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Abstract

In this paper we construct and examine new supersymmetric solutions of massive IIA supergravity that
are obtained using non-Abelian T-duality applied to the baryonic branch of the Klebanov–Strassler back-
ground. The geometries display SU(2) structure which we show flows from static in the UV to dynamic
in the IR. Confinement and symmetry breaking are given a geometrical interpretation by this change of
structure. Various field theory observables are studied, suggesting possible ways to break conformality and
flow in N = 1TN and related field theories.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction and general idea of this paper

The notion of duality is of course quite old, going back to well-known examples like the
Maxwell equations in vacuum. The true power of the idea became clear around 1940 with the
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Kramers–Wannier [1] duality of the Ising model. In more recent times dualities have continued
to be a driver of theoretical progress with examples including bosonisation [2], Montonen–Olive
duality [3], S and T-dualities, Seiberg–Witten duality [4], Seiberg duality [5] and more general
String dualities (U dualities). The duality conjectured by Maldacena [6], also called AdS/CFT or
gauge–strings duality, is arguably the most powerful, widely applicable and conceptually deep
duality of all known at present. All these dualities present common features: the degrees of free-
dom on both sides of the dual descriptions are in principle quite different; a strongly coupled
(highly fluctuating) description of the system is characteristically mapped into a weakly cou-
pled (semiclassical) one, in the same vein a phenomena that is ‘local’ in one set of variables
becomes ‘non-local’ in the other (as exemplified by order–disorder operators and their typical
‘uncertainty’ relations), global symmetries are common to both dual descriptions, etc.

In this paper, we will mostly work with two dualities, the one conjectured by Maldacena
and its extensions (see the papers [7] for a sample of representative work and reviews) together
with what is called ‘non-Abelian T-duality’ [8]. Non-Abelian T-duality is the obvious extension
of the more common T-duality of circles to cases where a target space supports a non-Abelian
isometry group. In the NS sector, the rules for non-Abelian T-duality can be obtained in much
the same way as for Abelian T-duality, by means of the Buscher procedure [9,10]. The string
σ -model has a global symmetry group G corresponding to the isometries of the target space.
This symmetry is gauged by the introduction of gauge fields which are however constrained
by means of Lagrange multipliers enforcing a flat connection. Upon gauge fixing, the original
σ -model is recovered. Instead, integrating out the gauge fields and again gauge fixing produces
the non-Abelian T-dual σ -model. The Lagrange multipliers (or more accurately a dim G subset of
Lagrange multipliers and the original coordinates) play the role of T-dual coordinates. The T-dual
metric, NS two-form can be read off directly from the T-dual σ -model and the transformation
law for the dilaton, a quantum effect, is obtained in a similar fashion to the Abelian case [9,10].
This was extended in [11] to include the action of non-Abelian T-duality on RR fluxes in Type II
string theory. A detailed description of the implementation of this Buscher procedure together
with a presentation of “rules” for dualisation can be found in e.g. Section 2 of [16].

It is anticipated that non-Abelian T-duality can be used as a solution generating symmetry
of supergravity: a solution of Type II supergravity supporting a non-Abelian isometry group G

can be mapped in to a new solution of Type II supergravity using this technique. This has been
shown to be true in a wide variety of examples, but a comprehensive proof in all generality has not
been presented. Following the implementation of non-Abelian T-duality as a solution generating
technique of RR backgrounds in [11], there have been a number of recent developments in the
use of non-Abelian duality, see [12–21]. We will make use of many technical tools developed in
these various papers.

Despite the similarity in its derivation with the Abelian case, there are some important dif-
ferences in non-Abelian T-duality. Firstly, as a result of performing the dualisation, the original
isometry is often destroyed in part or completely. For this reason one can-not simply re-dualise
the T-dual to recover the original model by means of a Buscher procedure. Secondly, there are a
number of subtle global issues at play; in general it is not clear how to assign the periodicities to
the T-dual coordinates meaning that global properties of the resulting geometries are not always
clear. Related to this, the duality is not expected to hold, at least not without modification, at the
level of string (genus) perturbation theory (as is also the case of fermionic T-duality or dualisa-
tion of non-compact isometries [22]). In this paper, we largely do not seek to address this issue,
instead we will confine ourselves in the use of non-Abelian T-duality as a technique to generate
new solutions to the equations of motion of Type II supergravity.
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We will consider backgrounds of Type II supergravity that have a well understood (strongly
coupled) field theory dual; we will then study the effect of this generating technique on the back-
ground. This will lead us to the construction of new solutions of ten-dimensional supergravity
and, as advocated in [16], we will use these new backgrounds to define new field theories at
strong coupling. All of our backgrounds will be smooth and minimal supersymmetry in four
dimensions (four supercharges) will be preserved.

The system on which we will focus our study is the baryonic branch of the Klebanov–Strassler
field theory [23–25]. This is perhaps, among the minimally SUSY examples known at the mo-
ment, the one that better passed test of the correspondence between geometry and (strongly
coupled) field theoretical aspects. Besides, the baryonic branch field theory and geometry unifies
the original Klebanov–Strassler system and the system of five branes wrapping a two cycle in-
side the resolved conifold [26]. Field theoretically, this unification can be thought as a Higgs-like
mechanism and a particular limit where an accidental symmetry appears. See the papers in [27]
for different geometric and physical aspects of this connection.

In this work, we will perform an SU(2) non-Abelian T-duality on the baryonic branch ge-
ometry. A first result we will give is the complete specification, including the RR sector, of
a new smooth background in massive Type IIA supergravity. Then, using the techniques of
G-structures, we are able to show that this geometry is supersymmetric and in fact characterised
by a dynamic SU(2) structure. To explain this we recall that the IIB geometry corresponding to
the baryonic branch is characterised by an SU(3)-structure, that is a couple of forms J2, Ω3 that
also encode many aspects of the strongly coupled dual field theory. After the duality one finds that
the geometry is characterised by forms j2,w1, v1,ω2 which together describe an SU(2) structure.
At a more technical level we find that whilst the large radius geometry has static SU(2) struc-
ture (in which Killing spinors are perpendicular), once the IR effects are taken into account at
small radius, the structure transitions to being dynamical and the Killing spinors become parallel.
This is of interest since we provide an example of the most general type of supersymmetric flux
backgrounds with dynamic SU(2) structure of which relatively few other examples are known.
Secondly, the phenomena of confinement and symmetry breaking are given a geometric descrip-
tion by the change in SU(2)-structure from static to dynamical.

We then connect this geometrical study to a number of properties of a field theory dual. We
will show that the domain wall objects can be understood as D2 branes extended on R

2,1 in this
geometry. We show that a U(1)R symmetry is represented by a massless bulk gauge field in the
non-Abelian T-dual of geometries dual to conformal field theories. This mode acquires a mass
in the massive IIA geometry described in this paper and is interpreted as anomalous breaking
of a U(1)R symmetry. This R-symmetry anomaly is also reproduced by considering Euclidean
‘instantonic’ branes. We additionally show the presence of a gravity mode corresponding to a
spontaneously broken U(1)B symmetry inherited from the original baryonic branch. We suggest
then a Euclidean E2 brane configuration extended along the radial direction and wrapping an S2

may have the interpretation as a corresponding baryonic condensate.
The contents of this paper are organised as follows. In Section 2 we will briefly review the

original background and field theory corresponding to the baryonic branch of the Klebanov–
Strassler field theory (the seed background/field theory pair on which we will apply our gen-
erating technique). In Section 3 we will present explicitly the new solution. In Section 4, we
demonstrate the supersymmetry of the background using the language of G-structures. In Sec-
tion 5, we will discuss different aspects of the field theory dual to our new backgrounds. We close
the paper with a list of possible future problems and conclusions.

A number of technical and useful appendixes complement our presentation.
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2. Generalities on the baryonic branch

The Klebanov–Strassler field theory is a two-group quiver with bifundamental matter, charged
under a global symmetry of the form SU(2) × SU(2) × U(1)R × U(1)B . The ranks of the gauge
groups are (N,N + M) and the bifundamental matter A1,A2,B1,B2 self-interact via a super-
potential of the form W ∼ ABAB . For a very clear explanation of many of the details of this
quantum field theory, see [30,31]. One detail that will be crucial to our present work is the fact
that the so-called ‘duality cascade’, a succession of Seiberg dualities, ends in a situation where
the quantum field theory may choose to develop VEVs for the Baryon and anti-Baryon operators.

In the last step of the duality cascade the gauge group is SU(M) × SU(2M). This theory has
mesons M = (Aa)α

i (Bb)i
β and also baryonic operators [24]

B = εα1....α2M
(A1)

α1
1 (A1)

α2
2 ....(A1)

αM−1
M−1 (A1)

αM

M

× (A2)
αM+1
1 (A2)

αM+2
2 ....(A2)

α2M−1
M−1 (A2)

α2M

M (2.1)

and similar for B̃ made out of (Bi)
a
l fields. One can see that both baryons and anti-baryons are

neutral under SU(2) × SU(2) transformations.
The moduli space consists of two branches – the mesonic and the baryonic [31]. On the

mesonic branch the baryons are zero (B = B̃ = 0) and the mesons satisfy detM = Λ4M . The
non-perturbative contribution to the superpotential means that the associated moduli space can
be identified with a symmetric product of the deformed conifold. On the baryonic branch the
mesons are zero (M = 0) but the baryons acquire expectation values,

B = iξΛ2M, B̃ = i

ξ
Λ2M, (2.2)

where Λ is the strong coupling scale of the group SU(2M). Notice that both VEVs are equal
only if ξ = 1. This corresponds to a Z2-symmetric point, represented by the exact solution in
[23].

On this baryonic branch the U(1)B symmetry is spontaneously broken and the associated
massless (pseudo-scalar) Goldstone mode corresponds to the phase of ξ . By supersymmetry this
Goldstone lives in a chiral multiplet and comes along with scalar partner, the saxion, which
corresponds to changing the modulus of ξ . As discussed in [31], the VEV of the operator,

U = Tr
[
AiA

†
i − Bj B

†
j

]
, (2.3)

which contains the U(1)B current Jμ as its θσμθ̄ component, encodes the motion along the
baryonic branch (the different values of ξ ) according to

〈U〉 ∼ MΛ2 ln |ξ |. (2.4)

Let us focus on the situation where the field theory chooses to move to the purely baryonic
branch. In this case, there is a smooth solution of the equations of motion of Type IIB supergrav-
ity, that describes the strong dynamics of this field theory, including the spontaneous breaking of
the U(1)B symmetry [24,25]. In the notation that we will adopt in this work, such background
can be written compactly by introducing the (string frame) vielbein basis,

exi = e
Φ
2 ĥ− 1

4 dxi, eρ = e
Φ
2 +kĥ

1
4 dρ,

eθ = e
Φ
2 +hĥ

1
4 dθ, eϕ = e

Φ
2 +hĥ

1
4 sin θ dϕ,
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e1 = 1

2
e

Φ
2 +gĥ

1
4 (ω̃1 + a dθ), e2 = 1

2
e

Φ
2 +gĥ

1
4 (ω̃2 − a sin θ dϕ),

e3 = 1

2
e

Φ
2 +kĥ

1
4 (ω̃3 + cos θ dϕ), (2.5)

where ω̃i are the left-invariant forms of SU(2). The metric ds2 = ∑10
i=1(ei)2 is supported by RR

and NSNS fields:

B2 = κ
eΦ

ĥ1/2

[
eρ3 − cos α

(
eθϕ + e12) − sinα

(
eθ2 + eϕ1)],

F3 = e− 3
2 Φ

ĥ3/4

[
f1e123 + f2eθϕ3 + f3

(
eθ23 + eϕ13) + f4

(
eρ1θ + eρϕ2)],

F5 = κe− 5
2 Φ−kĥ

3
4 ∂ρ

(
e2Φ

ĥ

)[
eθϕ123 − ex0x1x2x3ρ

]
. (2.6)

We have defined

cosα = cosh(2ρ) − a

sinh(2ρ)
, sin α = − 2eh−g

sinh(2ρ)
, ĥ = 1 − κ2e2Φ, (2.7)

where κ is a constant that we will choose to be κ = e−Φ(∞). The functions are,

f1 = −2Nce
−k−2g, f2 = Nc

2
e−k−2h

(
a2 − 2ab + 1

)
,

f3 = Nce
−k−h−g(a − b), f4 = Nc

2
e−k−h−gb′. (2.8)

The system has a radial coordinate ρ, on which all functions depend, and we have set α′gs = 1.
The functions (a, b,Φ,g,h, k) obey a system of BPS equations which can be arranged in a
convenient form that decouples the equations (as explained in [33,34]). As a result, it can be
shown that the whole dynamics of the string background is controlled by a single function P(ρ),
subject to a second order non-linear and ordinary differential equation. This function P(ρ) can
be determined numerically and has IR and UV behaviours

UV: P = e4ρ/3[c+ + . . .], ρ → ∞,

IR: P = h1ρ +O
(
ρ3), ρ → 0. (2.9)

There is only one independent parameter, c+ > 0 (the constant h1 is determined by c+) and it is
this parameter that can be identified with the baryonic expectation value

U ∼ 1

c+
. (2.10)

It is convenient to define a dimensionless quantity λ = 22/3c+ε−4/3 where ε may be identified
with the conifold deformation. See the paper [29] for a good account of the logic and technical
details.

2.1. SU(3) structure of the baryonic branch

The supergravity background above is characterised by what is called an SU(3) structure.
That is, there exists a couple of forms Ĵ2 and Ω̂3, in terms of which the BPS equations, the fluxes
and various other quantities characterising the space can be written.
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The observation of [28], it that the forms Ĵ , Ω̂ , describing the full baryonic branch can be
obtained from the simpler ones describing a set of D5 branes wrapping the two cycle of the
resolved conifold. We will not repeat the details of the derivation here, but we quote the results
to the extent that we will find useful.

In general, an SU(3) structure solution can be described by the following pure spinors in Type
IIB [41],

Ψ+ = −eiζ(r) eA

8
e−iĴ , Ψ− = −i

eA

8
Ω̂hol, (2.11)

where e2A is the warp factor of the metric. Let us define

eiζ(r) = C + iS, (2.12)

where C2 +S2 = 1. It is possible to show that for zero axion field, that is F1 = 0, SUSY requires
the following equalities to hold (these are the BPS equations previously mentioned)

d
(
e−ΦS

) = 0, d
(
e2A−ΦC

) = 0,

d
(
e3A−ΦΩ̂hol

) = 0, d
(
e4A−2ΦĴ ∧ Ĵ

) = 0. (2.13)

The fluxes are determined as

B2 = S
C Ĵ ,

1

C2
d
(
e2AĴ

) = e4A �6 F3, d
(
e4A−ΦS

) = −e4A �6 F5. (2.14)

The system of Nc D5 branes wrapped on the resolved conifold is supported by just F3 flux
and is a solution to these equations when S = 0. The (string-frame) frame fields that describe this
geometry can be obtained from those of Eq. (2.5) by setting ĥ = 1. In terms of these, the J2,Ω3
(denoted without hats to distinguish them from those of the baryonic branch) are given by

J = er3 + (
cos αeϕ + sin αe2) ∧ eθ + (

cos αe2 − sin αeϕ
) ∧ e1,

Ωhol = (
er + ie3) ∧ ((

cos αeϕ + sin αe2) + ieθ
) ∧ ((− sinαeϕ + cos αe2) + ie1), (2.15)

which obey the relations J ∧Ωhol = 0, J ∧J ∧J = 3i
4 Ωhol ∧ Ω̄hol. The BPS equations for the

functions h,g, k, a, b,Φ and the RR three-form flux, are

d(J ∧ J ) = 0, d
(
eΦ/2Ωhol

) = 0

d
(
eΦJ

) + e2Φ �6 F3 = 0. (2.16)

Then the results of [28] show that the Ĵ , Ω̂ of the full baryonic branch solution are obtained by
introducing a non-zero phase or rotation parameter1 ζ(r) in to (2.11) and defining:

Ĵ = CJ, Ω̂hol = C3/2Ωhol, e2A = eΦ

√
C

, S = eΦ−Φ∞ , (2.17)

where e2A is the warp factor of the baryonic branch solution. For further details on the geometry
and physics implied by this ‘scaling of forms’, we refer the reader to the original papers [28]
and [27].

1 This parameter can also be understood in terms of the boost parameter that enters in the duality chain that relates the
wrapped brane geometries to the baryonic branch [27].
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2.2. A useful gauge transformation

Let us comment on a small subtlety that will be important in what follows. The above rotation
argument makes it quite clear that by sending ζ → 0, the geometry becomes that of the wrapped
D5 branes. On the other hand taking ζ → π

2 accompanied with λ → 0, the geometry becomes
that given by Klebanov and Strassler, i.e. the Z2 point of the baryonic branch. Taking this limit
is slightly delicate. One finds that sin ζ → 1 and cos ζ → 1

λ
hKS where hKS is the Klebanov–

Strassler warp factor. Expanding the functions (a, b,Φ,g,h, k) in the large λ limit and rescaling
Minkowski coordinates xi → xiλ

−1 one finds that leading term of the metric is independent of λ

and reproduces the KS geometry. The limit applied on the NS two form is less trivial, in fact its
expansion in inverse powers of λ is

B2 = λ
ε2 sinh(2ρ)

2
√

3κP1

√
P ′

1

d
(
P1(ω̃3 + cos θdϕ)

) − BKS +O
(
λ−1). (2.18)

However the form of P1 (the leading contribution of P(ρ) in this expansion) ensures that
the pre-factor on the first term in this expression reduces to a constant and one recovers the
Klebanov–Strassler NS two form modulo a pure gauge term.

In fact it is going to suit our purposes to perform a similar gauge transformation across the
whole baryonic branch (2.6). We do this by defining

B2 → B2 + d
(
Z(ρ)(ω̃3 + cos θdϕ)

)
, Z = −1

2

ρ∫
0

e2k(ρ′)+Φ(ρ′)S
(
ρ′)dρ′ (2.19)

In the KS limit this reduces to exactly the gauge transformation required in (2.18) and it has the
effect of removing certain mixing between the angular directions and the radial direction in the
NS two-form.2 This will greatly simplify matters upon performing a duality transformation.

3. Non-Abelian duality on the baryonic branch

In this section, we will present the result for the non-Abelian T-duality when applied to one
of the SU(2) isometries of the baryonic branch background in Eqs. (2.5)–(2.6). This study was
initiated in [16] but here we make two essential new contributions that will allow our subsequent
analysis. In [16] the NS sector was established however the geometry there displayed at first
sight a mixing between angular and radial directions thereby creating difficulties for any field
theory interpretation. Here we have established that this is a gauge artifact (details are presented
in Appendix C). By making the gauge transformation introduced above in Eq. (2.19) to the seed
geometry, as we do here, we remove this mixing and restore the expected asymptotic behaviour
of the geometry.3 Moreover we complete the specification of the geometry by providing the RR
sector. Whilst this may seem laborious, it is essential in order to show the supersymmetry of the

2 This transformation leaves unchanged the gauge coupling defined through the integral of B2 however it is non-
vanishing at infinity and so one should exercise appropriate caution.

3 Alternatively one can perform the following coordinate transformation to the solution presented in [16] to obtain the
solution presented here:

vthere
3 → vhere

3 + √
2Z. (3.1)
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background and, in the absence of a comprehensive proof that non-Abelian T-duality is a solution
generating map, required in order to verify that the equations of motion are satisfied. Moreover,
much of the analysis of field theory properties that follows in Section 5 requires knowledge of
the RR sector.

Our strategy is to perform a non-Abelian T-dualisation on an SU(2) isometry that exists in the
baryonic branch geometry. Here, in the interest of concision, we do not recapitulate the entire
technology of non-Abelian T-duality and refer the reader who wishes to learn the details of the
technique to the earlier work and in particular to Section 2 of [16]. Instead we present the results
with some additional technical detail relegated to Appendix C.

We will perform the transformation described in [16] to the coordinates (θ̃ , ϕ̃,ψ), present in
the left-invariant forms of SU(2), ω̃i , i = 1, 2, 3 of Eq. (2.5). Typically in the T-dual one finds
that the Lagrange multipliers vi introduced in the Buscher procedure play the role of T-dual
coordinates. However there is some choice in how the T-dual geometry is parametrised since a
gauge fixing must be invoked. Here, for reasons that will become apparent in Section 5, we will
choose a gauge where the new coordinates after the duality will be (v2, v3,ψ).

We will start by specifying the vielbeins. The components

exi = e
Φ
2 ĥ− 1

4 dxi, eρ = e
Φ
2 +kĥ

1
4 dρ (3.2)

do not change. The vielbeins in the (θ,ϕ) directions are also unchanged by the duality however
we find it useful to introduce a rotation in (eθ , eϕ) such that the dual solution has no explicit ψ

dependence.

eθ̂ = √
Ceh+Φ/2ω1, eϕ̂ = √

Ceh+Φ/2ω2, (3.3)

where we have introduced left-invariant SU(2) forms for the angles {θ,φ,ψ}. The vielbeins in
the directions 1̂, 2̂, 3̂ and NS 2-form potential can be compactly written in terms of the quantities
defined as,

H = 2
√

2v3 + 4Z + e2g+ΦS cosα

2
√

2
, Z = −1

2

ρ∫
0

SeΦ+2kdρ′,

μ1 = aeg cos α + 2eh sin α. (3.4)

The function Z was introduced as a gauge transformation to the seed solution already in (2.19).
With these, we have

e1̂ = eg+Φ/2

8W
√
C
[

4e2k+ΦCH(aHω1 − v2ω3) − √
2e2(g+k+Φ)C2(dv2 + aHω2)

− 8
√

2v2(v2dv2 +Hdv3)

+ 1

2
μ1Seg+Φ

(
8v2

2ω2 + e2k+ΦC
(
e2g+ΦCω2 − 2

√
2Hω1

))]
,

e2̂ = eg+3Φ/2+g

8W C3/2
[

4e2gv2(dv3 − av2ω2) − 4He2k(dv2 + aHω2)

− √
2Ce2k+2g+Φ(aHω1 − v2ω3) + 1

2
μ1Seg+2k+Φ

(
e2g+ΦCω1 + 2

√
2Hω2

)]
,
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e3̂ = ek+Φ/2

8W
√
C
[
4Cv2e4g+Φ(v2ω3 − aHω1) − √

2C2(dv3 − v2aω2)

− 8
√

2H(v2dv2 +Hdv3) + eg+Φμ1v2S
(√

2Ce2g+Φω1 + 4Hω2
)]

. (3.5)

We will then have a metric that in terms of these vielbeins reads, ds2
st = ∑10

i=1(ei)2.
In terms of these vielbeins, the NS two-form B2 reads,

B̂2 = − 1

4v2

(
2e−ha

(
egv2eθ̂ 1̂ + ekHeθ̂ 3̂) − 4ek−gHe1̂3̂ + √

2Ceg+k+Φe2̂3̂)
+ S

C

[Hek

2v2

(
2e−ge1̂3̂ − ae−heθ̂ 3̂) + eg+k+Φ−h

4
√

2v2
C
(
μ1eθ̂ 3̂ − 2ehe2̂3̂)

− e−h

2

(
2e−h−Φ Z

S + 2eh cosα − aeg sin α

)
eθ̂ϕ̂ − e−h

2

(
aegeθ̂ 1̂ + μ1eθ̂ 2̂)]. (3.6)

The dual dilaton is given by

Φ̂ = Φ − 1

2
lnW, W = C

8

(
e4g+2k+3ΦC2 + 8e2g+Φv2

2 + 8e2k+ΦH2). (3.7)

And the RR sector is given by,4

F0 = Nc√
2

,

F2 = −e−Φ

4C Nc

[
2e−2h

(
1 + a2 − 2ab

)
Heθ̂ϕ̂ + e−g−h−kC(a − b)

(√
2e2g+k+Φ

(
eθ̂ 1̂ − eϕ̂2̂)

+ 4ekH
(
eθ̂ 2̂ − eϕ̂1̂) − 4v2egeϕ̂3̂) − 8e−2gHe1̂2̂ − 8e−g−kv2e2̂3̂ − 2e−h−kv2erθ̂

]
− Seg−h

√
2C sin α

(
Ncb + a

(
e2g cos2 α − Nc

) + eg+h sin 2α
)
eθ̂ϕ̂ ,

F4 = e−g−h−k−Φ

8C Nc

[
C
(
1 + a2 − 2ab

)
eθ̂ϕ̂ ∧ (√

we2g+k+Φ−he1̂2̂ + 4e2g−he1̂3̂)Cb′erθ̂

∧ (
4ekHe1̂3̂ − √

2e2g+k+Φe2̂3̂) − 8egv2(a − b)eθ̂ 1̂2̂3̂erϕ̂

∧ (
4egv2e1̂2̂ − b′ek

(√
2e2g+Φe1̂3̂ + 4He2̂3̂))]

− 2Se−g−h−k−Φ

C2 sin α

(
a
(
e2g cos2 α − Nc

) + (
Ncb + eg+h sin 2α

))
× (

Hekeθ̂ϕ̂1̂2̂ + v2egeθ̂ϕ̂2̂3̂). (3.8)

3.1. Asymptotic behaviour

Using the semi analytic UV expansions that can be found, for example, in [29] it is possible
to calculate the UV behaviour of the dual metric.

4 Warning on potentially confusing nomenclature: The Nc appearing here originated as the number of D5 branes
wrapping the resolved conifold which was then rotated to give the baryonic branch and then T-dualised to this solution.
Prior to T-duality, Nc corresponds to the D5 charge which is also commonly denoted by M (which we will also use in
Section 5 when we specialised to the Klebanov–Tseytlin geometry). We hope the reader will not get overly confused by
this point.
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The dual vielbeins at leading order in the UV are given by

e1̂ = −c+e−2ρ/3(24ρ − 3)1/4

23/4
√

Nc(1 − 2ρ)
ω1, e2̂ = c+e−2ρ/3(24ρ − 3)1/4

23/4
√

Nc(1 − 2ρ)
ω2,

e3̂ = − 23/431/4

√
Nc(8ρ − 1)1/4

dv3. (3.9)

Thus the dual 3-manifold shrinks as one flows towards the UV, in line with our expectations from
Abelian T-duality, where big circles are mapped to small circles.

One may worry that this vanishing manifold is a signal of a singularity in the UV, however,
an explicit check shows that the curvature invariants: Ricci scalar, RμνRμν and RμνλκRμνλκ are
finite. In other words, both the gs and the α′ expansions are under control and the background
is trustable in the far UV. Notice that there is a one-cycle, labelled by the coordinate ψ in ω3,
that shrinks to zero size in the large-ρ regime. This implies that strings wrapping this cycle will
become light and will enter the spectrum of the dual QFT at high energies.

The dual dilaton is defined as e2Φ̂ = e2Φ

W where

W = 3c+Nc

√
12ρ − 3

2
e8ρ/3 (3.10)

asymptotically, and so the dilaton is UV vanishing.
Let us now study the small radius regime of the metric, corresponding with the low energy

regime of the dual QFT. Things are a bit less-simple; at leading order, terms in the metric depend
explicitly of the original IR-parameters of the baryonic branch solution, but they also depend
on the values of the v2, v3 coordinates. Explicit expressions for the dual vielbeins in the IR are
included in Appendix C.4.

Here again, it happens that the dilaton is bounded and the Ricci scalar and Ricci and Riemann
tensors squared are finite. This was expected, as we are performing a duality transformation on
a space that in the small-ρ regime was of finite size (the S3 in the deformed conifold). Dualities
typically invert ‘sizes’ (or couplings). This example is not an exception. One may start with a
background solution where supergravity is a good approximation and obtain that in the far IR the
new generated solution is still a trustable supergravity background.

A point that we want to emphasise again is that in the far IR, the parameter that was labelling
the different ‘positions’ on the baryonic branch (that is the different baryonic VEVs) still appears
in the small-radius expansion above. There is a still a one-parameter family of solutions. Indeed,
notice the dependence on the integration constants eΦ(0) and h1 as defined in [28], both related
to the number parametrising the baryonic branch.

4. SU(2) Structure of the background

In this section we establish that the background obtained above is indeed supersymmetric and
we give the associated G-structure. Again, we will postpone details to Appendix C. The geometry
supports two pure spinors given by

Φ+ = eA

8
eiθ+e−iv∧w

(
k‖e−ij − ik⊥ω

)
,

Φ− = ieA

8
eiθ−(v + iw) ∧ (

k⊥e−ij + ik‖ω
)
. (4.1)
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In the case at hand we find

e2A = eΦ

C
θ+ = 0, θ− = ζ(r)

k‖ = sin α√
1 + ζ · ζ

k⊥ =
√

cos2 α + ζ · ζ

1 + ζ · ζ

z = w − iv = 1√
cos2 α + ζ · ζ

(√
Δẽ3 + ζ2 sinαẽθ + i

(√
Δẽρ + ζ2 sin αẽϕ

))
j = ẽρ3 + ẽϕθ + ẽ21 − v ∧ w

ω = i√
cos2 α + ζ · ζ

(√
Δ

(
ẽϕ + iẽθ

) − ζ2 sin α
(
ẽρ + iẽ3)) ∧ (

ẽ2 + iẽ1). (4.2)

Here the frames ẽ are obtained by a rotation, given by (B.19), of those in (3.5) and the param-
eters Δ,ζi which enter into this rotation are specified by (C.15).

There are various immediate things to observe. If we move to the large radius region of the
geometry, the functions sin α(ρ) ∼ a(ρ) ∼ b(ρ) → 0. The formulas simplify and we obtain,
among other things that k‖ → 0. This implies that, as happens in the paper [18], the two pure
spinors are ‘perpendicular’ in the large radius regime of the solution and the SU(2)-structure is
static. Similar behaviour was found in [20], where a dynamical SU(3)- structure in 7d becomes
orthogonal in the UV. This changes as we evolve to the small radius regime of the background, the
SU(2)-structure is said to become dynamical. In Section 5, we will discuss the physical effects
that are associated with a change in the SU(2)-structure, from static in the far UV to dynamic in
the IR.

5. Correspondence with field theory

In this section, we will connect our previous geometrical studies with aspects of the quantum
field theory that our background is dual to. As it was anticipated in the paper [16], we believe
that the field theory dual to our massive IIA background should be a non-conformal version of
the Sicilian gauge theories presented in [35,36] or the linear quiver field theories studied in [37].
There are certain things that can be inferred immediately, like for example the confining character
of the QFT. This follows from the fact that the calculation of the Wilson loop will proceed exactly
as in the case of the baryonic branch field theory. Indeed, the R1,3 × ρ part of the geometry is
unchanged, hence, the Wilson loop will give the same result as before the non-Abelian T-duality.
Nevertheless, many calculations done with the Klebanov–Strassler/baryonic branch background
involved the ‘internal’ five dimensional space. The purpose of this section will be to learn how
some of those calculations for field theory observables change (or not) for the new geometries in
massive IIA.

The idea that will guide us is that for a given correlation function or related QFT observ-
able, that in the original background was calculated in a way that is ‘independent’ of the SU(2)

isometry used to perform the non-Abelian duality, will give the same result in the transformed
background. We can think about those operators or correlators as ‘uncharged’ under the SU(2)

symmetry in question. Ideas of this sort already worked in other solution generating techniques,
like T–s–T dualities. Similar ideas also appeared in large Nc (planar) equivalences between
parent-daughter theories. The physics of the common or ‘uncharged’ sector goes through to
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the new field theory. The rest of the paper deals with observables that are, in principle ‘charged’
under the SU(2) symmetry.

We will first examine the relation between the dynamical character of the SU(2)-structure
and the field theoretical phenomena of confinement and discrete R-symmetry breaking. We
will show how the presence of domain walls with an induced Chern–Simons dynamics on their
world-volume follows as a consequence of the confinement and the dynamical character of the
SU(2)-structure.

Then, we will make clear that the symmetry associated with changes in the ψ -direction is
related with an anomalous U(1)R R-symmetry in the field theory. We will define an instantonic
object using an Euclidean D0 brane; this will lead us to a possible definition for a Θ-angle and
gauge coupling. We will find that this coupling has a non-conventional running in the far UV.

We will then move into studying different aspects of the ‘baryonic branch’, also present in our
new backgrounds. We will find that a given fluctuation of the RR background fields can be put in
correspondence with a global continuous symmetry that the IR dynamics breaks spontaneously.
We will find the associated Goldstone boson and an expression for the conformal dimension of
such a baryonic operator.

5.1. Dynamic SU(2) and confinement

In this section, we will make more concrete the relation between the QFT phenomena of
confinement and the dynamical character of the SU(2)-structure. The first observation is that
the ‘parallel projection’ between both spinors, represented by k‖ in Eq. (C.18), is proportional
to the quantity sin α. This quantity is related to the background functions as can be read from
Appendix B of the paper [32],

sin α(ρ) = 4aeh−g√
a2 + 2a2(4e2h−2g) + (4e2h−2g + 1)2

. (5.1)

This is compatible with the expression in Eq. (2.7) after following the algebra in Appendix B of
the paper [32].

The presence of the functions a(ρ), b(ρ) in the baryonic branch solution – see Eqs. (2.5)–(2.8)
– are responsible for the de-singularisation of the space (the appearance of a finite size S3) and
the IR minimisation of the dilaton and warp factor. These have as a consequence the linear law,
EQQ = σLQQ for large distance separations between the quark–antiquark pair. In other words,
the functions a(ρ), b(ρ) and their effects on the warp factor and dilaton ‘produce’ confinement.
In the same vein, at the level of the metric, the presence of a(ρ) implies the breaking of the sym-
metry ψ → ψ + ε into ψ → ψ + 2π . This is the remaining Z2 symmetry after the spontaneous
discrete R-symmetry breaking. So, we see clearly that confinement and spontaneous R-symmetry
breaking go hand-in-hand with the function a(ρ). Hence, these phenomena in the dual QFT are
closely related to the presence of k‖, which as we made clear is related to the dynamical character
of the SU(2)-structure. In the papers [44,45], the point was made that the functions a(ρ), b(ρ)

were directly related with the gaugino condensate. This suggests that in our massive IIA picture,
there exists a relation of the form 〈λλ〉 ∼ k‖. Similar ideas will be discussed in the paper [54].

5.2. A comment on domain walls

It was proposed in [16], that domain wall objects were realised in the non-Abelian T-dual of
the geometries we are considering, as D2 branes that extend on R1,2. Indeed, the induced metric,
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action and tension of a (2 + 1)-dimensional object are,

ds2
ind = eΦĥ−1/2(−dt2 + dx2

1 + dx2
2

)
,

SBI = −TD2

∫
d3xeΦ/2ĥ−3/4, TDW = TD2eΦ/2ĥ−3/4

∣∣
ρ=0.

If we also turn on a gauge field in the world-volume of this D2 brane, a Chern–Simons–Maxwell
action will be induced, at leading order in α′ on this D-brane,

SBIWZ = −TD2

∫
d2+1xeΦ/2ĥ−3/4

√
1 − α′FμνF μν + TD2

∫
d2+1xF0A1 ∧ F2. (5.2)

We have used that a new WZ-like term appears in massive IIA as explained in [46]. The Chern–
Simons term is quantised, being proportional to TD2Nc.5

In the Type IIB baryonic branch solution(s), domain walls were realised by D5-branes ex-
tended on R1,2 and the three-sphere S̃3 = [θ̃ , ϕ̃,ψ]. Once a gauge field is turned on, a Chern–
Simons terms was induced, proportional to TD5

∫
S̃3 F3. Naively, we can think that both objects

are ‘connected’ by the non-Abelian T-duality, under which the directions on S̃3 disappear and
we are left with a D2 brane as described above.

Supersymmetry gives support to this. Indeed, around Eq. (6.19) of the paper [41], we are
presented with the calibration form for a domain-wall like object, which is given by the real part
of the pure spinor Ψ+. Using that |a|2 = eA = eΦ/2ĥ−1/4, we obtain that the BI action equals the
calibration form. Notice also that this selects the k‖ component of the pure spinor.

As it was shown in the paper [16], once the R-symmetry is broken in the Type IIB set-up, the
non-Abelian T-duality maps these backgrounds to their partners in massive IIA. In a minimally
SUSY quantum field theory, the presence of domain-walls is tied up with confinement and the
spontaneous breaking of the Z2Nc -symmetry. As we emphasised, these phenomena are related to
the ‘dynamical’ character of the SU(2)-structure, hence to the presence of the k‖ part of the pure
spinor.

5.3. The fate of the U(1)R anomaly

In the backgrounds presented in [16] and those of this paper it is somewhat natural to expect
that the coordinate ψ is singled out as being related to an R-symmetry of any putative field theory
dual. That this is true is by no means obvious, after all in the technical process of dualisation the
fact that we retained the coordinate ψ was purely a result of a judicious gauge choice. Here we
provide evidence that this is indeed the correct identification and furthermore that this U(1) is
afflicted with an anomaly, breaking it down to a discrete subgroup.

A robust understanding of how ∂ψ plays the role of the R-symmetry in the holographic dual
was given in [42] with several important details of the supergravity solution clarified in [43].
The essential point of [42] is to introduce a bulk 5d gauge field that gauges this U(1)ψ by
making the replacement dψ → χ = dψ − 2A in the metric. This must be supplemented with an
appropriate ansatz for the fluxes. In the case of the Klebanov–Witten background one finds that
the resultant gauge field is massless and is the dual fluctuation to the global U(1)R of the gauge
theory. However, in the non-conformal cases, the correct ansatz for the fluxes actually yields a

5 Note that it is the presence of an F0 that allows D2 branes to be interpreted in this way, by way of comparison in [47]
the relevant branes with Chern–Simons dynamics are D4 branes with a bulk F2 turned on.
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massive gauge field (the mass here comes from a Stückelberg rather than Brout–Englert–Higgs
mechanism).

Let us begin our discussion with the non-Abelian T-dual of the Klebanov–Witten background.
The NS sector of the geometry is given by

ds2 = ds2
AdS5

+ 1

6
ds2

S2 + 6v2
2

Δ
σ 2

3̂

+ 6

Δ

[(
1 + 27v2

2

)
dv2

2 + 54v2v3dv2dv3 + 3

4

(
Δ − 54v2

2

)
dv2

3

]
,

B2 = 18
√

2

Δ
v2v3σ3̂ ∧ dv2 + (Δ − 54v2

2)√
2Δ

σ3̂ ∧ dv3,

e2Φ = 81Δ−1 = 81
(
2 + 54v2

2 + 36v2
3

)−1
, (5.3)

where σ3̂ = dψ + cos θdφ. This metric is supported by RR two and four form fluxes. The U(1)

acting as ∂ψ can be gauged by making the replacement σ3̂ → χ̃ = σ3̂ − 2A in the NS sector
above. The potentials corresponding to the correct modification of the RR forms that support this
fluctuation are given by

C1 = −2
√

2

27
(cos θdφ + A),

C3 = − 2

27
v3χ̃ ∧ (ω̃2 − dA) + 2

9
v3 �5 dA, (5.4)

where we introduce the volume form on the S2, ω̃2 = sin θdθ ∧dφ and �5 is the Hodge dual in the
AdS5 directions. This solves the linearised equations of motions, linearised Einstein equations
and Bianchi identities provided that the gauge field obeys the equation d �5 dA. This, together
with the fact that the Killing spinors of the geometry are charged under U(1)ψ identifies this as
the dual to the R-symmetry. Upon substitution of this ansatz in to the action one finds all the
gauge field dependence gives a field strength squared contribution,

δS = f (v2, v3)FμνF μν (5.5)

for some function f (v2, v3) of the internal coordinates that will be integrated over in a reduction
to a five-dimensional theory.

Now we turn to the non-conformal geometry obtained by transformation of the Klebanov–
Tseytlin geometry (since we are only interested in the UV behaviour we will not need the full
Klebanov–Strassler or baryonic branch). The NS sector, with the U(1)ψ gauged, is given by

ds2 = h
1
2 dr2 + h− 1

2 ds2
R1,3 + r2h

1
2

6
ds2

S2 + 6r4hv2
2

Δ
χ̃2

+ 6

Δ

[(
r4h + 27v2

2

)
dv2

2 + 54v2V3dv2dv3 + 3

4

(
Δ

r2h
1
2

− 54v2
2

)
dv2

3

]
,

B2 = 18
√

2

Δ
v2V3χ̃ ∧ dv2 + (Δ − 54r2h

1
2 v2

2)√
2Δ

χ̃ ∧ dv3 + r5h′(r)

54M
ω̃2,

e2Φ = 81Δ−1 = 81
(
2r4h + 54v2

2 + 36V2
3

)−1
. (5.6)

Here h(r) is the usual Klebanov–Tseytlin warp factor and V3 = v3 + r5h′(r)

27
√

2M
. Without the gauging

this is a solution of massive IIA with Romans’ mass proportional to M . By examining how
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the non-Abelian T-duality transformation acts on the ansatz given by Krasnitz in [43], we can
determine a suitable ansatz for the fluxes:

C1 = −M

2
v3 cos θdφ + M

2
ψdv3 − 2

√
2K1 − √

2C0(V3dv3 + v2dv2)

C3 = 2V3K3 − M
√

2

4
ψω̃2 ∧ (v2dv2 + v3dv3)

+ 2
√

2

M
f (r)C0ω̃2 ∧ (v2dv2 + V3dv3) − 2v3χ̃ ∧ dK1 − 4v3ω̃2 ∧ K1 + Θ3. (5.7)

The remaining term in the three-form potential is given implicitly by

dΘ3 = 1√
2

Mh
1
4 �5

(
C0dr + 2

3
rW

)
+ 3M√

2
dr ∧ K3. (5.8)

Here W is a gauge-invariant 1-form that combines the gauge field A with a Stückelberg scalar
W = A − dλ though for practical purposes we may chose a gauge in which W = A. Then,
this is a solution to the linearised flux equations and Bianchi identities provided the fields
K1,K3,W introduced above obey a set of simple equations (the explicit form can be found
in Eqs. (4.20)–(4.24) of the paper [43]). In particular, it was shown in [43] that the equations
for K1,K3,W can be diagonalised and contain a mode corresponding to a massive gauge field
whose mass is a result of the spontaneous (anomalous) breaking of R-symmetry. The mass of
this mode is given by

m2 = 4

α′(3π)
3
2

(gsM)2

(λN)
3
2

. (5.9)

The interpretation is identical here and we conclude that the U(1)R symmetry is anomalously
broken.

5.3.1. Dependence on ψ in the potentials and D0 brane instantons
To understand this breaking as an anomaly it is informative to look at the forms of the RR

potentials. For the non-Abelian T-dual of the Klebanov–Witten we have following potentials

C1 = Nπ√
2

cos θdφ,

C3 = −Nπv3

2
sin θdθ ∧ dφ ∧ dψ. (5.10)

For the dual of the Klebanov–Tseytlin (which has Romans mass proportional to M) we have

C1 = M

2
v3 cos θdφ − M

2
ψdv3,

C3 = −
√

2M

8

(
v2

2 + v2
3

)
sin θdθ ∧ dφ ∧ dψ. (5.11)

Note how the dependence on ψ in C1 is quite different in the potentials in the conformal and
non-conformal cases.

Let us now consider D0 branes. These D0 branes will move in the v3 direction, leaving all
other coordinates fixed, in particular we will choose v2 = 0. We can then calculate using (5.6)
the induced metric for this D0 brane, relevant gauge potential and its BIWZ action, that will read
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ds2
ind = gv3v3dv2

3 = 9

2r2h1/2
dv2

3, C1 = −M

2
ψdv3,

SBIWZ = −TD0

∫
dv3e−Φ√

gv3v3 + TD0

∫
C1

= TD0

∫
dv3

√
r2h1/2

9
+ 2V2

3

r2h1/2
− TD0

Mψ

2

∫
dv3.

We use now that TD0 = 1
gs

√
α′ . Also, we call

√
α′Lv3 = ∫

dv3, the dimensionless length of the v3

direction.
We will equate the BIWZ action of this Euclidean D0 brane with the gauge coupling and the

Θ angle imposing that SBIWZ = 8π2

g2 + iΘ . In other words, we consider this D0 brane to be an
instanton in the dual gauge theory.

Analysing the WZ term, we have that (like above, we choose gs = 1),

SWZ = M

2
ψLv3 = Θ. (5.12)

Using that the theta angle should be periodic, we can impose that the allowed changes in the
angle ψ get selected to be

M

2
(ψ + Δψ)Lv3 = Θ + 2kπ (5.13)

which implies that

Δψ = 4kπ

MLv3

. (5.14)

So, we see that there is a breaking of the global continuous symmetry into a discrete one. The
residual discrete symmetry is determined by the domain of the coordinate v3. In the case in which
we would like to impose this discrete symmetry to be the same as before the non-Abelian duality
we should impose that Lv3 = 2. One of the major challenges with understanding non-Abelian
T-duality is to identify the periodicities of the coordinates of the T-dual geometry and it is en-
couraging that here we see a direct link between a field theory property (the anomaly) and the
global properties of the geometry.

Let us look at the BI term. We have that the gauge coupling, associated is

8π2

g2
= TD0

∫
dv3

[
r2h1/2 + 2

r2h1/2

(
v3 + r5h′

27
√

2M

)2]1/2

. (5.15)

We can perform the integral explicitly, but it is perhaps more illuminating to look at the large
radius limit of the expression above. After all, we are doing this calculation in the non-Abelian
dual of the Klebanov–Tseytlin solution, we should only trust the result in the far UV. We have
then, considering the leading term in the large-r expansion,

1

g2
∼ (log r)3/2 (5.16)

this reproduces a result obtained by other means in [16].
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5.4. The fate of U(1)B

The Klebanov–Witten SU(N) × SU(N) conformal field theory coming from D3 branes at the
tip of the conifold has a U(1) baryonic number symmetry acting as Ai → eiαAi , Bj → e−iαBj .
In the gravity dual this number current gives rise to a massless AdS5 gauge field

δC4 = ω3 ∧A, (5.17)

where ω3 is the usual closed three form on T 1,1. In the T-dual geometry given in Eq. (5.3), this
U(1)B mode translates into a perturbation, which solves the linearised supergravity equations of
motion, given by

δC1 = 1

9
A,

δC3 = W2 ∧A+ 1

9
udu ∧F +

√
2

6
udv3 ∧ �4F . (5.18)

The final two terms in δC3 come from the a contribution from δC6 under the T-duality transfor-
mation.6 Although the two-form W2 has a simple form

W2 = v3

9
dσ3 +

√
2v2e2φ̂

81
σ3 ∧ (2v3dv2 − 3v2dv3) (5.19)

it can-not easily be written in terms of the invariant tensors that define the SU(2) structure of the
geometry.

The existence of this mode is suggestive that the field theory duals corresponding to the con-
formal geometries constructed in [15] have a global U(1) symmetry in addition to the preserved
U(1)R . In fact, the geometry T-dual to the Klebanov–Witten is closely related to those proposed
in [36] as the gravity duals to N = 1 SCFTs formed by wrapping M5 branes on Riemann sur-
faces (which in this case is genus zero giving rise to many subtleties). These SCFTs do indeed
have U(1)R × U(1)F Abelian global symmetries which are seen geometrically as isometries of
the corresponding eleven-dimensional supergravity solution. Upon reduction to ten-dimension
one of these U(1)’s gets degeometrised corresponding to the above gauge field δC1 =A.

In this paper our main focus has been the cascading field theory where at the last step of the
cascade when the gauge group is SU(M) × SU(2M) the baryons acquire expectation values,

B = iξΛ2M, B̃ = i

ξ
Λ2M. (5.20)

On this baryonic branch the U(1)B symmetry is spontaneously broken. To see this from the
gravity perspective it is sufficient to work with the Klebanov–Strassler geometry corresponding
to the field theory at the Z2 symmetric point of the baryonic branch. As shown in [24], there is a
massless glue ball corresponding to a Goldstone mode associated with changing the phase of ξ

which is given by7

6 For the AdS5 × T 1,1 we use ds2
AdS = du2 + e2u(ηij dxidxj ).

7 Here and elsewhere use the standard notation for the deformed conifold and Klebanov–Strassler geometry which
can be found e.g. in appendix of [24]. For the KS we stick with the notation τ as the radial coordinate but will use r

elsewhere.
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δH = 0,

δF3 = f1 �4 da − d
(
f2(τ )da ∧ g5),

δF5 = f1

(
�4da − ε

4
3

6K2(τ )
h(τ )da ∧ dτ ∧ g5

)
∧ B2. (5.21)

The linearised supergravity equations are solved when the pseudo-scalar is a harmonic function
in R

3,1 and the function f2(τ ) obeys a second order differential equation admitting a normalis-
able solution.

The non-Abelian T-dual geometries considered also admits a similar mode, which can be
obtained simply by performing a T-dualisation of the ansatz for the scalar modes in the seed
IIB solutions. The T-dual of the Klebanov–Strassler geometry was obtained explicitly in [16].
Performing a dualisation of the ansatz (5.21) gives rise to a perturbation δF2 and δF4. This
perturbation solves the supergravity equations of motion when f2 obeys the same differential
equation as for the ansatz (5.21). The expressions for F2 and F4 are not particularly enlightening
though for completeness let us provide a few details. Here we display the results in the UV
regime where the geometry is given by (5.6). The corresponding deformations to the potentials
are given by

δC1 = (
2v3f2(r) + f3(r)

)
da,

δC3 =
[
f4(r) − f1√

2

(
v2

2 +
(

v3 − Nπ√
2M

)2)]
�4 da − f2√

2
da ∧ σ3 ∧ d

(
v2

2 + v2
3

)
− f3√

2
da ∧ σ3 ∧ dv3 + da ∧ sin θdθ ∧ dφ

(
f5 − v3√

2
f3

)
. (5.22)

The extra functions introduced above are completely determined by f1 and f2 according to

f ′
1 = 0, 2r4f ′′

2 = −6r3f ′
2 + 16r2f2 + 27M2f1 log r/r0,

f ′
3 = 1

6

(−3
√

2rf1h(r) log r/r0 − 2T (r)f ′
2

)
, f ′

4 = 2
√

2

3
rf2,

f ′
5 = 1

108

(−2
√

2r5f1h(r) = 18Mrf1h(r)T (r) log r/r0 − 3
√

2T (r)2f ′
2

)
, (5.23)

where T (r) = 9√
2
M log r/r0 and h(r) = 27

32r4 (3M2 + 8Nπ + 12M2 log r/r0).

The existence of this mode suggests a spontaneously broken global U(1) in the field theories
dual to the geometries obtained in Section 3. In the conformal case, the unbroken U(1) becomes
geometrised upon lifting to M-theory whereas these non-conformal backgrounds are solutions
of massive IIA and so can-not be lifted. This further underlines the expectation that a U(1) is
broken.

In the same multiplet as the pseudo-scalar goldstone is a scalar perturbation corresponding
to changing the magnitude of ξ . In the same vein as above, one could deduce the fate of this
scalar perturbation under the T-duality transformation; it will give a similar, albeit complicated,
perturbation in the dual IIA background. Since the full baryonic branch geometry found in [25]
can be thought of as exponentiating such transformations to give arbitrary values of the baryonic
vev, implicitly in the geometries presented in Section 3 we have already done just that.
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5.5. The fate of the baryon condensate

In Klebanov–Witten theory the closest analogy to a baryon vertex – the object to which N
external quarks can attach [38] – would be a D5 brane wrapping the T 1,1 space with world
volume coordinates {x0, θ1, φ1, θ2, φ2,ψ} [39]. The primary reason for this identification follows
the argument made in [38]; since we have∫

T 1,1

F5 ∝ N, (5.24)

the WZ term induces a charge to the world volume U(1) gauge field A via the coupling∫
R×T (1,1)

A∧ F5. (5.25)

This introduces N units of charge which must be cancelled by some other source to give zero
net charge in a closed universe. This cancellation is achieved by N elementary strings stretching
from the boundary to the brane whose end points are external quarks. A perhaps naive approach
would be to suggest in the IIA geometry dual to the Klebanov–Witten theory a similar role could
be played by a D2 brane wrapping the S2 with world volume coordinates {x0, θ,φ}. Indeed,
since in the case of T-dual to Klebanov–Witten we have C1 ∝ cos θdφ the WZ coupling F ∧ C1
produces a charge contribution for the gauge field that could be cancelled with external quarks
just as in the Klebanov–Witten scenario. It would be of some interest to study the baryon vertex
in the massive IIA backgrounds.8

This baryon vertex should however be distinguished from the configuration representing the
actual baryon condensate – which should be supersymmetric, gauge-invariant and not require
BIon spikes. The configuration that describes the baryon condensate is a Euclidean D5 brane
wrapping the T 1,1 and the radial directions [39]. This D5 has D3 branes dissolved within [40]
which are traded for a world volume gauge field. Following the logic applied to the baryon
vertex one might anticipate that in the IIA geometries presented here, the role of the condensate
is played by a wrapped Euclidean D2 brane on the S2 ×R with a world volume gauge field.

Here, to determine the existence of supersymmetric configurations, rather than calculate the
kappa symmetry projectors, we will harness the power of the G-structure and the calibration
techniques of [41]. The condition for a supersymmetric Euclidean p brane on a cycle Σ is es-
sentially the same as that of a Lorentzian p + 4 brane that is spacetime filling in the Minkowski
directions. This condition is given by

e−φ
√−det(g|Σ +F) dpσ = 8e3A−φ Im Φ ∧ e−F ∣∣

Σ
(5.26)

where the world volume field strength is F = B|Σ + 2πα′dA and the pure spinor entering the
calibration form is given Φ = Ψ+ for IIB and Φ = Ψ− for IIA. For reference, in Appendix F we
re-derive some of the IIB embeddings found in [39] using this very efficient calibration technique.

Let us begin with the IIA non-Abelian T-dual of the Klebanov–Witten geometry given in
Eq. (5.3). We find an E2 configuration extended along Σ = {r, θ,φ} at the point v2 = 0 but with

8 Before duality in the cascading theories this is a D3 brane and it seems quite possible that D0 branes might play this
role of the baryon vertex in the cascading massive IIA geometries. We thank O. Aharony and J. Sonnenschein for this
suggestion.
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a non-trivial embedding v3 = f (r). We search for a supersymmetric configuration solving the
calibration condition (5.26) when supported by a gauge field

A = 1√
2

α(r) cos θdφ. (5.27)

From the calibration condition one finds firstly that the embedding f (r) and the gauge field
should differ only by a constant c0. The gauge field should then obey an equation

α′(r) = 1 − 18c0α − 18α2

9(c0 + 2α)
(5.28)

which can also be readily solved and one notices that when c0 = 0 has the same form as Eq. (F.2)
governing the configuration in IIB.

Now we turn to the non-conformal context. Evidently the geometry describing the full bary-
onic branch is rather involved so to make the analysis tractable we focus on the non-Abelian
T-dual of the Klebanov–Tseytlin geometry given in Eq. (5.6). We search for an E2 configuration
extended along Σ = {r, θ,φ} at the point v2 = 0 and now with v3 = χ(r) and an ansatz for the
gauge field

A = 1√
2

α(r) cos θdφ. (5.29)

We take the square of the calibration equation (5.26) and first consider terms proportional to
cos2 θ . From these one finds a first equation relating the gauge field and the embedding in v3:

α′(r) = χ ′(r). (5.30)

We let c0 be the additive constant between α and χ . Then from the remaining terms in Eq. (5.26)
one finds a differential equation for the gauge field

rα′(r) = 1

18(c0 + 2α)

(
2r4h(r) − 6c0T + T 2 − 36c0α − 36α2), (5.31)

where we remind the reader that T (r) and h(r) are given following Eq. (5.23). Changing variable
to t = log r one can solve this equation on the exact logarithmic solution:

α(r) = −c0

2
± r−3/2

8

[
64rc + r3(16c2

0 + 3M
(
8
√

2c0 + 9M − 4(4
√

2c0 + 3M) log r

+ 24M log r2))] 1
2 (5.32)

here c is an integration constant giving sub-leading contributions that we hence ignore.
Using Eq. (5.31) we find that the DBI action is given by

SDBI = κ

∫
dr

r

1

648
(c0 + 2α)−1(2r4h + (T + 6α)2)(2r4h + (

T − 6(c0 + α)
)2)

. (5.33)

If we expand out asymptotically we find that

SDBI ∼ κ

tUV∫
dt

27M3t2

8
√

2
+ 9M2t

32

(
3
√

2M − 4c0 + 8
√

2
N

M
π

)
+O

(
t0), (5.34)

which suggests an operator with a scaling dimension
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Δ = 27κM3

8
√

2
(log r)2 (5.35)

where κ = TD2 vol(S2) = 1
π

. It would be interesting to pursue this line of reasoning further by
extracting the value of the condensate across the baryonic branch. This is technically rather
involved and we do not intend to do so in this report.

6. Conclusions and future directions

In this paper we have examined a new family of solutions of massive IIA supergravity. These
new backgrounds were obtained by performing a non-Abelian T-duality on the geometry that
describes the non-perturbative physics of the baryonic-branch of the Klebanov–Strassler field
theory. We have explored the transition from SU(3) structure, characterising the ‘seed’ back-
grounds to the dynamical SU(2)-structure that describes the resulting massive IIA solutions. We
made clear – at least for the type of backgrounds studied here – that the dynamical character of
the SU(2) structure is directly related to the phenomena of confinement and symmetry breaking.
We believe that all these new features have not been discussed in previous literature, in a context
as clear and unifying as the one presented here.

The new backgrounds discussed in this paper display a host of interesting non-perturbative
phenomena that ‘define’ the dual field theory. Some of these are,

• The non-conformality of the geometry is enabled by a non-zero Romans’ mass.
• Whilst the UV geometries proposed in [16] are characterised by static SU(2) structure [18]

the full IR complete geometry of this paper has dynamic SU(2) structure.
• The transition to dynamic SU(2) structure gives a geometric realisation of confinement and

permits supersymmetric D2 branes that act as domain walls in the IR. This realises geometri-
cally the relation between confinement, the spontaneous breaking of a discrete R-symmetry
and the presence of domain walls.

• The U(1)R symmetry is realised by the vector ∂ψ and the corresponding fluctuation, which
is a massless gauge field in the conformal case, acquires a mass indicating an anomalous
breaking.

• Euclidean ‘instantonic’ branes reproduce this anomaly of the R-symmetry and at the same
time suggest a non-conventional running for a suitably defined gauge coupling.

• A further U(1) (baryonic) symmetry is broken. In the conformal case of [16] this symmetry
is unbroken and is realised geometrically by the M-theory circle. In our backgrounds, once
conformality is broken by the addition of fractional branes, the symmetry is no longer ge-
ometrical as we are now in a massive IIA context. The U(1)B symmetry is spontaneously
broken and we identified a corresponding massless glueball (the associated Goldstone bo-
son).

• We give evidence that this U(1)B may be thought of as baryonic and that a baryonic con-
densate is given by a Euclidean D2 brane wrapping a two-cycle in the geometry.

Although we do not yet have a complete understanding of the field theory dual to this new geom-
etry, the results of this paper together with those in [16] suggest that it may be a non-conformal
and cascading version of the Sicilian theories of [35,36] or the linear quivers of [37].

We would like to close this paper on a forward looking note. We suggest that the features
mentioned above may be prototypical of a wider class of holographic duals. The theories in
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[35,36] and also the IIA linear quivers of [37], present a wide new class of interesting examples
of N = 1 SCFTs. We anticipate that by a modification of these theories (this paper suggests that
the modification will involve adding D8 branes in IIA) one can obtain a variety of non-conformal
gauge theories. Some of the non-perturbative features of these new field theories should be the
ones we are describing in this paper.

Aside from this and on a more geometrical note, we believe the backgrounds presented in this
paper may serve as a prototype for new dynamical SU(2) solutions of massive IIA supergravity
that will be the corresponding string duals to the new field theories described above. This is, of
course, in the same vein as the route from the conformal geometry of Klebanov–Witten to the
non-conformal geometry of Klebanov–Strassler.

In our view, these represent the most interesting avenues of further investigation.
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Appendix A. Conventions: supergravity and G-structures

A.1. Supergravity

We work in string and the 10d hodge dual is defined such that

Fn = (−1)int[n/2] � F10−n, (A.1)

where Fn are the RR fluxes of either Type IIA or Type IIB supergravity. The fluxes may be used
to define a polyform F such that

F =
{

F0 + F2 + F4 + F6 + F8 + F10 for Type IIA
F1 + F3 + F5 + F7 + F9 for Type IIB

. (A.2)

In terms of the polyform the Bianchi identities may be expressed as

(d − H∧)F = 0, dH = 0. (A.3)

It is easy to show this is satisfied with the definition

F = (d − H∧)C + F0eB2 (A.4)

where C is a polyform constructed from the RR potentials in the same fashion as above and F0
should be taken to be zero in Type IIB. The flux equations of motion are expressed as
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(d + H∧) � F = 0, d
(
e−2Φ � H

) = 1

2

∑
n

Fn ∧ �Fn, (A.5)

where the sum needs to me taken over the appropriate RR fluxes of Type IIA/IIB.
The dilaton must obey the equation of motion

d � dΦ + �
R

4
− dΦ ∧ �dΦ − 1

8
H ∧ �H = 0, (A.6)

while Einstein’s equations are in Type IIA by

Rμν = −2DμDνΦ̂ + 1

4
H 2

μν

+ e2Φ

[
1

2

(
F 2

2

)
μν

+ 1

12

(
F 2

4

)
μν

− 1

4
gμν

(
F 2

0 + 1

2
F 2

2 + 1

4!F
2
4

)]
,

(A.7)

with an equivalent equation holding in Type IIB.

A.2. Pure spinors

Here we follow the conventions of [51] except for a difference in the self duality condition
of the RR section which leads to a few sign differences. We work in string frame and consider
solution with metrics that can be expressed as

ds2 = e2Adx2
3,1 + ds2

6 (A.8)

and preserve N = 1 SUSY in 4d with non-trivial RR sector. This means that the internal space,
with metric ds2

6 , must support an SU(3) × SU(3)-structure [41]. We decompose the 10d MW
spinors into a 4 + 6 split as

ε1 = ξ+ ⊗ η1+ + ξ− ⊗ η1−, ε2 = ξ+ ⊗ η2∓ + ξ− ⊗ η2±, (A.9)

where in ε2 the upper/lower signs should be taken in Type IIA/B, the ± indicates chirality of both
4d and internal 6d spinors and we choose a basis for the internal spinors such that (η+)∗ = η−.
It is possible to define two Cliff (6, 6) pure spinors on the internal space as

Ψ± = η1+ ⊗ (
η2±

)† (A.10)

which may be identified with polyforms under the Clifford map. The internal spinors are decom-
posed as

η1+ = eAei
θ++θ−

2 η+, η2+ = eAe−i
θ+−θ−

2 (k||η+ + k⊥χ+) (A.11)

where k2‖ + k2⊥ = 1, η
†
+η+ = χ

†
+χ+ = 1 and χ

†
+η+ = 0. The N = 1 SUSY conditions for such a

SU(3) × SU(3)-structure solution are given by the differential conditions

(d − H∧)
(
e2A−φΨ±

) = 0

(d − H∧)
(
e2A−φΨ∓

) = e2A−φdA ∧ Ψ̄2 ∓ 1

8
e3A �6 iλ(F̃ ) (A.12)

where λ(An) = (−1)
n(n−1)

2 An and F̃ is the internal part of RR polyform in Type IIA/B where the
RR forms are each decomposed such that
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Fn = F̃n ∓ e4A vol4 ∧ λ(�6F̃10−n). (A.13)

As before upper/lower signs correspond to Type IIA/B.
Clearly in general η2+ is composed of a parts that is parallel and a part that is orthogonal to η1+.

The SU(3)×SU(3)-structure can categorised into 3 distinct cases depending on the values of the
coefficients k⊥ and k‖:

A.2.1. SU(3)-structure
When k⊥ = 0 the internal spinors are parallel and the pure spinors define an SU(3)-structure

in 6d such that

Ψ+ = −eiθ+ eA

8
e−iJ ,

Ψ− = −ieiθ− eA

8
Ωhol (A.14)

where J and Ωhol are the two and holomorphic three forms associated with SU(3), they are
defined as in terms of the 6d gamma matrices as

Ω
(hol)
abc = −iη

†
−γabcη+, Jab = −iη

†
+γabη+, (A.15)

and satisfy

J ∧ Ωhol = 0, J ∧ J ∧ J = 3i

4
Ωhol ∧ Ω̄hol. (A.16)

A.2.2. Orthogonal SU(2)-structure
When k‖ = 0 the internal spinors are orthogonal and the pure spinors define an orthogonal

SU(2)-structure in 6d such that

Ψ+ = −ieiθ+ eA

8
e−v∧w ∧ ω,

Ψ− = ieiθ− eA

8
(v + iw) ∧ e−ij (A.17)

where the SU(2)-structure one forms v, w and two forms j , ω are defined as

wa − iva = η
†
−γaχ+, jab = −iη

†
+γabη+ + iχ

†
+γabχ+,

ωab = η
†
−γabχ−, (A.18)

and obey the relations

j ∧ ω = ω ∧ ω = ι(w−iv)(ω) = ι(w−iv)(j) = 0,

j ∧ j = 1

2
ω ∧ ω̄. (A.19)

A.2.3. Intermediate and dynamical SU(2)-structure
For intermediate SU(2)-structure k‖ and k⊥ are non-zero constants (the case of intermediate

structure is described in [52] and further definitions including a helpful presentation of dynamic
structure is given in the thesis of Andriot [51]), this and the previous example are also referred
to as static SU(2)-structure. For dynamical SU(2)-structure k‖ and k⊥ are point-dependent. For
both these cases the pure spinors are given by
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Φ+ = eA

8
eiθ+e−iv∧w

(
k‖e−ij − ik⊥ω

)
Φ− = ieA

8
eiθ−(v + iw) ∧ (

k⊥e−ij + ik‖ω
)
, (A.20)

where Eqs. (A.19) and (A.18) still hold.
In these conventions the SUSY conditions (here we consider Type IIA, details of Type IIB are

given in Appendix E) may be split up as follows:

d
[
e3A−Φ̂k‖

] = 0

d
[
e3A−Φ̂

(
k‖(j + v ∧ w) + k⊥ω

)] − ie3A−Φ̂k‖H = 0

d

[
e3A−Φ̂

(
1

2
k‖(j + v ∧ w)2 + k⊥v ∧ w ∧ ω

)]
− ie3A−Φ̂H

∧ (
k‖(j + v ∧ w) + k⊥ω

) = 0 (A.21)

where the second of these gives a definition for H which can be combined with the first to give
a definition of the NS potential, namely

B2 = −k⊥
k‖

Im ω (A.22)

this is not the same as the NS potential generated by non-Abelian T-duality but must match it up
to an exact.

The rest of the SUSY conditions are

�6F6 = 0

d
[
e4A−Φ̂k⊥(sin θ−w − cos θ−v)

] = −e4A �6 F4

d
[
e2A−Φ̂k⊥(sin θ−v + cos θ−w)

] = 0

d
[
e4A−Φ̂

(
k‖(sin θ− Im ω − cos θ− Re ω) ∧ w − k‖(sin θ− Reω + cos θ− Im ω) ∧ v

+ k⊥(sin θ−v + cos θ−w) ∧ j
)] + e4A−Φ̂k⊥H ∧ (sin θ−w − cos θ−v) = −e4A �6 F2

d
[
e2A−Φ̂

(
k‖(sin θ− Re ω + cos θ− Im ω) ∧ w − k‖(cos θ− Reω − sin θ− Im ω) ∧ v

− k⊥(sin θ−w − cos θ−v) ∧ j
)] + k⊥e2A−Φ̂H ∧ (cos θ−w + sin θ−v) = 0

d

[
1

2
e4A−Φ̂k⊥j ∧ j ∧ (cos θ−v − sin θ−w)

]
+ e4A−Φ̂H ∧ (

k‖(sin θ− Im ω − cos θ− Re ω)

∧ w − k‖(sin θ− Reω + cos θ− Im ω) ∧ v + k⊥(sin θ−v + cos θ−w) ∧ j
) = −e4A �6 F0

d

[
1

2
e2A−Φ̂k⊥j ∧ j ∧ (cos θ−w + sin θ−v)

]
+ e2A−Φ̂H

∧ (−k‖(sin θ− Re ω + cos θ− Im ω) ∧ w + k‖(cos θ− Re ω − sin θ− Im ω)

∧ v + k⊥(sin θ−w − cos θ−v) ∧ j
) = 0 (A.23)

from which it is possible to define the higher forms of the RR sector as:

F6 = dC5

F8 = dC7 − H ∧ C5

F10 = dC9 − H ∧ C7 (A.24)
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Table 1
The table lists well known string backgrounds, their G-structure, and the structure of the
background generated by the use of non-Abelian T-duality.

Seed solution Seed structure Dual structure

Klebanov–Witten SU(3) Orthogonal SU(2)

Klebanov–Tseytlin SU(3) Orthogonal SU(2)

Y p,q SU(3) Orthogonal SU(2)

Klebanov–Strassler SU(3) Dynamical SU(2)

KS baryonic branch SU(3) Dynamical SU(2)

Wrapped D5s on S2 SU(3) Dynamical SU(2)

Wrapped D6s on S3 SU(3) Dynamical SU(2)

Wrapped D5s on S3 G2 Dynamical SU(3)

where the RR potentials are given by:

C5 = e4A−Φ̂ vol4 ∧k⊥(sin θ−w − cos θ−v)

C7 = −e4A−Φ̂ vol4 ∧ [
k‖(sin θ− Im ω − cos θ− Re ω) ∧ w − k‖(sin θ− Re ω + cos θ− Im ω)

∧ v + k⊥(sin θ−v + cos θ−w) ∧ j
]

C9 = 1

2
e4A−Φ̂ vol4 ∧k⊥j ∧ j ∧ (cos θ−v − sin θ−w) (A.25)

The calibration is given by

Ψcal = −8e3A−Φ̂ Im Φ−e±B2 (A.26)

where ± depends on our conventions in the WZ action. That SDBI + SWZ = 0 is trivial because
in these conventions we have:

C5 + C7 + C9 = −8 vol4 ∧ e3A−Φ̂ Im Φ− (A.27)

This all works perfectly for the case θ− = 0 which is the dual of the wrapped D5 solution.
The action of non-Abelian T-duality on the G-structures has been studied in many back-

grounds which we summarise in Table 1.9

Appendix B. Details of the non-Abelian T-duality on the D5 branes solution

The purpose of this section is to give some details of the SU(2) isometry T-dual of Wrapped
D5 branes on S2. This was first derived in [16], but in slightly different conventions and the
G-structure was not found. This is the C = 1, S = 0 limit of the full baryonic branch dual solution,
and as the procedure for find the G-structure is the same in both case we hope that this more
simple example will be instructive.

Solution of wrapped D5 branes on S2 [32] has string frame metric given by

ds2 = eΦ

(
dx2

1,3 + e2kdρ + e2h
(
dθ2 + sin2 θdϕ2)

+ e2g

4

(
(ω̃1 + adθ)2 + (ω̃2 − a sin θdϕ)2) + e2k

4
(ω̃3 + cos dϕ)2

)
(B.1)

9 The details of the case of Y p,q are to appear in [53] and a detailed study of the D6 branes on S3 will appear in [54].
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where the functions a, b, g,h, k and the dilaton Φ only depend on the holographic coordinate r .
The ω̃i are SU(2) left-invariant 1-forms which can be parametrised as

ω̃1 = cosψdθ̃ + sin ψ sin θ̃dϕ̃,

ω̃2 = − sinψdθ̃ + cos ψ sin θ̃dϕ̃,

ω̃3 = dψ + cos θ̃dϕ̃. (B.2)

A convenient set of vielbeins is given by

exi = e
Φ
2 dxi, eρ = e

Φ
2 +kdρ, eθ = e

Φ
2 +hdθ, eϕ = e

Φ
2 +h sin θ dϕ,

e1 = 1

2
e

Φ
2 +g(ω̃1 + a dθ), e2 = 1

2
e

Φ
2 +g(ω̃2 − a sin θ dϕ),

e3 = 1

2
e

Φ
2 +k(ω̃3 + cos θ dϕ), (B.3)

with respect to which the non-trivial RR flux F3 may be expressed as

F3 = e− 3
2 Φ

[
f1e123 + f2eθϕ3 + f3

(
eθ23 + eϕ13) + f4

(
eρ1θ + eρϕ2)] (B.4)

where the fi are given by Eq. (2.8). In these conventions the projections the 10d Killing spinor ε

obeys are

Γ12ε = Γθϕε, Γr123ε = (cos α + sin αΓϕ2)ε, iε∗ = ε, (B.5)

with respect to the 4 + 6 split we can define components of ε to be equal with positive chirality
as

ε1 = ε2 = eA(ξ+ ⊗ η+ + ξ− ⊗ η−) (B.6)

where 2A = Φ . Once the usual decomposition of gamma matrices,

Γμ = γ̂μ ⊗ I, Γa = I⊗ γa (B.7)

is performed it is a simple matter to derive the SU(3)-structure forms of Eq. (2.15) using
Eq. (A.15), where we have chosen iγrθϕ123η+ = η+. To do this it is helpful to perform a ro-
tation in eϕ , e2 which will also be useful later

êϕ = cos αeϕ + sinαe2

ê2 = − sinαeϕ + cos αe2

êa = ea for a �= ϕ, 2. (B.8)

The rotated 6d projections are then simply

γ̂ϕθη+ = γ̂r3η+ = γ̂21η+ = iη+ (B.9)

and the SU(3)-structure becomes canonical.
We want to T-dualise this wrapped D5-brane solution along the SU(2) isometry parametrised

by ω̃i . Section 2 and Appendix B of [16] give all the details of the algorithm one must follow to
do this and so we direct the interested reader there for details of the NS sector. For the RR sector
we only give details that will be relevant for later calculations.

The duality will drastically change the vielbeins that contain the SU(2) left-invariant 1-forms
e1, e2, e3 and leave the others untouched. For the dual of the wrapped D5 brane solution gauge
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fixed such that the remaining dual coordinates are v2, v3 and ψ , the canonical vielbeins given by
the procedure of [16] are

e1̂′ = eg+ Φ
2

8W
[
e2k+Φ

(−√
2e2g+Φ

(
cosψ(aω2v3 + dv2) + sin ψ(aω1v3 − ω3v2)

)
− 4v3 sin ψ(aω2v3 + dv2) + 4v3 cos ψ(aω1v3 − ω3v2)

)
− 4v2e2g+Φ sin ψ(aω2v2 − dv3) − 8

√
2v2 cosψ(v2dv2 + v3dv3)

]
e2̂′ = eg+ Φ

2

8W
[
e2k+Φ

(√
2e2g+Φ

(
cos ψ(ω3v2 − aω1v3) + aω2v3 sin ψ + dv2 sin ψ

)
− 4v3

(
cos ψ(aω2v3 + dv2) + sin ψ(aω1v3 − ω3v2)

))
− 4v2e2g+Φ cos ψ(aω2v2 − dv3) + 8

√
2v2 sinψ(v2dv2 + v3dv3)

]
e3̂′ = ek+ Φ

2

8W
[√

2e4g+2Φ(aω2v2 − dv3) + 4v2e2g+Φ(ω3v2 − aω1v3)

− 8
√

2v3(v2dv2 + v3dv3)
]

(B.10)

with the remaining veilbeins still given by Eq. (B.3), that is ea′ = ea for a �= 1, 2, 3. The ωi are
defined as in Eq. (B.2) but with θ̃ → θ , ϕ̃ → ϕ. It is possible to remove all the explicit angular
dependence from the dual solution by performing a rotation in the θ , ϕ directions such that

eθ̂ = eh+Φ/2ω1 = cosψeθ + sin ψeϕ

eϕ̂ = eh+Φ/2ω2 = − sinψeθ + cos ψeϕ, (B.11)

and an additional rotation in 1′, 2′, 3′ directions such that

e1̂ = cosψe1′ − sin ψe2′

e2̂ = sinψe1′ + cos ψe2′

e3̂ = e3′
. (B.12)

Theses rotation make the expressions for the vielbeins and fluxes a lot more simple than they
otherwise would be, they are given for the dual of the wrapped D5 solution as in Section 3 but
with S = 0, C = 1. However, it is the ea′

vielbeins rather than the eâ ones that are more suited to
calculating the G-structure of the dual solution.

It was shown explicitly in [18] that the 10d MW Killing spinors transform under an SU(2)

isometry T-duality as

ε̂1 = ε1, ε̂2 = Ωε2. (B.13)

where Ω is given by

Ω = Γ (10) −Γ123 + ∑3
a=1 ζaΓ a√

1 + ζ 2
(B.14)

and for the wrapped D5 background we have

ζ 1 = 2
√

2e−g−k−φv2 cos ψ, ζ 2 = −2
√

2e−g−k−φv2 sin ψ,

ζ 3 = 2
√

2e−2g−φv3. (B.15)
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Starting from Eq. (B.10) we first rotate the veilbeins as in Eq. (B.8) so that the projections are
canonical. The Ω matrix then becomes

Ω = 1√
1 + ζ · ζ

(
cos αΓ̂ 123 + sin αΓ̂ 1ϕ3 + ζ1Γ̂ 1 + ζ2 cosαΓ̂ 2 + ζ2 sin αΓ̂ ϕ + ζ3Γ̂ 3)

(B.16)

where we have used γ 1ϕ3η+ = iη−. The new spinor ε̂2 is:

ε̂2 = eΦ/4(ζ+ ⊗ η̂2− + ζ− ⊗ η̂2+
)

(B.17)

where

η̂2− = cos αγ̂ r + ζ1γ̂ 1 + ζ2 cos αγ̂ 2 + ζ3γ̂ 3 + ζ2 sin αγ̂ ϕ

√
1 + ζ · ζ

η+ + i
sinα√
1 + ζ.ζ

η−. (B.18)

It is clear here that, as long as sin α �= 0, we are in the dynamical SU(2)-structure case, because
α = α(r). In order to simplify the expressions we perform another transformation of the vielbein
basis:

R = 1√
Δ

⎛⎜⎜⎜⎜⎜⎜⎝

cosα 0 0 ζ1 ζ2 cos α ζ3

0
√

Δ 0 0 0 0
0 0

√
Δ 0 0 0

−ζ1 0 0 cos α ζ3 −ζ2 cos α

−ζ2 cos α 0 0 −ζ3 cos α ζ1

−ζ3 0 0 ζ 2 cos α −ζ 1 cos α

⎞⎟⎟⎟⎟⎟⎟⎠ (B.19)

where

Δ = cos2 α + ζ 2
1 + ζ 2

2 cos2 α + ζ 2
3 (B.20)

We define a new basis:

ẽ = R.ê (B.21)

where the order is rθϕ123. In terms of this new basis, the spinor is:

η̃2− =
(√

Δγ̃ r + ζ2 sin αγ̃ ϕ

√
1 + ζ · ζ

)
η+ + i

sinα√
1 + ζ · ζ

η− (B.22)

And the projections in this basis are still:

γ̃ϕθη+ = γ̃r3η+ = γ̃21η+ = iη+ (B.23)

Let us now express the forms of the geometric structure, following the conventions of
Appendix A.

e2A = eΦ

θ+ = 0 θ− = 0

k‖ = sin α√
1 + ζ · ζ

k⊥ =
√

cos2 α + ζ · ζ

1 + ζ.ζ

z = w − i v = 1√
cos2 α + ζ · ζ

(√
Δẽ3 + ζ2 sinαẽθ + i

(√
Δẽr + ζ2 sin αẽϕ

))
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j = ẽr3 + ẽϕθ + ẽ21 − v ∧ w

ω = i√
cos2 α + ζ · ζ

(√
Δ

(
ẽϕ + iẽθ

) − ζ2 sinα
(
ẽr + iẽ3)) ∧ (

ẽ2 + iẽ1) (B.24)

which is a dynamical SU(2)-structure.

Appendix C. Details of the non-Abelian T-duality on the baryonic branch solution

In this section we give some details of the SU(2) isometry T-dual of the baryonic branch of
Klebanov–Strassler. This was originally derived in [16] with gauge fixing such that v1 = ϕ =
θ = 0. The previous derivation indicated a departure in the T-dual from the log corrected AdS5
asymptotics of the baryonic branch. Let as begin by giving some details of original calculation
in our current conventions.

C.1. Dual of the baryonic branch without the shift in B2

Once more we will start by specifying the dual vielbeins. The components

exi = e
Φ
2 ĥ− 1

4 dxi, eρ = e
Φ
2 +kĥ

1
4 dρ (C.1)

do not change. The vielbeins in the θ,ϕ are also unchanged by the duality however we find it
useful to introduce a rotation in eθ , eϕ such that the dual solution has no explicit ψ dependence.

eθ̂ = √
Ceh+Φ/2ω1, eϕ̂ = √

Ceh+Φ/2ω2. (C.2)

The vielbeins in the directions 1̂, 2̂, 3̂ can be compactly written in terms of the quantities defined
as,

V3 = v3 + e2g+Φ

2
√

2
S cos α,

Λ = dV3 + eΦ−2h

2
√

2
SNc

(
e2g + 2e2h − aeg

(
beg − 2eh cotα

))
dρ,

μ1 = aeg cos α + 2eh sin α. (C.3)

With these, we have

e1̂ = eg+Φ/2

16W
√
C
[
e2k+Φ

(
8V3(aV3ω1 − v2ω3) − 2

√
2e2g+ΦC(dv2 + aV3ω2)

− 2
√

2eg+ΦSV3μ1ω1 + e3g+2ΦCSμ1ω2
)

+ 8v2
(
eg+Φv2Sμ1ω2 − 2

√
2(V3Λ + v2dv2)

)]
,

e2̂ = eg+Φ/2

16W C3/2[e2k
(−2

√
2e2g+ΦC(aV3ω1 − v2ω3) − 8V3(dv2 + aV3ω2)

+ e3g+2ΦCSμ1ω1 + 2
√

2eg+ΦSV3μ1ω2
) − 8e2gv2(−Λ + av2ω2)

]
,

e3̂ = ek+Φ/2

16W
√
C
[
eg+Φv2

(√
2e2g+ΦC

(
aegCω2 + Sμ1ω1

) − 4egC(aV3ω1 − v2ω3)

+ 4SV3μ1ω2
) − √

2Λ
(
e4g+2ΦC2 + 8V2

3

) − 8
√

2v2V3dv2
]
, (C.4)
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where the rotation of Eq. (B.12) has been performed.10 We will then have a metric that in terms
of these vielbeins reads, ds2

st = ∑10
i=1(ei)2. Notice that the quantity Λ in Eq. (3.4) will, when

squared to construct the metric with the vielbeins above, imply the existence of crossed terms
gρv3 and also the change of the asymptotic behaviour of gρρ away from log corrected AdS5.

In terms of these vielbeins, the NS two-form B2 reads,

B̂2 = − 1

4v2

(
2e−ha

(
egv2eθ̂ 1̂ + ekV3eθ̂ 3̂) − 4ek−gV3e1̂3̂ + √

2Ceg+k+Φe2̂3̂)
+ S

C

[V3ek

2v2

(
ae−herθ̂ − 2e−ger 1̂) + eg+k+Φ−h

4
√

2V2
C
(
2e2her 2̂ + μ1eθ̂ 1̂)

− e−h

2

(
2eh cosα − aeg sin α

)
eθ̂ϕ̂ + eρ3̂ − e−h

2
μ1eθ̂ 2̂

]
. (C.5)

The dual dilaton is given by

Φ̂ = Φ − 1

2
lnW, W = C

(
1

8
e4g+2k+3ΦC2 + e2g+Φv2

2 + e2k+ΦV2
3

)
. (C.6)

And the RR sector is given by,

F0 = Nc√
2

,

F2 = −e−Φ

4
NcC

[
2e−2h

(
1 + a2 − 2ab

)
V3eθ̂ϕ̂

+ e−g−h−kC(a − b)
(√

2e2g+k+Φ
(
eθ̂ 1̂ − eϕ̂2̂) + 4ekV3

(
eθ̂ 2̂ − eϕ̂1̂) − 4v2egeϕ̂3̂)

− 8e−2gV3e1̂2̂ − 8e−g−kv2e2̂3̂ − 2e−h−kv2erθ̂
]

− Seg−h

√
2C sin α

(
Ncb + a

(
e2g cos2 α − Nc

) + eg+h sin 2α
)
eθ̂ϕ̂ ,

F4 = e−g−h−k−Φ

8C Nc

[
C
(
1 + a2 − 2ab

)
eθ̂ϕ̂ ∧ (√

we2g+k+Φ−he1̂2̂ + 4e2g−he1̂3̂)Cb′erθ̂

∧ (
4ekV3e1̂3̂ − √

2e2g+k+Φe2̂3̂) − 8egv2(a − b)eθ̂ 1̂2̂3̂erϕ̂

∧ (
4egv2e1̂2̂ − b′ek

(√
2e2g+Φe1̂3̂ + 4V3e2̂3̂))]

− 2Se−g−h−k−Φ

C2 sin α

(
a
(
e2g cos2 α − Nc

) + (
Ncb + eg+h sin 2α

))
× (

V3ekeθ̂ϕ̂1̂2̂ + v2egeθ̂ϕ̂2̂3̂). (C.7)

We will now proceed to show that the bad asymptotic behaviour and off diagonal ρ terms of the
metric are actually a gauge artefact.

10 Actually this differs from [16] in orientation which can be compensated for via 1̂ ↔ 2̂.
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C.2. The dual of the baryonic branch with the shift in B2

The NS 2-from of the original solution contains the term

B̃2 = −1

2
e2k+ΦS(ω̃3 + cos θdϕ) ∧ dρ. (C.8)

It is this term, when dualised, that gives rise to the undesirable behaviour as this will contribute

to the dual metric in both gρρ and gρv3 via the dual vielbeins eî which will have legs in ρ.
This happens because of the dρ ∧ ω̃i term in B̃2 which is not a spectator under the duality
transformation.11 However, one is always free to add an exact to the NS potential as this will
not change the fluxes or metric of the original solution. Consider adding a closed form to the
initial B2

B2 → B2 + d
(
Z(r)(ω̃3 + cos θdϕ)

)
(C.9)

This precisely cancels the effect of B̃2 in the dual solution when Z ′ = − 1
2Se2k+Φ because

B̃2 + d
(
Z(r)ω̃3

) = −Z(ω̃1 ∧ ω̃2 + sin θdθ ∧ dϕ)

+ 1

2

(
Se2k+Φ + 2Z ′)dρ ∧ (ω̃3 + cos θdϕ). (C.10)

As there is no longer a dρ ∧ ω̃i term in the NS 2 form before dualisation, the dual vielbeins will
have no legs in ρ and so there will no longer be a modification to gρρ and gρv3 . The trade off is
that the function Z will now enter into the dual solution.

We now once more follow the procedure of [16] with gauge fixing, as before, such that v1 =
ϕ = θ = 0. We are lead to the dual vielbeins

e1̂′ = eg+ Φ
2

8W
√
C
[
e2k+Φ

(−√
2Ce2g+Φ

(
cos ψ(aω2H+ dv2) + sinψ(aω1H− ω3v2)

)
− 4H sin ψ(aω2H+ dv2) + 4H cos ψ(aω1H− ω3v2)

)
− 4v2Ce2g+Φ sin ψ(aω2v2 − dv3) − 8

√
2v2 cos ψ(v2dv2 +Hdv3)

+ 1

2
μ1Seg+Φ

(
8v2

2 cosψω2 + Ce2k+Φ
(
cos ψ

(
Ce2g+Φω2 − 2

√
2Hω1

)
+ sinψ

(
Ce2g+Φω1 + 2

√
2Hω2

)))]
e2̂′ = eg+ Φ

2

8W
√
C
[
e2k+ΦC

(√
2Ce2g+Φ

(
cos ψ(ω3v2 − aω1H) + aω2H sin ψ + dv2 sin ψ

)
− 4H

(
cos ψ(aω2H+ dv2) + sin ψ(aω1H− ω3v2)

))
− 4v2Ce2g+Φ cosψ(aω2v2 − dv3) + 8

√
2v2 sin ψ(v2dv2 +Hdv3)

+ 1

2
μ1Seg+Φ

(−8v2 sin ψω2 + Ce2k+Φ
((
Ce2g+Φω1 + 2

√
2Hω2

)
cos ψ

− (
Ce2g+Φω2 − 2

√
2Hω1

)
sin ψ

))]

11 See Section 2 of [16] for details of how the initial B2 enters into the definition of the dual vielbeins.
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e3̂′ = ek+ Φ
2

8W
√
C
[√

2C2e4g+2Φ(aω2v2 − dv3) + 4v2Ce2g+Φ(ω3v2 − aω1H)

− 8
√

2H(v2dv2 +Hdv3) + μ1v2Seg+Φ
(
4Hω2 + √

2Ce2g+Φω2
)]

(C.11)

which upon rotating according to Eq. (B.12) give the vielbeins of Eq. (3.5).
A valid question at this point is whether there is a local diffeomorphism which maps us from

the baryonic branch dual solution as defined in Appendix C.1 to the solution defined as in Sec-
tion 3. The answer is yes, and it may be most easily found by comparing the dilaton as defined
in Eqs. (3.7) and (C.6). Examining these makes it clear that one needs to transform V3 such that
it is mapped to H. This may be achieved with a transformation in v3 only

v3 → v3 + √
2Z (C.12)

under this which

V3 → H, Λ → dv3 (C.13)

and so vielbeins of Eq. (C.4) are mapped to those of Eq. (3.5). The map on the RR sector also
follows trivially whilst the NS 2-form of Eq. (3.6) is mapped to that of Eq. (C.5) up to an exact.

So it is clear that one may “cure” the bad asymptotics and gρv3 mixing of Appendix C.1 either
by a gauge transformation in the NS 2-from before dualisation, or by a local diffeomorphism on
the dual coordinate v3 after the duality procedure is performed.

C.3. Details of the dual baryonic branch structure

All that remains to compete the elucidation of the baryonic dual is to give supplementary
details to Section 4 on the dynamical SU(2) structure. Actually, the derivation of the structure is
essentially the same as that of the dual of the wrapped D5 solution in Appendix B, so we will
only focus on the differences here.

The 10d MW Killing spinors of baryonic branch obey the same projection as the wrapped D5
spinors (see Eq. (B.5)). However, whilst the internal spinors are still parallel, they now differ by
a point-dependent phase eiζ(r) = C + iS

ε1 = eA
(
ξ+ ⊗ (

eiζ(r)/2η+
) + ξ− ⊗ (

e−iζ(r)/2η−
))

,

ε2 = eA
(
ξ+ ⊗ (

e−iζ(r)/2η+
) + ξ− ⊗ (

eiζ(r)/2η−
))

(C.14)

where the Minkowski warp factor is now e2A = eΦ

C . We now follow the steps illustrated between
Eqs. (B.7) and (B.9) such that the SU(3)-structure of the baryonic branch takes canonical form.

The dual 10d Killing spinors are given as in Eqs. (B.13), (B.14), however the ζ a entering into
their definition are now given by

ζ 1 = 2
√

2e−g−k−φv2 cosψ√
C

, ζ 2 = −2
√

2e−g−k−φv2 sin ψ√
C

,

ζ 3 = 2
√

2e−2g−φH√
C

. (C.15)

The new spinor ε̂2 is:

ε̂2 = eΦ/2

√
C

(
ζ+ ⊗ (

e−iζ(r)/2η̂2−
) + ζ− ⊗ (

eiζ(r)/2η̂2+
))

(C.16)

where η̂2− is still given by Eq. (D.26).
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The dynamic SU(2)-structure supported by the dual baryonic branch solution may be ex-
pressed as

Φ+ = eA

8
e−iv∧w

(
k‖e−ij − ik⊥ω

)
,

Φ− = ieA

8
eiζ(r)(v + iw) ∧ (

k⊥e−ij + ik‖ω
)
. (C.17)

The forms and functions entering into these expressions are given by

e2A = eΦ

C
eiζ(r) = C + iS

k‖ = sin α√
1 + ζ · ζ

, k⊥ =
√

cos2 α + ζ · ζ

1 + ζ · ζ

z = w − i v = 1√
cos2 α + ζ · ζ

(√
Δẽ3 + ζ2 sin αẽθ + i

(√
Δẽρ + ζ2 sin αẽϕ

))
j = ẽρ3 + ẽϕθ + ẽ21 − v ∧ w

ω = i√
cos2 α + ζ · ζ

(√
Δ

(
ẽϕ + iẽθ

) − ζ2 sinα
(
ẽρ + iẽ3)) ∧ (

ẽ2 + iẽ1), (C.18)

with ζ a defined by (C.15). Specifically the vielbeins ẽ that the structure is expressed in terms of
a rotation of those in Eq. (C.11). First one preforms a rotation by α

êϕ = cosαeϕ + sin αe2′

ê2 = − sinαeϕ + cos αe2′

êa = ea for a �= ϕ, 2′, (C.19)

and then rotates these vielbeins to get ẽ = Rê, where the matrix R is given by Eq. (B.19) with ζ a

by Eq. (C.15).

C.4. Details of the UV and IR asymptotics

The dual vielbeins in the IR tend to

e1̂ = − 32eΦ0/2
√
Fh

3/2
1

e2Φ0F2 + 128h2
1(v2

2 + v2
3)

(
v3(dv2 + v2ω3) + v2

(
v2ω2 − 1

2
√

2
dv3

)
− v2

3(ω1 − ω2)

)
e2̂ = − 2eΦ0/2

√
F

√
h1

e2Φ0F2 + 128h2
1(v2

2 + v2
3)

(√
2v3Fe3Φ0ω1 − √

2v2FeΦ0ω3

+ 16h1
(
v3dv2 − v2dv3 + (

v2
2 + v2

3

)
ω2

))
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e3̂ = −
2e−Φ0/2

√
h1
F

e2Φ0F2 + 128h2
1(v2

2 + v2
3)

(√
2F2e2Φ0

(
1

2
√

2
dv3 − v2ω2

)
− 16h1v2F(v2ω3 − v3ω1) + √

2128h2
1v3(v2dv2 + v3dv3)

)
(C.20)

where we have defined

F2 = 4(2)3/2(h5/2
1 − 2

√
2eΦ0h1

)
(C.21)

for convenience. The function W tends to

FeΦ0

512h1

(
F2e2Φ0 + 128

(
v2

2 + v2
3

))
. (C.22)

Appendix D. Details of the non-Abelian T-duality on D6 branes on S3

In this appendix, we study another background, similar to the one described in the main part
of this paper. We want to start with a solution of D6-branes wrapping a three-sphere in Type
IIA supergravity, that preserves N = 1 supersymmetry. We first describe such a solution, then
we apply a non-Abelian T-duality to find a new Type IIB supergravity solution. We study this
transformation at the level of the geometric structure. We then take advantage of this example to
make general statements on N = 1 Type IIB supergravity solutions.

D.1. The Type IIA solution

We are interested in finding a solution of D6-branes in Type IIA supergravity. For that purpose,
we start by considering eleven-dimensional supergravity. Because we only want D6-branes, the
M-theory solution is a background with no fluxes. Such a solution is described in [48] or [49]
(we follow the notation of the latter). The metric of the solution is:

ds2
11 = dx2

1,3 + ds2
7 , (D.1)

where the seven-dimensional internal space has the metric

ds2
7 = dr2 + a2[(§1 + gσ1)2 + (§2 + gσ2)2] + b2(σ 2

1 + σ 2
2

)
+ c2(§3 + g3σ3)2 + f 2σ 2

3 , (D.2)

with a, b, c, f, g, g3 all functions of the radial coordinate r . Here the §, σ are left-invariant SU(2)

forms:

σ1 = cosψ1 + sin ψ1 sin θdϕ, §1 = cosψ2 + sin ψ2 sin θ̃dϕ̃,

σ2 = − sinψ1 + cosψ1 sin θdϕ, §1 = − sinψ2 + cosψ2 sin θ̃dϕ̃,

σ3 = dψ1 + cos θdϕ, §3 = dψ2 + cos θ̃dϕ̃. (D.3)

The BPS equations of this solution give [50]

g = − af

2bc
, g3 = 2g2 − 1,

a′ = − c

2a
+ a5f 2

8b4c3
, b′ = − c

2b
− a2(a2 − 3c2)f 2

8b3c3
,

c′ = −1 + c2

2a2
+ c2

2b2
− 3a2f 2

8b4
, f ′ = − a4f 3

4b4c3
. (D.4)
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To get a ten-dimensional solution, we reduce the solution above along a U(1) isometry. To
accomplish our goal of getting D6-branes wrapping a three-sphere, we choose the isometry gen-
erated by the Killing vector ∂ψ1 +∂ψ2 . After some algebra, we get the following Type IIA solution
in string frame:

ds2
10 = α′gsNe2A

[
μ

α′gsN
dx2

1,3 + dr2 + b2(dθ2 + sin2 θdϕ2) + a2(ω1 + gdθ)2

+ a2(ω2 + g sin θdϕ)2 + h2(ω3 − cos θdϕ)2
]
,

h2 = c2f 2

f 2 + c2(1 + g3)2
,

e4Φ/3 = c2f 2

4(gsN)2/3h2
,

e4A = c2f 2

4h2
,

F2√
α′gsN

= −(1 + K) sin θdθ ∧ dϕ + (K − 1)ω1 ∧ ω2 − K ′dr ∧ (ω3 − cos θdϕ),

K = f 2 − c2(1 − g2
3)

f 2 + c2(1 + g3)2
, (D.5)

where the ω are defined as §, replacing ψ2 with ψ = ψ2 − ψ1.

D.2. Non-Abelian T-dual

Let us now take the solution from the previous section, and apply a non-Abelian T-duality
on the SU(2) isometry parametrised by the ω. We follow Section 2 of [16] and fix the gauge as
θ̃ = ϕ̃ = v1 = 0. We obtain a Type IIB supergravity solution. The metric, in string frame, is given
by:

ds2
IIB,st = e2A

[
dx2

1,3 + Ndr2 + Nb2(dθ2 + sin2 θdϕ2)] + 1

det M

[
2(v3dv2 + v3dv3)2

+ 4a2e4AN2(g2(a2v2
2(ω̂2)2 + h2v2

3

(
(ω̂1)2 + (ω̂2)2)) − a2dv3(dv3 − 2gv2ω̂2)

+ 2gh2v3ω̂2dv2 + h2dv2
2 − 2gh2v2v3ω̂1ω̂3 + h2v2

2(ω̂3)2)], (D.6)

where

det M = 4e2A
(
2a4h2e4A + a2v2

2 + h2v2
3

)
, (D.7)

and

ω̂1 = cos ψ dθ − sin ψ sin θ dϕ, ω̂2 = − sinψ dθ − cosψ sin θ dϕ,

ω̂3 = dψ − cos θdϕ. (D.8)

The dual dilaton Φ̂ is defined through

e−2Φ̂ = detMe−2Φ, (D.9)

and the two-form potential as
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B2 = − cos θdϕ ∧ dv3 + 4
√

2a4gh2e6AN3

det M

(
ω̂1 ∧ dv2 + (gv3ω̂1 − v2ω̂3) ∧ ω̂2

)
× 2

√
2v2e2AN

detM

(
ω̂3 ∧ (

h2v3dv2 − a2v2dv3
) + a2gω̂1 ∧ (v2dv2 + v3dv3)

)
. (D.10)

The RR sector has all possible fluxes turned on. F1 and F5 can be expressed as follows:

F1 = 2N
(
v3drK ′ + (K − 1)dv3

)
,

F5 = −2a2hUe6AN2

b2 detM

(√
2 detM vol4 ∧dr − 4N2a2b2hv2ω̂1 ∧ ω̂2 ∧ ω̂3 ∧ dv2 ∧ dv3

)
,

U = g2(K − 1) − (K + 1). (D.11)

F3 is considerably more complicated:

F3 =
√

2N

det M

[
8N3a4h2e6A

(
v3

(
g2(K − 1) + K + 1

)
ω̂1 ∧ ω̂2 ∧ dv3

+ K ′(gv3(ω̂1 ∧ dv2 ∧ dr + gv3ω̂1 ∧ ω̂2 ∧ dr + v2ω̂2 ∧ ω̂3 ∧ dr)

− v2ω̂3 ∧ dv2 ∧ dr
) + g(K − 1)(ω̂1 ∧ dv2 ∧ dv3 + v2ω̂2 ∧ ω̂3 ∧ dv3)

)
+ 4e2AN

(
(K − 1)v2

(
a2gv2ω̂1 ∧ dv2 ∧ dv3 + h2v3ω̂3 ∧ dv2 ∧ dv3

)
+ a2v2K ′(gv2v3ω̂1 ∧ dv2 ∧ dr + gv2

3ω̂1 ∧ dv3 ∧ dr

− v2(v2ω̂3 ∧ dv2 ∧ dr + v3ω̂3 ∧ dv3 ∧ dr)
)

+ (K + 1)v3
(
a2v2

2 + h2v2
3

)
ω̂1 ∧ ω̂2 ∧ dv3

)
+ detM(K + 1)v2ω̂1 ∧ ω̂2 ∧ dv2

]
. (D.12)

D.3. Spinors and structure

In this section, we follow the conventions of Andriot’s thesis [51] (see also [52]) for
the SU(3) × SU(3)-structure. We start from the solution before T-duality, which has an
SU(3)-structure. This is Type IIA supergravity so the spinors are of different chirality. The
spinors of the original solution are:

ε1 = eΦ/6(ζ+ ⊗ η+ + ζ− ⊗ η−),

ε2 = eΦ/6(ζ+ ⊗ η− + ζ− ⊗ η+). (D.13)

They define the following SU(3)-structure:

J = er3 + (
αe2 + βeϕ

) ∧ eθ + (
αeϕ − βe2) ∧ e1,

Ω = (
er + ie3) ∧ (

αe2 + βeϕ + ieθ
) ∧ (

αeϕ − βe2 + ie1), (D.14)

where

α(r) = ag√
b2 + a2g2

, β(r) = b√
b2 + a2g2

, α2 + β2 = 1, (D.15)

in terms of the vielbein basis:
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er = eΦ/3dr, eθ = eΦ/3b dθ, eϕ = eΦ/3b sin θdϕ,

e1 = eΦ/3a(ω1 + g dθ), e2 = eΦ/3a(ω1 + g sin θdϕ),

e3 = eΦ/3h(ω3 − cos θdϕ). (D.16)

Let us rotate this veilbein basis to put the structure in its canonical form:

êϕ = βeϕ + αe2,

ê2 = αeϕ − βe2,

êa = ea for a �= ϕ, 2. (D.17)

It is a rotation since α2 + β2 = 1, but it reverses the orientation. With respect to this new basis,
the structure is expressed as:

Ĵ = êr3 + êϕθ + ê21,

Ω̂ = (
êr + iê3) ∧ (

êϕ + iêθ
) ∧ (

ê2 + iê1). (D.18)

That means that the spinors obey the following projections:

γ̂ϕθη+ = γ̂r3η+ = γ̂21η+ = iη+, (D.19)

where the γ̂ matrices are defined in terms of the rotated vielbein basis.
Let us now look at the non-Abelian T-duality. We know that the spinors transform in the

following way:

ε̃1 = ε1, ε̃2 = Ωε2. (D.20)

Ω here is defined as:

Ω = Γ (10)

√
1 + ζ · ζ

(−Γ 123 + ζ1Γ 1 + ζ2Γ 2 + ζ3Γ 3), (D.21)

where the ζa are given by

ζ1 = −e−2Φ/3v2 cosψ√
2Nah

, ζ2 = e−2Φ/3v2 sin ψ√
2Nah

, ζ3 = −e−2Φ/3v3√
2Na2

. (D.22)

We are now going to consider the space after T-duality. The value for Ω above is written in the
vielbein basis obtained directly from T-duality of the original basis (D.16) without any rotation.
To make things simpler, we are going to perform the same rotation with α,β on this basis as
before the T-duality (see (D.17)), but we do not perform any rotation in ψ . We call this new
basis ě. It is defined in terms of the coordinate of the T-dual background as follows:

ěr = eΦ/3dr, ěθ = eΦ/3b dθ, βěϕ + αě2 = eΦ/3b sin θdϕ,

ě1 = 2
√

Neφ/3a

detM

[
v2

(−√
2v3 cosψ + 2e2Φ/3Na2 sin ψ

)
dv3

− (√
2v2

2 cosψ + 2e2Φ/3Nv3h2 sinψ + 2
√

2e4Φ/3N2a2h2 cosψ
)
dv2

+ 2e2Φ/3Ng
(−v2

2a2 sinψω̂2 + v3h2(√2e2Φ/3Na2 sin θdϕ + v3dθ
))

+ 2e2Φ/3Nv2h2(v3 cosψ − √
2e2Φ/3Na2 sin ψ

)
ω̂3

]
,
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αěϕ − βě2 = 2
√

Neφ/3a

detM

[
v2

(√
2v3 sin ψ + 2e2Φ/3Na2 cosψ

)
dv3

+ (√
2v2

2 sin ψ − 2e2Φ/3Nv3h2 cos ψ + 2
√

2e4Φ/3N2a2h2 sin ψ
)
dv2

+ 2e2Φ/3Ng
(−v2

2a2 cosψω̂2 + v3h2(−√
2e2Φ/3Na2dθ + v3 sin θdϕ

))
+ 2e2Φ/3Nv2h2(v3 sin ψ + √

2e2Φ/3Na2 cosψ
)
ω̂3

]
,

ě3 = 2
√

NeΦ/3h

detM

[−√
2v2v3dv2 − √

2
(
v2

3 + 2e4Φ/3N2a4)dv3

+ 2e2Φ/3Nv2a2(−v3gω̂1 + √
2e2Φ/3Na2gω̂2 + v2ω̂3

)]
. (D.23)

The projections obeyed by η+ are still as in (D.19). In this new basis, the T-dual Ω becomes:

Ω = 1√
1 + ζ · ζ

(−αΓ̌ 1ϕ3 + βΓ̌ 123 + ζ1Γ̌ 1 − ζ2βΓ̌ 2 + ζ2αΓ̌ ϕ + ζ3Γ̌ 3)Γ̌ (10). (D.24)

So the new spinor ε̃2 is:

ε̃2 = eΦ/6(ζ+ ⊗ η̌2+ + ζ− ⊗ η̌2−
)
, (D.25)

where

η̌2+ = −βγ̌ r − ζ1γ̌ 1 + ζ2βγ̌ 2 − ζ3γ̌ 3 − ζ2αγ̌ ϕ

√
1 + ζ · ζ

η− + i
α√

1 + ζ · ζ
η+. (D.26)

It is clear here that, as long as α �= 0, we are in the general SU(3) × SU(3)-structure case. In
order to simplify the expressions, we are performing a transformation of the vielbein basis:

R = 1√
Δ

⎛⎜⎜⎜⎜⎜⎜⎝

β 0 0 ζ1 −ζ2β ζ3

0
√

Δ 0 0 0 0
0 0

√
Δ 0 0 0

−ζ1 0 0 β ζ3 ζ2β

ζ2β 0 0 −ζ3 β ζ1

−ζ3 0 0 −ζ 2β −ζ 1 β

⎞⎟⎟⎟⎟⎟⎟⎠ (D.27)

where

Δ = β2 + ζ 2
1 + ζ 2

2 β2 + ζ 2
3 . (D.28)

We define a new basis:

ẽ = R.ě (D.29)

In terms of this new basis, the spinor is:

η̃2+ = −
(√

Δγ̃ r + ζ2αγ̃ ϕ

√
1 + ζ · ζ

)
η− + i

α√
1 + ζ · ζ

η+ (D.30)

And the projections in this basis are still:

γ̃ϕθη+ = γ̃r3η+ = γ̃21η+ = iη+ (D.31)

Let us now express the forms of the geometric structure, following the conventions of
Andriot’s thesis.
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|a|2 = eΦ/3

θ+ = π

2
, θ− = −π

2

k‖ = α√
1 + ζ · ζ

, k⊥ =
√

β2 + ζ · ζ

1 + ζ · ζ

z = w − iv = 1√
β2 + ζ · ζ

(√
Δẽr + ζ2αẽϕ − i

(√
Δẽ3 + ζ2αẽθ

))
j = ẽr3 + ẽϕθ + ẽ21 − v ∧ w

ω = −i√
β2 + ζ · ζ

(√
Δ

(
ẽϕ + iẽθ

) − ζ2α
(
ẽr + iẽ3)) ∧ (

ẽ2 + iẽ1) (D.32)

In terms of those forms, the pure spinors are defined as:

Φ+ = |a|2
8

eiθ+e−iv∧w
(
k‖e−ij − ik⊥ω

)
Φ− = i|a|2

8
eiθ−(v + iw) ∧ (

k⊥e−ij + ik‖ω
)

(D.33)

Let us now look at the BPS equations of Type IIB supergravity in the general case of SU(3)×
SU(3)-structure, generalising the system of pure SU(3)-structure that exhibit a rotation.

Appendix E. BPS equations for a solution of Type IIB supergravity with a general
SU(3) × SU(3)-structure

We again follow the conventions of Andriot’s thesis in this section. We start with the following
pure spinors:

Φ+ = eA

8
eiθ+e−iv∧w

(
k‖e−ij − ik⊥ω

)
,

Φ− = eA

8
eiθ−(v + iw) ∧ (

ik⊥e−ij − k‖ω
)
. (E.1)

For Type IIB supergravity, the BPS equations are:

(d − H∧)
(
e2A−φΦ−

) = 0,

(d − H∧)
(
eA−φ�(Φ+)

) = 0,

(d − H∧)
(
e3A−φ�(Φ+)

) = e4A

8
∗6 (F1 − F3 + F5). (E.2)

Let us start with Φ+. We have:

8e−A�(Φ+) = k‖ cos θ+
[

1 + (tan θ+χ + λ)

− 1

2

(
χ + 1 − sin θ+

cos θ+
λ

)
∧

(
χ − 1 + sin θ+

cos θ+
λ

)]
,
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8e−A�(Φ+) = k‖ sin θ+
[

1 − (cot θ+χ − λ)

− 1

2

(
χ + cos θ+ + 1

sin θ+
λ

)
∧

(
χ − sin θ+

cos θ+ + 1
λ

)]
, (E.3)

where

χ = j + v ∧ w + k⊥
k‖

�(ω),

λ = k⊥
k‖

�(ω). (E.4)

Notice that, because of the various relations between the structure forms (j ∧ ω = ω ∧ ω = 0),
we can use the following equations:

j ∧ �(ω) = j ∧ �(ω) = 0,

�(ω) ∧ �(ω) = 0,

�(ω) ∧ �(ω) = �(ω) ∧ �(ω). (E.5)

Using those, we can get the following relation:

λ ∧ λ = k2⊥χ ∧ χ. (E.6)

From there, we derive our first set of BPS equations. (d − H∧)(eA−φ�(Φ+)) = 0 gives us

d
[
e2A−φk‖ cos θ+

] = 0,

d
[
e2A−φk‖ cos θ+(tan θ+χ + λ)

] − e2A−φk‖ cos θ+H = 0,

d

[
e2A−φk‖ cos θ+

(
χ + 1 − sin θ+

cos θ+
λ

)
∧

(
χ − 1 + sin θ+

cos θ+
λ

)]
+ 2e2A−φk‖ cos θ+H ∧ (tan θ+χ + λ) = 0. (E.7)

From those, it is easy to see that H = dB where:

B = tan θ+χ + λ, (E.8)

and the third equation simplifies into:

d
[
e4A−2φχ ∧ χ

] = 0. (E.9)

Let us now turn to (d − H∧)(e3A−φ�(Φ+)) = e4A

8 ∗6 (F1 − F3 + F5). We get

d
[
e4A−φk‖ sin θ+

] = e4A ∗6 F5,

d
[
e4A−φk‖ sin θ+(cot θ+χ − λ)

] + e4A−φk‖ sin θ+H = e4A ∗6 F3,

d

[
e4A−φk‖ sin θ+

(
χ + cos θ+ + 1

sin θ+
λ

)
∧

(
χ − sin θ+

cos θ+ + 1
λ

)]
− 2e4A−φk‖ sin θ+H ∧ (cot θ+χ − λ) = −2e4A ∗6 F1. (E.10)

Using all the equations we have so far, we can rewrite the three-form ones as:
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H = dλ + eφ sin θ+
k‖

[∗6F3 + (∗6F5) ∧ λ
] + eφ cos θ+

k‖
d
(
e−φk‖ sin θ+

) ∧ χ,

e−2Ad
(
e2Aχ

) = eφ cos θ+
k‖

[∗6F3 + (∗6F5) ∧ λ
] − eφ sin θ+

k‖
d
(
e−φk‖ sin θ+

) ∧ χ. (E.11)

Those equations have been written in such a way as to make the limits for θ+ → 0,π/2 obvious,
and to give the equations of the rotation present in [28] when taking k⊥ → 0, k‖ → 1 (limit of
SU(3)-structure). The last equation, involving ∗6F1 can be rewritten in the following way:

1

2
d
(
e−φk‖ sin θ+

) ∧ χ ∧ χ = ∗6F1 + (∗6F3) ∧ λ + (∗6F5) ∧ λ ∧ λ. (E.12)

In summary, the BPS equations we get from Φ+ are:

d
[
e2A−φk‖ cos θ+

] = 0,

d
[
e4A−φk‖ sin θ+

] = e4A ∗6 F5,

H = dλ + eφ sin θ+
k‖

[∗6F3 + (∗6F5) ∧ λ
] + eφ cos θ+

k‖
d
(
e−φk‖ sin θ+

) ∧ χ,

e−2Ad
(
e2Aχ

) = eφ cos θ+
k‖

[∗6F3 + (∗6F5) ∧ λ
] − eφ sin θ+

k‖
d
(
e−φk‖ sin θ+

) ∧ χ,

d
[
e4A−2φχ ∧ χ

] = 0,

1

2
d
(
e−φk‖ sin θ+

) ∧ χ ∧ χ = ∗6F1 + (∗6F3) ∧ λ + (∗6F5) ∧ λ ∧ λ. (E.13)

Let us now look at the equations we get for Φ−. We first define:

ξ = eiθ−(v + iw),

β = j − k‖
k⊥

ω. (E.14)

We get for the BPS equations, after some simplifications:

d
[
e3A−φk⊥ξ

] = 0,

k⊥(dβ + iH) ∧ ξ = 0. (E.15)

The equation we would get for the six-form is just the one for the four-form wedged with β , so
it is not an additional independent equation.

It is quite easy to check that, taking the pure SU(3) limit, that is k‖ → 0, k⊥ → 1, we recover
the system we already knew from [28].

Finally, we want to explicitly specialise to the cases of θ+ = 0 and θ+ = π/2. First θ+ = 0:

d
[
e2A−φk‖

] = 0,

F5 = 0,

H = dλ,

e−2Ad
[
e2Aχ

] = eφ

k‖
∗6 F3,

d
[
e4A−2φχ ∧ χ

] = 0,
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∗6F1 + (∗6F3) ∧ λ = 0,

d
[
e3A−φk⊥ξ

] = 0,

k⊥(dβ + iH) ∧ ξ = 0. (E.16)

And, in the case θ+ = π/2:

d
[
e4A−φk‖

] = e4A ∗6 F5,

H = eφ

k‖
∗6 F3 + 1

e4A−φk‖
d
[
e4A−φk‖λ

]
,

d
[
e2A−φk‖χ

] = 0,

d
[
e4A−2φχ ∧ χ

] = 0,

1

2
d
(
e−φk‖

) ∧ χ ∧ χ = ∗6F1 + (∗6F3) ∧ λ + (∗6F5) ∧ λ ∧ λ,

d
[
e3A−φk⊥ξ

] = 0,

k⊥(dβ + iH) ∧ ξ = 0. (E.17)

Those systems do not look much more complicated than the ones in the pure SU(3) case, but
there does not seem to be an easy transformation starting from either θ+ = 0 or θ+ = π/2 and
recovering the full system.

Appendix F. Euclidean brane configurations in IIB geometries

Here we re-derive the embeddings corresponding to Baryon condensates in the IIB geome-
tries found first in [39] using other means. We make use of the calibration condition (5.26). We
first consider a supersymmetric configuration in the Klebanov–Witten theory. One finds the E5
configuration of a brane extended along Σ = {r, θ1, φ1, θ2, φ2,ψ} with a world volume gauge
field

A= 1

3
ζ(r)(dψ + cos θ1dφ1 + cos θ2dφ2), (F.1)

obeys the calibration condition (5.26) provided that

ζ ζ ′ = 1

4
− ζ 2, (F.2)

which of course can be readily integrated.
Lets move up to the KT geometry working in the exact logarithmic solution.12 Using the

calibration technique one readily finds the E5 configuration is the same but with the gauge field
equation of motion Eq. (F.2) modified to be

ζ ′(r) = 2r4h(r) + T (r)2 − 8ζ(r)2

8rζ(r)
, (F.3)

where T (r) = 9√
2
M log r/r0 and h(r) = 27

32r4 (3M2 +8Nπ +12M2 log r/r0). This equation may
be integrated to yield

12 This is considerably simpler than the deformed conifold of the KS and reproduces all the main features of the calcu-
lation in [39] with the conformal dimension of the condensate agreeing to leading order.
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ζ(r) = 9M

8r
√

2

(
c + 3r2 − 4r2 log(r) + 8r2 log(r)2) 1

2 , (F.4)

where c is a constant of integration which we now set to zero since its contributions are in any
case sub-leading. Inserting this into to the DBI action one finds, changing variables to t = log r ,

SE5 = τ5 vol
(
T 1,1) tUV∫

dt
27M3

64
√

2

(
1 + 2t2 + 8t3)(3 − 4t + 8t2) 1

2 . (F.5)

In [39], e−SE5 was identified with the bulk field dual to the baryonic condensate. Using the stan-
dard asymptotic expansion the field theory scaling dimension can be extracted (at least in the
large t regime) as

Δ(r) = dSE5

d log r
= 27

16π2
M3(log r)2 +O(log r), (F.6)

reproducing exactly the result of [39] notable for the scaling dimension dependence on the energy
scale of the baryons as anticipated from the field theory.
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