8q

2
2 + 2σ6q2q1

+σ7q2q1 +
1

2
σ4q

2
1 + σ5q

2
1 + σ3

)
q̇2

)

+ CpV̇ +
V

Rl
= 0 (12)

where

Φ1 =ρAγ6 + Jβ1β2 +Mα1(L)
2 (13)

Φ2 =ρAγ7 + Jβ1β3 +Mα1(L)α2(L) (14)

Φ3 =ρAγ9 + Jβ1β4 +Mα2(L)
2 (15)

Φ4 =ρAγ3 + Jβ2
1 +Mψ1(L)

2 (16)

Φ5 =ρAγ7 +
1

2
J (β1β3 + β2β5) +Mα1(L)α2(L)

(17)

Φ6 =ρA (γ8 + γ9) + J (β1β4 + β3β5)

+M
(
α2(L)

2 + α1(L)α3(L)
)
(18)

Φ7 =ρAγ10 +
1

2
J (β4β5 + β1β6) +Mα2(L)α3(L)

(19)

Φ8 =ρAγ4 + Jβ1β5 +Mψ1(L)ψ2(L) (20)
Φ9 =ρAγ8 + Jβ1β4 +Mα1(L)α3(L) (21)
Φ10 =ρAγ10 + Jβ1β6 +Mα2(L)α3(L) (22)
Φ11 =2EI Γ4 (23)
Φ12 =3EI (Γ5 + Γ7) (24)
Φ13 =EI (Γ9 + Γ11) (25)
Φ14 =EI (Γ6 + 4Γ8 + Γ10) (26)
Φ15 =EIΓ1 − ρAgγ12 −Mgα1(L) (27)
Φ16 =ρAgγ13 − EIΓ2 +Mgα2(L) (28)
Φ17 =ρAγ1 +Mψ1(L) (29)

and

Ψ1 =ρAγ9 + Jβ3β5 +Mα2(L)
2 (30)

Ψ2 =ρAγ10 + Jβ4β5 +Mα2(L)α3(L) (31)

Ψ3 =ρAγ11 + Jβ5β6 +Mα3(L)
2 (32)

Ψ4 =ρAγ5 + Jβ2
5 +Mψ2(L)

2 (33)

Ψ5 =ρAγ7 +
1

2
J
(
β(L)1β(L)3 + β2β5

)
+Mα1(L)α2(L) (34)

Ψ6 =ρA (γ8 + γ9) + J (β1β4 + β3β5)

+M
(
α2(L)

2 + α1(L)α3(L)
)

(35)

Ψ7 =ρAγ10 +
1

2
J (β4β5 + β1β6) +Mα2(L)α3(L)

(36)

Ψ8 =ρAγ4 + Jβ1β5 +Mψ1(L)ψ2(L) (37)
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Ψ9 =ρAγ8 + Jβ3β5 +Mα1(L)α3(L) (38)
Ψ10 =ρAγ7 + Jβ2β5 +Mα1(L)α2(L) (39)
Ψ11 =2EI Γ12 (40)
Ψ12 =3EI (Γ9 + Γ11) (41)
Ψ13 =EI (Γ6 + 4Γ8 + Γ10) (42)
Ψ14 =ρAgγ14 − EI Γ3 +Mgα3(L) (43)
Ψ15 =EI (Γ5 + Γ7) (44)

Ψ16 =ρAgγ13 − EI Γ2
2 +Mgα2(L) (45)

Ψ17 =ρAγ2 +Mψ2(L) (46)

Γ1 =

∫ L

0

ψ′′
1 (s)

2 ds,

Γ2 =

∫ L

0

ψ′′
1 (s)ψ

′′
2 (s) ds,

Γ3 =

∫ L

0

ψ′′
2 (s)

2 ds,

Γ4 =

∫ L

0

(ψ′
1(s)ψ

′′
1 (s))

2 ds,

Γ5 =

∫ L

0

ψ′
1(s)

2ψ′′
1 (s)ψ

′′
2 (s) ds,

Γ6 =

∫ L

0

(ψ′
1(s)ψ

′′
2 (s))

2 ds,

Γ7 =

∫ L

0

ψ′
1(s)ψ

′
2(s)ψ

′′
1 (s)

2 ds,

Γ8 =

∫ L

0

ψ′
1(s)ψ

′
2(s)ψ

′′
1 (s)ψ

′′
2 (s) ds,

Γ9 =

∫ L

0

ψ′
1(s)ψ

′
2(s)ψ

′′
2 (s)

2 ds,

Γ10 =

∫ L

0

(ψ′
2(s)ψ

′′
1 (s))

2 ds,

Γ11 =

∫ L

0

ψ′
2(s)

2ψ′′
1 (s)ψ

′′
2 (s) ds,

Γ12 =

∫ L

0

(ψ′
2(s)ψ

′′
2 (s))

2 ds,

Γ13 =

∫ L

0

ψ′
1(s)

4ψ′′
1 (s)

2 ds,

Γ14 =

∫ L

0

ψ′
1(s)

4ψ′′
1 (s)ψ

′′
2 (s) ds,

Γ15 =

∫ L

0

ψ′
1(s)

4ψ′′
2 (s)

2 ds,

Γ16 =

∫ L

0

ψ′
1(s)

3ψ′
2(s)ψ

′′
1 (s)

2 ds,

Γ17 =

∫ L

0

ψ′
1(s)

3ψ′
2(s)ψ

′′
1 (s)ψ

′′
2 (s) ds,

Γ18 =

∫ L

0

ψ′
1(s)

3ψ′
2(s)ψ

′′
2 (s)

2 ds,

Γ19 =

∫ L

0

(ψ′
1(s)ψ

′
2(s)ψ

′′
1 (s))

2 ds,

Γ20 =

∫ L

0

(ψ′
1(s)ψ

′
2(s))

2ψ′′
1 (s)ψ

′′
2 (s) ds,

Γ21 =

∫ L

0

(ψ′
1(s)ψ

′
2(s)ψ

′′
2 (s))

2 ds,

Γ22 =

∫ L

0

ψ′
1(s)ψ

′
2(s)

3ψ′′
1 (s)

2 ds,

Γ23 =

∫ L

0

ψ′
1(s)ψ

′
2(s)

3ψ′′
1 (s)ψ

′′
2 (s) ds,

Γ24 =

∫ L

0

ψ′
1(s)ψ

′
2(s)

3ψ′′
2 (s)

2 ds,

Γ25 =

∫ L

0

ψ′
2(s)

4ψ′′
1 (s)

2 ds,

Γ26 =

∫ L

0

ψ′
2(s)

4ψ′′
1 (s)ψ

′′
2 (s) ds,

Γ27 =

∫ L

0

ψ′
2(s)

4ψ′′
2 (s)

2 ds (47)

γ1 =

∫ L

0

ψ1(s) ds, γ2 =

∫ L

0

ψ2(s) ds,

γ3 =

∫ L

0

ψ1(s)
2 ds, γ4 =

∫ L

0

ψ1(s)ψ2(s) ds,

γ5 =

∫ L

0

ψ2(s)
2 ds, γ6 =

∫ L

0

α1(s)
2 ds,

γ7 =

∫ L

0

α1(s)α2(s) ds, γ8 =

∫ L

0

α1(s)α3(s) ds,

γ9 =

∫ L

0

α2(s)
2 ds, γ10 =

∫ L

0

α2(s)α3(s) ds,

γ11 =

∫ L

0

α3(s)
2 ds, γ12 =

∫ L

0

α1(s) ds,

γ13 =

∫ L

0

α2(s) ds, γ14 =

∫ L

0

α3(s) ds (48)

β1 =ψ′
1(L), β2 = ψ′

1(L)
3, β3 = ψ′

1(L)
2ψ′

2(L),

β4 =ψ′
1(L)ψ

′
2(L)

2, β5 = ψ′
2(L), β6 = ψ′

2(L)
3 (49)

and

α1(s) =

∫ s

0

ψ′
1(ξ)

2 dξ, α2(s) =

∫ s

0

ψ′
1(ξ)ψ

′
2(ξ)dξ,

α3(s) =

∫ s

0

ψ′
2(ξ)

2 dξ (50)
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Table 1. System specifications

Structure
L h b E ρ
275mm 0.245mm 15.88mm 210GPa 7850 kg/m3

Piezo harvester
Lc bc hc Cp Rl

28mm 14mm 300µm 25.7 nF 9.944MΩ

The average power scavenged between times T1 and T2
is computed as Pave =

1
T2−T1

∫ T2

T1

V (t)2

Rl
dt.

The coefficients of equations (10) to (12) are evaluated
using the mode-shapes of the cantilever beam given by

ψn = cn

(
sin (λL)− sinh (λL)

cosh (λL) + cos (λL)

(
sinh (λ s)− sin (λ s)

)
+cosh (λ s)− cos (λ s)

)
(51)

where the λ’s are the eigenvalues of the
cantilever beam found by computing the roots of
1 + cos (λL) cosh (λL) = 0 and cn normalizes the
eigenfunctions such that ρA

∫ L

0
ψn(ξ)

2dξ = 1. For a one-
degree-of-freedom model we set q̈2 = 0, q̇2 = 0, q2 = 0 in
equation (10) and obtain(

Φ1q
2
1 +Φ4

)
q̈1 +Φ1q1q̇

2
1 +Φ11 q

3
1 +Φ15q1

+ΥcV (t)

(
3

2
σ2q

2
1 + σ1

)
= −Φ17z̈ (52)

Computational analysis of the system
The standing beam may buckle under the load of the
end mass and oscillate between two deformed equilibrium
positions. To obtain the non-zero equilibrium positions, we
set q̈1 = 0, q̇1 = 0, q̈2 = 0, q̇2 = 0, and z̈ = 0 in equations
(10) and (11), and solve for q1 and q2 and find the static
equilibrium positions from equation (9). Figure 2 shows the
equilibrium positions as the tip-mass is increased from 0 to
15 g for the harvester with parameters listed in Table 1. The
undeformed equilibrium position loses its stability at 11.3 g.
Upon buckling two stable equilibrium positions appear on
both sides the unstable upright position. Note that the beam
response is non-linear even when the tip mass is insufficient
to cause buckling.

Time-histories and Poincaré section
The response of the beam harvester, whose parameters are
listed in Table 1, is computed for an excitation frequency
of 0.4Hz and amplitude z0 = 15mm, for the two mode
approximation. The load resistance is fixed at 9.944MΩ,

Figure 2. Static equilibrium positions (two-mode
approximation) for varying tip mass.

which is close to the optimum given by Friswell et al.
(2012). The response for six tip masses are considered that
show a variety of dynamic response. The time response is
computed for 6000 cycles and the last 40 cycles are shown
in Figure 3, where the response has settled in the steady
state. Periodic solutions occur for small tip masses (M =
10 g and M = 10.5 g) where the beam oscillates around its
central equilibrium position. Periodic solutions also occur
for large tip masses (M = 14 g and M = 16 g), but now
the oscillation occurs about one of the buckled equilibrium
positions; the initial conditions will determine which of the
two equilibrium positions is chosen. For tip masses close
to the critical value for buckling (M = 11.4 g and M =
13.1 g) the response is non-periodic. For the tip mass M =
13.1 g enough energy is injected into the system to oscillate
between the two equilibrium positions for the buckled
beam. Figure 4 shows the phase-portraits and highlights
that the periodic solutions are not necessarily harmonic and
emphasises that the response is non-linear even before the
beam buckles. The non-periodic response is clearly chaotic.
Figure 5 shows the corresponding voltage for the different
tip masses, which follows the beam response closely.

The end mass plays the role of a bifurcation parameter
and changes the system behavior, as shown in Figure 6. The
bifurcation diagram is generated by sampling the response
for 100 cycles after simulating for 6000 cycles to allow the
transients to decay. The base excitation amplitude is z =
15mm. The mass is varied from 8 g to 16 g in steps of 0.1 g;
higher resolutions would provide a better understanding
of the system response but require access to powerful
computational resources. Regions of periodic responses and
chaos are identified in the bifurcation diagram. In particular
the response for low or high mass values has the same

Prepared using sagej.cls
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(a) (b)

(c) (d)

(e) (f)

Figure 3. The steady state displacement at 100mm from the base with z0 = 15mm: (a) M = 10 g, (b) M = 10.5 g (c)
M = 11.4 g (d) M = 13.1 g (e) M = 14 g (f) M = 16 g.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. The phase-portrait at 100mm from the base with z0 = 15mm: (a) M = 10 g, (b) M = 10.5 g (c) M = 11.4 g (d)
M = 13.1 g (e) M = 14 g (f) M = 16 g.

period as the excitation. The phase and amplitude of this
response changes significantly as the beam approaches the

critical tip mass for buckling. For high tip mass values
the beam has buckled and the initial conditions determine

Prepared using sagej.cls
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(a) (b)

(c) (d)

(e) (f)

Figure 5. The voltage generated with z0 = 15mm: (a) M = 10 g, (b) M = 10.5 g (c) M = 11.4 g (d) M = 13.1 g (e) M = 14 g
(f) M = 16 g.
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which equilibrium position the beam vibrates around.
Figure 6b shows the average power generated for the
different tip masses; the highest average power is generated
just before the beam buckles.

One important question is the effect of the number of
modeled modes on the response of the energy harvester.
Figure 7 shows the displacement and average power
bifurcation diagrams as the tip mass varies, for the same
parameters as Figure 6. Although the character of the plots
is similar there are a number of important differences. The
single mode model is stiffer and hence the critical tip mass
for buckling increases. Thus the maximum power occurs at
a higher tip mass for the single mode model. Furthermore,
the regions of chaos have moved to higher tip masses, and
the region of periodic response around 12.5 to 13.5g has
widened in the single mode model. The maximum predicted
average power just before buckling has increased slightly
for the single mode model, although for other tip mass
values the predicted power is similar for both models.

Frequency-response curves

The frequency-response curves provide us with significant
information about the system response and bifurcation
points. We investigate three cases where the end mass is
removed, or is equal to 10.5 g or 14 g, and compute the
response for a set of three excitation amplitudes: 5mm,
10mm, and 15mm. The electrical resistance is set to
9.944MΩ for for all cases; the load resistance will not be
the optimum for all excitation frequencies, but in practice
it is very likely that the resistance would have to be fixed.
The frequency response curves are computed by simulating
a stepped sine test, where the frequency is first swept
up, and then swept down. The beam displacement is non-
dimensionalized with the maximum base displacement. The
average harvested power is divided by the base acceleration
squared; the result is not a non-dimensional quantity but
does allow the different results to be plotted on the same
axes.

Figure 8 shows the frequency response with no tip mass,
and shows a response that is almost linear. However, some
hardening behaviour is apparent as the resonant frequency
increases with increasing base displacement. Note that the
forward and backward sweeps of the excitation frequency
give identical results. We further investigate the system near
the buckling load and in the post-buckled state where we
expect to see more significant differences in the system
response. Figure 9 shows the response for M = 10.5 g,
which is just below the critical buckling mass. The response
shows a hardening behavior for the system for larger
excitation amplitudes, and the classical jump phenomena
and multiple solutions are clearly apparent. Once the beam
has buckled the response has a softening behavior, as shown

in Figure 10 for M = 14 g. Jumps in the response are again
clearly visible.

Conclusion
The results of a computational study of a bistable nonlinear
energy harvester depends on the discretized model of the
system. A comparison with previous studies shows that
the definition of the eigenfunction changes the response.
The Poincaré section and bifurcation diagram indicate
that the system may show chaotic response for certain
set of parameters and excitation. For the pre-buckled
configuration, the two-mode approximation of the response
provides a more flexible system and a lower estimated
average power than for the one-mode approximation. As
the tip mass approaches the static bifurcation point where
the upright position becomes unstable, the two- and one-
mode approximations predict similar behavior, although at
slightly different tip mass values. Given the results, further
analytical, computational, and experimental investigations
are required to reach a definite conclusion about the results
and the effects of the higher modes.

The main purpose of this paper is reveal the parameters
that affect the response of the beam harvester, and the
quality of the model required to ensure accurate predictions
of the system response and the resulting power. The
harvester design would have to be optimised for a particular
excitation force and energy requirements; this would
determine some of the system parameters such as beam
and piezoelectric dimensions. The non-linear response is
significantly affected by the tip mass, and this could be
tuned for particular situations, and also for compensate for
variability in manufacture.
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Figure 6. The bifurcation diagram (a) and average power (b) between 14900s and 15000s with z0 = 15mm.
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Figure 8. The frequency-response curves and the average harvested power for M = 0 g and excitation amplitudes of
z0 = 5mm (solid), 10mm (dash-dot), and 15mm (dashed).
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Figure 9. The frequency-response curves and the average harvested power for M = 10.5 g and excitation amplitudes of
z0 = 5mm (solid), 10mm (dash-dot), and 15mm (dashed).
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Figure 10. The frequency-response curves and the average harvested power for M = 14 g and excitation amplitudes of
z0 = 5mm (solid), 10mm (dash-dot), and 15mm (dashed).
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