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Abstract:

We use non-Abelian T-duality to construct new N = 1 solutions of type IIA supergravity (and

their M-theory lifts) that interpolate between AdS5 geometries. We initiate a study of the holo-
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1 Introduction

The great success of the AdS/CFT conjecture [1] in giving gravitational descriptions of super-

conformal field theories (SCFTs) naturally begs the question of how it can be extended to Quantum

Field Theories (QFTs) that are not fixed points. In that case one expects that a renormalisation

group flow is encoded holographically by modifying the radial behaviour, or warp factors, of the

space time geometry. Early examples of holographic RG flows are found in [2, 3, 4, 5, 6, 7].

More precisely, one could consider a UV fixed point described by a (UV)-CFT and trigger a flow

by giving a vacuum expectation value (VEV) or by deforming with a relevant operator. In the IR,

one can again encounter a fixed point defined by an (IR)-CFT. If both the IR and UV theories

admit holographic duals, it is reasonable to expect a holographic description of the entire RG flow.

Whilst one might expect the IR CFT to have less symmetries, this need not be the case. Indeed,

one can encounter situations in which the IR fixed point has an enhanced or accidental symmetry.

Two contrasting examples demonstrate this well and will be central to our present interests; these

are the Klebanov Witten flow [8] and the Klebanov Murugan flow [9].

The Klebanov Witten (KW) flow starts with a UV fixed point given by an N = 2 SCFT with

U(N) × U(N) gauge group and matter in bifundamental hyper multiplets. In N = 1 language

this theory has four chiral multiplets Ai, Bi with i = 1, 2 coming from the hypers and two adjoint

scalars Φ, Φ̃ coming from the N = 2 gauge multiplets. The super-potential,

WUV = gTr
(
ΦAiBi + Φ̃BiAi

)
, (1.1)

can be deformed with a relevant operator W ′, giving a mass to the adjoint scalars

W ′ = mTr
(
Φ2 − Φ̃2

)
, (1.2)

and, in the IR, once we have integrated out these fields this produces the super-potential

WIR = − g2

2m
Tr (A1B1A2B2 −B1A1B2A2) , (1.3)

that defines the N = 1 U(N)×U(N) gauge theory obtained by placing D3 branes at the tip of the

cone over the homogenous space T 1,1 constructed in [8]. The gravitational description of the UV

fixed point is AdS5 × S5/Z2 and that of the IR is AdS5 × T 1,1. Giving a supergravity description

of the whole flow has proven to be a challenging enterprise and whilst an ansatz for a gravitational

solution describing this flow was proposed in [10], it involves PDE’s and lacks any known analytic

solution.

The Klebanov Murugan (KM) flow [9], provides a contrasting behaviour in which symmetries

become enhanced in the IR. In this case, one begins in the UV with the N = 1 theory defined by

the super-potential eq. (1.3) and triggers a flow by giving a VEV B2 = aI (with Ai = B1 = 0).

This evidentially breaks the global symmetries of the theory down, in fact to SU(2) × U(1)2, and

since detB2 6= 0 this can be though of as putting the theory on its Baryonic branch. Remarkably
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however one sees that the IR super-potential becomes,

WIR =
g2a

2m
Tr (B1[A2, A1]) , (1.4)

which is nothing more than that of N = 4 SYM. Geometrically this procedure corresponds to

placing the stack of D3 branes at a specific (non-smeared) point in the finite sized S2 at the tip of

the resolved conifold. In this case the geometry describing the entire flow can be written analytically

and the emergence of N = 4 SYM is obtained again as an AdS5 × S5 throat near the location of

the branes.

Both these examples are set in the context of Type IIB supergravity, however some of the most

exciting recent developments in holography have taken place in the different regime of M-theory,

most notably the discovery of the “class S” or TN N = 2 theories [11], their N = 1 cousins [12] and

their holographic duals [13]. The lack of a conventional Lagrangian description makes the study of

their holographic dual geometries of paramount importance for such theories. One could wonder

whether analogous flows triggered by VEVs or mass deformations arise in these theories and if they

can be given a holographic description. Indeed, the construction of N = 1 theories from N = 2

counterparts by integrating out the adjoint scalars living in the N = 2 gauge multiplets of TN

quivers given in [12], [14] suggests this is indeed possible although the geometrical description of

this flow is not known.

The direct construction of holographic geometries encoding flows in the landscape of class S
theories is a rather hard problem and to date there are no clear examples and few clues. In this

work, we will take a first step in this direction by giving some solutions of M-theory that have

many of the properties we expect from these flows. The way we shall arrive at these solutions is

by harnessing a certain transformation of supergravity solutions known as non-Abelian T-duality.

The non-Abelian T-duality procedure generalises the regular notion of T-duality to the context of

non-Abelian isometry groups [15, 16, 17]. At the level of supergravity it is anticipated–and though

well checked1, not yet completely established–that this is a solution generating transformation.

At the level of the world-sheet, unlike regular T-duality this should not be viewed as an exact

equivalence of CFT’s since it is not expected to hold at all orders in string genus perturbation

theory. Indeed, it was suggested in [16], that non-Abelian T-duality is a transformation between

two different world-sheet CFTs. In the context of the large N limit of holography (also with gs → 0

and α′ → 0) contributions associated with the genus expansion are suppressed and we might expect

this transformation to have utility. We will apply this non-Abelian T-duality procedure to both the

KM and the KW flows in type IIB and use it to produce what we believe will be rather prototypical

supergravity solutions in M-theory that can describe holographic flows.

The reader may wonder why one should resort to the more complex non-Abelian T-duality

to achieve this goal; the reason is that performing regular (Abelian) T-dualities in conifold type

backgrounds either breaks supersymmetry (e.g. dualising around the U(1)R direction) or creates

1See [18, 19, 20] for discussion on the subset of solutions where the solution generating nature of the duality is
established.

3



singularities (e.g. dualising on a shrinking cycle). The geometries we find will have N = 1 super-

symmetry along the flow with enhancement in either the UV or IR.

In [21] it was shown that when a non-Abelian T-duality is applied to an SU(2) subgroup of

isometries of the five-sphere in AdS5×S5 (or its Z2 quotient) what results is a target space geometry

that is in many ways rather similar to the holographic duals of the N = 2 theories presented in

[11]. We will elaborate further on this and the field theory interpretation in what follows. In a

similar fashion, the non-Abelian T-dual of an SU(2)L subgroup of AdS5×T 1,1 performed in [22, 23]

gives rise to a geometry that shares many features with that corresponding to the N = 1 theories

given of [14]. Given these connections it is natural to expect, that performing similar non-Abelian

T-dualisation of flows in IIB is a good starting point with which to find flows in the M-theory

setting of “class S”. Although there is clearly more to be understood about the field theories

corresponding to these examples of flows we present here, we are hopeful that knowledge of the

geometries contained in this work will prove a helpful stepping stone towards the broader question

of finding more general holographic flows in M-theory.

The structure of this manuscript is as follows:

In Section 2 we provide an introduction to the central tool of non-Abelian T-duality (NATD).

In Section 3 we will discuss the non-Abelian T-dual of AdS5 × S5 and further elaborate on its

holographic dual description. We then turn to flowing geometries by first presenting in Section 4 a

wide ansatz for flows within the AdS5/CFT4 correspondence in type IIB supergravity. This ansatz

incorporates both the KW and the KM flow. In Section 5 we present the non-Abelian T-dual of

this ansatz and explicitly demonstrate, using the technology of pure-spinors, that it satisfies the

equations of motion and Bianchi identities of IIA supergravity.

In Section 6, we focus our attention on the KM flow where the known analytic form of the

background allows a more detailed study. We begin the section with a brief recap of the KM flow

reviewing mostly known material but take the opportunity to clarify some points concerning brane

charges, supersymmetry and central charges of the original solution that have not been discussed in

the existing bibliography. In Section 6.4, we present new result for the non-abelian T-dual of this

geometry and we investigate a number of holographic observables in this geometry including the

corresponding Baryonic condensate and an axionic string. We close the paper with some conclusions

and some useful technical appendices.

2 An introduction to non-Abelian T-duality

Since it may be less familiar to the reader let us begin by introducing the main technical tool

of our work: non-Abelian T-duality. Non-Abelian T-duality is the natural extension of T-duality

of U(1) isometries to the case of non-Abelian isometry groups in target space and goes back to

the pioneering work [15, 16, 17]. More recently, following the first implementation of non-Abelian

T-duality in Ramond-Ramond backgrounds of supergravity [21], this has been actively exploited

[22]-[43] as a solution generating tool of supergravity particularly in the context of the AdS/CFT
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correspondence.

The essential idea of non-Abelian T-duality is very similar in spirit to the familiar Abelian T-

duality. One takes a 2d string σ-model on a target space and performs a Buscher [44, 45, 46]

dualisation procedure along the directions of a target space isometry group. That is, in the 2d

σ-model one introduces some gauge fields to gauge the global transformations associated to the

isometries. To avoid extra degrees of freedom into the σ model (at least classically), a Lagrange

multiplier term is added to enforce that the field strength of the gauge fields vanishes. Integrating

out the Lagrange multipliers returns one to the initial σ-model. On the other hand, integrating out

the gauge fields whilst retaining the Lagrange multipliers provides a dual theory which after gauge

fixing can be re-expressed again as a σ-model but in a different T-dual target space.

Let us illustrate this with the simplest example; the principal chiral model on a group manifold G.

As a non-linear sigma model this has an action (in world sheet light cone coordinates σ± = 1
2(τ±σ))

SPCM =
−κ2
2π

∫
d2σTr(g−1∂−gg−1∂+g) =

κ2

2π

∫
d2 σδijL

i
µL

j
ν∂−X

µ∂+X
µ , (2.1)

in which we have introduced a group element g ∈ G parametrised by local coordinates Xµ, µ =

1 . . . dimG and Maurer-Cartan forms Li = −iTr(g−1dgT i) satisfying dLi = 1
2f

i
jkL

j ∧ Lk and

generators of the algebra [Ti, Tj ] = ifij
kTk normalised such that Tr(TiTj) = δij . For the case of

G = SU(2) the target space is just the round S3 with metric2

ds2 = λ2(L2
1 + L2

2 + L2
3) , (2.3)

where λ2 is related to the dimensionless coupling κ via κ2 = λ2

α′ and the scalar curvature of this

space is R = 3
λ2 .

The target space has a GL × GR isometry and we will dualise the GL action. In the σ-model

eq. (2.1) we introduce gauge fields A = iAiTi to promote derivates to covariant derivatives ∂± →
D± = ∂± −A± and supplement the action with a Lagrange multiplier term,

SLag =
µi

2π

∫
d2σTrvF+− =

µ

2π

∫
d2σ vi∂−A

i
+ − vi∂+A

i
− −Ai

+fij
kvkA

j
− (2.4)

where the field strength F+− = ∂+A−− ∂−A+ − [A+, A−]. Evidently µ can be absorbed by scaling

of v but is useful to keep track of.

One now performs an integration by parts on the Lagrange multiplier term so that the gauge

fields enter the action algebraically without derivatives and can be integrated out. The next step

is to fix the GL symmetry; here there may be several options but in this paper we will choose the

simplest which is to set g = I such that the Lagrange multipliers play the rôle of coordinates in the

2In Euler angles g = e
i
2
φ̃τ3e

i
2
θ̃τ2e

i
2
ψ̃τ3 the SU(2) left invariant forms are

√
2L1 = − sin ψ̃dθ̃ + cos ψ̃ sin θ̃dφ̃ ,

√
2L2 = cos ψ̃dθ̃ + sin ψ̃ sin θ̃dφ̃ ,

√
2L3 = dψ̃ + cos θ̃dφ̃ . (2.2)
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dual σ-model. In this gauge, the equations of motion for the components of the gauge field read

A+ = −µM−1∂+v , A− = µM−T∂−v , Mij = κ2δij + µfij
kvk . (2.5)

Eliminating the gauge fields with these equations gives the dual action to eq. (2.1)

Ŝ =
µ2

2π

∫
d2σ ∂−v

TM−1∂+v . (2.6)

Notice that the T-dual model has a metric with rather complicated coordinate dependence since

the vi enter explicitly into the definition of Mij . The T-dual geometry is

d̂s2 =
µ2α′

2
(M−1+M−T )ijdvidvj , B̂2 =

µ2α′

4
(M−1−M−T )ijdvi∧dvj , Φ̂ = −1

2
log det

(
µ−2M

)
,

(2.7)

in which we note the dilaton contribution that arises from performing this procedure in a path

integral. For the case of GL = SU(2) the geometry associated to the round S3 reads

d̂s2 = α′ 2
κ2
dρ2+

α′ρ2 κ
2

2

(κ
4

4 + ρ2)
ds2(S2) , B̂2 =

α′ρ3

(κ
4

4 + ρ2)
vol(S2) , Φ̂ = −1

2
log(

κ2

2
(
κ4

4
+ρ2)) , (2.8)

in which we have transformed the vi Lagrange multipliers into spherical coordinates and fixed

µ =
√
2 for later convenience. The presence of a two-sphere in eq. (2.8) reflects a residual SU(2)R

symmetry that was untouched by the dualisation3. In general however, any symmetries that do

not commute with the dualised isometry group will be destroyed.

In the present context, we wish to perform such a dualisation procedure in a background sup-

ported by RR flux. This is rather more delicate since one needs to use an appropriate string theory

formulation that incorporates the RR background fields. However, it was proposed in [21] that

the transformation rules of the RR sector can be deduced using just knowledge of the NS-sector.

The crucial point is that left and right movers on the world sheet have different transformation

properties under the duality—viz. eq. (2.5). After duality one finds left and right movers couple

to different sets of frame fields, call them ê+ and ê− but since these frames define the same T-dual

geometry they must be related by a local Lorentz transformation êi+ = Λi
j ê

j
−. This transformation

induces an action Ω on spinors defined through the properties of γ-matrices Ω−1ΓiΩ = Λi
jΓ

j . Space

time spinors will be transformed under T-duality by this matrix Ω. The dual RR fluxes are then

given by acting with this Ω matrix,

eΦ̂ /̂F = eΦ /F · Ω, (2.9)

3An interesting feature is that if one takes the limit ρ → ∞ in (2.8) then the NS sector matches that obtained
by performing an abelian T-duality along the one of the Euler angles (precisely the U(1) associated to ψ̃ defined in
Footnote 2). To complete such an identification one must rescale the dilaton and make an identification of ρ in this
limit with a periodic variable. In this sense one finds a limit in which non-Abelian T-duality abelianizes; the idea of
such a relation was suggested to us by José Luis Barbón.
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where we consider the formal sum of forms4

F =
5∑

n=0

F2n in Type IIA , F =
4∑

n=0

F2n+1 in Type IIB , (2.10)

and the slashed notation indicates contraction with Γ-matrices.5 This transformation rule can also

be understood as a generalisation of the Fourier-Mukai transformations [26] and also gives rise to

an action on supersymmetries [21, 30, 20].

Whilst here we outlined the procedure for the simplest example of a round metric on a group

space, one set up a similar dualisation for a more general scenario in which the space admitting the

SU(2) isometry can be fibered non-trivially over other “spectator” directions. A comprehensive

treatment of this duality including spectator direction can be found e.g. in appendices of [23]. Also,

in Section 4 of this paper we provide a set of “Buscher rules” at least for a wide class of geometries

including our present interests. In the following, we will apply the formalism of this section to the

example of AdS5 × S5. While this is not new in the bibliography, we will discuss new features,

leading to a sharper dual field theoretical understanding of the resulting geometry.

3 Comments on the non-Abelian T dual of AdS5 × S5

Before moving to flowing geometries let us first look at AdS5 × S5 and comment on the relation

between its non-Abelian T-dual, first worked out in [21], and geometries dual to Gaiotto QFTs

[13].

We start with a background of the form,

ds2 =
4R2

L2
dx21,3 +

4L2

R2
dR2 + L2

[
4dα2 + 4 sin2 αdβ2 + 2cos2 α(L2

1 + L2
2 + L2

3)
]
,

F5 = (1 + ⋆)
64

gsL4
R3dR ∧ d4x, (3.1)

where 4L4 = πgsNα
′2 and Li are left invariant forms of SU(2) of the previous section, normalised

as in Footnote 2. We set gs = 1 in the rest of this section.

After non-Abelian T-duality on the SU(2) parametrised by the Li, using eq. (2.8) with κ =

4We work in the democratic formalism in which all degrees of fluxes are considered and Hodge duality is imple-
mented afterwards [47].

5In the limit of Abelian T-duality of a single direction, call it θ, T-duality acts as a parity on left movers and the
corresponding Ω matrix will simply be Γθ. Then the T-duality rule eq. (2.9) boils down to erasing legs of flux that
wrap the dualised circle and adding them when they don’t, thereby replicating the action of T-duality on D-branes.
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√
2/α′L cosα we arrive to a background of the form

d̂s2 =
4R2

L2
dx21,3 +

4L2

R2
dR2 + L2

[
4dα2 + 4 sin2 αdβ2

]
+

α′2

L2 cos2 α
dρ2 +

α′2L2 cos2 αρ2

α′2ρ2 + L4 cos4 α
(dχ2 + sin2 χdξ2).

B̂2 =
α′3ρ3

α′2ρ2 + L4 cos4 α
sinχdχ ∧ dξ; e−2Φ̂ =

L2 cos2 α

α′3 (L4 cos4 α+ α′2ρ2).

F̂2 =
8L4

α′3/2 sinα cos3 αdα ∧ dβ, Â1 = − 2L4

α′3/2 cos
4 αdβ. F̂4 = B̂2 ∧ F̂2. (3.2)

In order to have quantised charges QPage,D6 = ND6 and QPage,D4 = 0, we have L4 = ND6

2 α′2.
Note that we could have kept the relation 4L4 = πNα′2 obtained before the duality, but this would

necessitate a constant rescaling of the RR sector in order to have well quantised charges and a

corresponding shift in the dilaton to solve the EOMs. Notice that at 2α = π, the background above

is singular.

We now make contact with the backgrounds presented by Gaiotto and Maldacena [13] and

developed in the papers [48], [49]. We will first take out a global α′-factor in the metric which we

will do with the coordinate transformations used in [21],

ρ = 2
L2

α′ η , sinα = σ , u =
R

α′ (3.3)

in which we introduce the usual ‘energy’ coordinate u. We will find that the background in eq.(3.2)

consists of a five dimensional Anti-de Sitter space of radius µ2 = L2

α′ times a manifold Σ5, together

with rescaled NS and RR fields,

d̂s
2

α′ = 4
u2

µ2
dx21,3 + 4

µ2

u2
du2 + µ2

[
4
dσ2

1− σ2
+ 4η2dβ2 +

4

(1− σ2)
dη2
]
+

4µ2η2(1− σ2)

4η2 + (1− σ2)2
(dχ2 + sin2 χdξ2).

B̂2 =
8α′µ2η3

4η2 + (1− σ2)2
sinχdχ ∧ dξ; e−2Φ̂ = µ6(1− σ2)[(1− σ2)2 + 4η2].

Â1 = −2µ4α′1/2(1− σ2)2dβ. (3.4)

Let us now consider a generic Gaiotto-Maldacena background in type IIA [13]. It reads,

ds2IIA,st = α′(
2V̇ − ˙̇V

V ′′ )1/2
[
4AdS5 + µ2

2V ′′V̇
∆

dΩ2
2(χ, ξ) + µ2

2V ′′

V̇
(dσ2 + dη2) + µ2

4V ′′σ2

2V̇ − ˙̇V
dβ2
]
,

A1 = 2µ4
√
α′ 2V̇ V̇ ′

2V̇ − ˙̇V
dβ, e4Φ = 4

(2V̇ − ˙̇V )3

µ12V ′′V̇ 2∆2
, ∆ = (2V̇ − ˙̇V )V ′′ + (V̇ ′)2 ,

B2 = 2µ2α′(
V̇ V̇ ′

∆
− η)dΩ2, A3 = −4µ6α′3/2 V̇

2V ′′

∆
dβ ∧ dΩ2. (3.5)
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in which we defined a potential V = V [σ, η] and its derivatives V ′ = ∂ηV and V̇ = σ∂σV . The

two-sphere dΩ2
2(χ, ξ) is parametrised by the angles ξ and χ with corresponding volume form dΩ2 =

sinχdξ ∧ dχ. The usual definition F4 = dC3 +A1 ∧H was also used.

Comparing both IIA configurations in eqs.(3.4) and (3.5), one can show that the background in

eq.(3.2) is of the form of those written by Gaiotto and Maldacena [13]. This is not very surprising,

since these solutions with an AdS5 factor and preserving N = 2 SUSY have been classified in [50],

[51]. The problem of writing IIA/M-theory solutions boils to finding the function V (σ, η), which

in turn reduces to resolving an electrostatic problem— a Laplace equation for the function V (σ, η)

with a given charge density λ(η),

∂σ[σ∂σV ] + σ∂2ηV = 0, λ(η) = σ∂σV (σ, η)|σ=0. (3.6)

What is actually interesting is to find the potential function for the solution in eq.(3.4). This was

done by Sfetsos and Thompson in [21], the result is

VST = η(log σ − σ2

2
) +

η3

3
. (3.7)

There is a relation between VST and the potential function VMN , characterising the solutions in

[52]. This potential reads—for a single M5-brane,

2VMN (σ, η) =
√
σ2 + (1 + η)2 −

√
σ2 + (1− η)2 + (3.8)

+(1− η) log[
1− η

σ
+

√
1 + (

1− η

σ
)2]− (1 + η) log[

1 + η

σ
+

√
1 + (

1 + η

σ
)2].

This solution is interesting because, as it was shown in [48], [49], a very general V (σ, η) solving

eq.(3.6), can be written as a linear combination of VMN for different number of M5-branes. Let us

expand the function VMN above in powers of ηmσn such that m+ n < 5. We obtain,

VMN ∼ Vapp =
η3

6
+ η
(
log(

σ

2
)− σ2

4

)
+ .... (3.9)

This approximate potential satisfies the differential equation in (3.6). Both Vapp and VST give the

same density of charge λ(η) = η. It is interesting to notice that adding more terms to the expansion,

one does not obtain a solution. In this sense, this is vaguely reminiscent of a Penrose limit—see

the paper [53] for similar ideas expressed in a different context.

The careful reader observed that between VST and Vapp there are some discrepancies in numerical

factors. Nevertheless, both these potentials give place to the same background after a rescaling of

the coordinates and Newton constant, as we show in Appendix A. We can lift the configuration to

a solution of eleven-dimensional supergravity, using that κ2/3 = (π2L
3
P )

2/3 ∼ α′, see Appendix A

for the details.

In summary, the non-Abelian T-duality of AdS5×S5 is generating a background of the Gaiotto-

Maldacena type, characterised by a function VST (σ, η), a solution to a very involved partial differ-

ential equation. This generated solution captures the small region close to the point (η, σ) = (0, 0)
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of a more generic background found in [52]. The generating technique might suggest the ansatz for

the more generic backgrounds.

Let us study now some interesting QFT observables as read from the geometry in eq.(3.2).

3.1 Central Charge and Page Charges

We start by revisiting the treatment of Page charges developed in [37]. There, it was shown that

QPageD4 = 0, QPage,D6 = ND6, (3.10)

where normalisations in eq.(3.2) have been chosen to have proper quantisation. Now we want to

advance an interpretation of the ρ coordinate—or η after the change of variables in eq. (3.3)– which

is that whilst ρ is formally a non-compact variable, it is segmented in intervals of length π by the

presence of NS5 defects. This interpretation builds on a subtle argument proposed in the papers

[28, 54] and relies on two crucial points. First that the Page charges defined above are not invariant

under large gauge transformations and second, that in the geometries we consider there is a periodic

quantity b0, defined as,

b0 =
1

4π2α′

∮

Σ2

B̂2 ⊂ [0, 1] . (3.11)

In slightly different contexts, it was shown in [28, 54] that geometries produced by non-Abelian T-

duality typically have such a two-cycle about which b0 is defined and moreover that the expression

obtained for b0 depends on ρ. Here the two-cycle is given by

Σ2 = [χ, ξ], α =
π

2
, ρ = fixed , (3.12)

and one finds

b0 =
ρ

π
. (3.13)

To reconcile this result with the periodicity of b0, one possibility could be that ρ = π is a hard

cut-off at the end off space. This seems strange since the geometry is completely smooth at this

point. Instead we believe that the definition of B̂ should actually be modified by a piece-wise

continuous large gauge transformation such upon moving from the interval [0, π] to [nπ, (n + 1)π]

B̂2 → B̂2 − nπα′ sinχdχ ∧ dξ, (3.14)

thereby restoring the periodicity of b0. Notice, that the argument is not much different from the

one that runs in determining the ‘period’ of the R-symmetry coordinate ψ–reflecting the presence

of the U(1)R-anomaly–in dual to N = 1 QFT, see for example the papers [7], [6], [59].

Indeed, the point made in [37] was that when we cross the boundaries ρ = π, 2π, 3π, 4π....nπ we

need to perform a piece-wise continuous large gauge transformation of the B2-field, that changes

the Page charges as

∆QD6 = 0, ∆QD4 = −nND6. (3.15)
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This suggests that charge is ‘created’ when we pass through ρ = nπ points. Hence, the charge of

D4 branes is not globally defined, but depends on the interval [nπ, (n+ 1)π] where we measure it.

A very similar observation was made in the papers [55], [56]. In those papers they have a set of

D8 sources and D6 branes whose Page charge is not globally defined, while here we have NS-five

branes playing the role of the D8’s and D4 branes with characteristics similar to their D6’s.

The expression of the F4, F2 fields indicates that we actually have a set of D4 and D6 crossed

with NS-five branes extended along

D4 : [R1,3, ρ], D6 : [R1,3, ρ, ξ, χ], NS5 : [R1,3, α, β]ρ=nπ . (3.16)

It is then possible to think, that we are in a situation where the D4 branes are blown-up into

D6 branes on S2(ξ, χ), due to the presence of the magnetic field B2 via the Myers effect. Our

Page charges indicate that the D4’s are all blown into D6’s in the interval ρ ǫ [0, π], but some

remain in other intervals. When lifting to M-theory, these D4’s become M5 branes that extend on

AdS5 × S1—matching our result with the discussion below eq.(4.8) in the paper [13]. Additionally

it can be shown, using the results of Section 5 below, that D4 and D6 branes are supersymmetric

at α = π/2.

Let us move to discuss a standing problem and propose a resolution for it. It relates to an issue

with the central charge of the dual QFTs computed using the Type IIA background in eq.(3.2).

A discrepancy was observed in the previous bibliography related to the central charge of the dual

CFT. Indeed, while in the papers [52], [13] the central charge was found to scale as c ∼ N3— a very

unconventional scaling, with the cube of the number of M5 branes in the M-theory background–

in the papers [23], [37] the result in Type IIA scales more conventionally like c ∼ N2–the square of

the number of colour branes in the Type IIA configuration. Below we analyse this in more detail,

proposing an interpretation that makes compatible the QFT computation of [13] with a type IIA

calculation.

Before the discussion of central charges, we need to identify the number of NS-five branes. The

proposal in [40] is that the seemingly non-compact coordinate ρ—or η, after the change of variable

in eq.(3.3)–should indeed be allowed to vary in [0,∞]. A large gauge transformation for the B2-field

has to be performed every time we cross ρ = nπ. The effect of this piece-wise continuous large

gauge transformation can be seen if we calculate the flux of Ĥ3 = dB̂2. Indeed, on the manifold

Σ3 = [ρ, ξ, χ] with α = π
2 , we have that the NS field is

Ĥ3|Σ3
= α′ sinχdξ ∧ dχ ∧ dρ. (3.17)

Calculating one finds,

1

2κ210TNS5

∫

Σ3

Ĥ3 =
1

2κ210TNS5

∫ (n+1)π

0
dρ

∫ 2π

0
dξ

∫ π

0
dχĤ3 = (n+ 1). (3.18)

in which we have used that 2κ210 = (2π)7α′4, TNS5 =
1

(2π)5α′3 . What brings the NS-five branes into

existence is the piece-wise continuous character of the large gauge transformation. This creation
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of a topological defect by a discontinuous transformation is also present in simple systems, see for

example the books [58] (in electromagentism, the gauge potential corresponding to a solenoidal

defect can be obtained from the vacuum gauge potential by performing a singular gauge transfor-

mation with a discontinuity or monodromy around a polar angle; the singular nature of the “gauge

transformation” makes its presence known by giving a non-zero Wilson loop indicating a defect).

We can then identify that NNS5 = (n + 1) is the number of NS-five branes. This enforces the

picture advocated above— and already advanced in [40]– where there is one NS-five brane every

time we cross the positions ρ = π, 2π, 3π, 4π....

Calculating the central charge also reinforces the picture above. Indeed, using the expressions

relating central charges to internal volumes, see [60] and for a generalization to include non-constant

dilaton [37] applicable in this case, one finds (normalizing such that AdS5 × S5 gives c = 1
4N

2
D3, in

agreement with [61])

c =
1

12
N2

D6N
3
NS5. (3.19)

This dependence with the number of NS five branes appears due to the integral
∫ (n+1)π
0 dρρ2 ∼ (n+

1)3. There is also the more canonical dependence with N2
D6—that appears using the quantisation

condition 2L4 = ND6α
′2 discussed above– and a numerical factor, both anticipated in the paper

[37]. In Appendix A, we offer further evidence for the proposal made in this section.

The result of eq.(3.19) above is, up to a normalisation factor, the one obtained in equation (5.5)

of the work by Gaiotto and Tomasiello [62]. In their case, the physical system is composed by

k = ND6 D6 branes, D8 branes and N = (n + 1)-NS five branes. The interpretation they propose

for the QFT should apply to our case. We are probably dealing, after NATD, with a Gaiotto CFT

with
(
(n + 1)ND6

)3
degrees of freedom that is orbifolded by a ZND6

group—see also [63] for a

similar system in massive IIA. This matching supports our interpretation of the coordinate ρ, its

range and the large gauge transformation for the NS-field.

Having learnt something about the interplay between geometry and QFT, we close here this

example of AdS5 × S5 and move to the core examples in this paper, namely the flows between

conformal points. We will present first a generic form of flowing geometry, its non-Abelian T-dual

and show that for these cases a NATD is indeed a solutions generating technique.

4 A type IIB ansatz for flows within the AdS5/CFT4 correspon-
dence

We now turn our attention to holographic flow geometries and their non-Abelian T-duals. Unlike

Abelian T-duality, the presentation of the non-Abelian T-duality rules in complete generality is

rather unwieldily and opaque without specifying any details of the seed geometry that is used as

an input to dualisation. One option (and this is what has been often adopted in the literature) is

to fix a seed geometry completely, calculate its T-dual, and show that this is indeed a solution of

supergravity. This is somewhat unsatisfactory since conclusions are made on a case by case basis.
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Instead here we will adopt an intermediate approach; we will specify an ansatz of IIB supergravity

that is wide enough to incorporate many examples of interest but yet refined enough to lead to

a tractable set of Buscher rules for the T-dual geometry6. Armed with such an ansatz and set of

Buscher rules one can then simply specialise to the background of interest to investigate the details

of its properties. So our first step then is to specify an ansatz of IIB supergravity that captures

both the KM and KW flows.

Then, we consider performing a non-Abelian T-duality transformation on geometries of interest

in the context of the AdS5/CFT4 correspondence. We require an SU(2) isometry on which to

dualise, so the topology of these solutions will be R1,3 ×M3 ×S3, where M3 will be non compact.

We will assume that F1 = F3 = H3 = Φ = 0 and take the ansatz

ds2 = e2Adx21,3 + ds2(M3) +

3∑

i=1

(
ei
)2
, F5 = (1 + ⋆)F5 , F5 = F2 ∧ e1 ∧ e2 ∧ e3 , (4.1)

where A has dependence on the coordinates of M3 and ei defines a vielbein on a squashed sphere

which is fibered over M3, namely

ei = λi(ωi +Ai). (4.2)

Here ωi are a set of left invariant Maurer-Cartan forms for the SU(2), that satisfy dωi =
ǫijk
2 ωj∧ωk,

Ai are one-forms on M3 and λi are functions on M3. The Bianchi identity of F5 requires that,

d(λ1λ2λ3F2) = 0 , d(e4A ⋆3 F2) = 0 , (4.3)

with F2 a two-form and ⋆3, the Hodge dual, defined on M3. In what follows it will also be useful

to introduce a set of undetermined frame fields hi such that

ds2(M3) =

3∑

i=1

(hi)2, (4.4)

where we also define V ol(M3) = h1 ∧ h2 ∧ h3.
At this point we make a restricting assumption that will nonetheless be sufficient for the solutions

we consider in this work, as well as a good deal more of the literature. Let us assume that this

background supports an SU(3) structure on the 6d internal space specified by,

J = h3 ∧ e3 + e1 ∧ e2 + h1 ∧ h2 , Ωh = (h3 + ie3) ∧ (e1 + ie2) ∧ (h1 + ih2) , (4.5)

with corresponding pure spinors [64]

Ψ+ =
1

8
eiθ+eAe−iJ , Ψ− = − i

8
eiθ−eAΩh , (4.6)

which obey

d(e2AΨ−) = 0 , d(e2AΨ+)− e2AdA ∧ Ψ̄+ = − i

8
e3A ⋆3 F2 , (4.7)

6The most general ansatz non-Abelian T-dualised to date may be found in [20].
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so that the solutions preserve (at least) N = 1 supersymmetry in 4d. Unpackaging these equations

one finds the following set of independent constraints,

d(e2AJ) = 0 , d(e3A+iθ−Ωh) = 0 , θ+ =
π

2
, ⋆3F2 = 4dA , (4.8)

which impose certain conditions on hi,Ai.

First let us consider d(e2AJ) = 0. One finds, from the components involving ω1 ∧ω3 and ω2 ∧ω3

that,

A1 = A2 = 0 , (4.9)

and from those involving ω1 ∧ ω2 we determine,

e2Aλ3h
3 = d(e2Aλ1λ2) . (4.10)

The remaining components of d(e2AJ) = 0 imply

d
(
e2Ah1 ∧ h2 − e2Aλ3A3 ∧ h3

)
= 0 . (4.11)

Using the equation d(e3A+iθ−Ωh) = 0 we find,

dh1 = h1 ∧
(
d(3A + log(λ2λ3))−

λ1
λ2λ3

h3
)
+ h2 ∧

(λ1
λ2

A3 − dθ−
)
,

dh2 = h2 ∧
(
d(3A + log(λ1λ3))−

λ2
λ1λ3

h3
)
− h1 ∧

(λ2
λ1

A3 − dθ−
)
, (4.12)

as well as

d
(
A3 − iλ−1

3 h3
)
∧ (h1 + ih2) = 0 (4.13)

and the compatibility constraints

(λ21 − λ22)h
3 ∧ h1 = λ3h

1 ∧ (λ2dλ1 − λ1dλ2)− λ3(λ
2
1 − λ22)h

2 ∧ A3 ,

(λ21 − λ22)h
3 ∧ h2 = λ3h

2 ∧ (λ2dλ1 − λ1dλ2) + λ3(λ
2
1 − λ22)h

1 ∧ A3 . (4.14)

There is actually a degree of redundancy between these equations above and eq. (4.13). Either

λ1 = λ2 in which case the constraints are trivially satisfied and give no further information or

λ1 6= λ2 whence one can show that eq. (4.13) follows from differentiating the constraints and

applying eq. (4.12). However all quoted expressions will be useful in the next sections.

Any background solution that fits into the ansatz of eq. (4.1) and satisfies eqs. (4.9)-(4.14)

will preserve supersymmetry in the form of an SU(3)-structure given by eq. (4.5). This ansatz is

sufficient to include, at least, the following backgrounds of direct interest to the present paper:

• AdS5 × T 1,1 with the ωi corresponding to either the SU(2)L isometry or to the diagonal

SU(2)diag isometry;

• AdS5 × Y p,q of [65, 66] which has a unique SU(2) isometry in the internal space;
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• The KM flow given by [9];

• The KW flow ansatz given by [10];

• AdS5 × S5 (of course this only makes manifest N = 1 supersymmetry and the background

preserves N = 2 after dualisation [21]).

In appendix B we provide a precise map of how the geometries listed above fall within this

ansatz.

5 Type IIA/M-theory non-Abelian T-dual backgrounds of the
flow ansatz

In this section we present the non-Abelian T-dual of the ansatz of the previous section and give the

SU(2)-structure it supports. This, combined with the vanishing of the Bianchi identities, which

we also show, provides a proof that the T-dual of this ansatz is always a solution of type IIA

supergravity. That these are sufficient conditions was spelled out in [67, 68]. In what follows we

work with α′ = 1 for simplicity.7

Following Appendix C, we perform a NATD transformation on the solution of the ansatz of

eqs.(4.1)-(4.4). After setting A1 = A2 = 0 as required by supersymmetry prior to dualisation we

get the NS sector

dŝ2 = e2Adx21,3 + ds2(M3) +

2∑

i=1

êi± ,

B̂ =
1

∆

(
λ23v3vidvi ∧ A3 + λ21λ

2
2λ

2
3dv3 ∧ A3 +

1

2
ǫijkviλ

2
i dvj ∧ dvk

)
,

e−2Φ̂ = ∆ = λ21λ
2
2λ

2
3 + λ21v

2
1 + λ22v

2
2 + λ23v

2
3 , (5.1)

where the frame fields êi± are the natural ones that arise from the Buscher procedure and are given

by eq. (C.3), however an explicit form of a much nicer set of frame fields is given in eq. (5.6) below.

The RR fluxes are given by

F̂2 = λ1λ2λ3F2, F̂4 = (B̂ +A3 ∧ dv3) ∧ F̂2, (5.2)

and their Hodge duals by

F̂6 = − ⋆10 F̂4 = −e4AV ol4 ∧ vidvi ∧ ⋆3F2,

F̂8 = ⋆10F̂2 = B̂ ∧ F̂6 + e4AV ol4 ∧ dv1 ∧ dv2 ∧ dv3 ∧ ⋆3F2. (5.3)

7The α′ factors can be put back by the following replacements vi → α′vi, F̂ → 1

α′ 3/2 F̂ and eΦ̂ → α′ 3/2eΦ̂, which
leave the EOM invariant.
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Clearly dF̂2 = 0 by virtue of the first condition of eq. (4.3), it then follows that dF̂4 = Ĥ3 ∧ F̂2

because A3 ∧ F2 is a top-form on M3 and thus closed, so the Bianchi identities are automatically

satisfied. The equations of motion of the higher fluxes can be shown to be solved in a similar

fashion using the second condition of eq. (4.3).

The T-dual pure spinors are given by

Ψ̂− =
1

8
eAeiθ̂−e−ij ∧ z , Ψ̂+ =

1

8
eAeiθ̂+e

1
2
z∧z̄ ∧ ω, (5.4)

which may be generated directly via the Ω matrix of eq. (C.8) via the map given in [30]

Ψ̂± = Ψ∓Ω−1. (5.5)

The result can be neatly expressed after a frame rotation in terms of the internal vielbeins

h̃3 = −λ1λ2λ3√
∆

h3 +
1√
∆
vidvi , h̃1 = h1 , h̃2 = h2 ,

ẽ1 =
λ2λ3√

∆
(dv1 − v2A3) +

v1λ1√
∆
h3 ,

ẽ2 =
λ1λ3√

∆
(dv2 + v1A3) +

v2λ2√
∆
h3 ,

ẽ3 = −λ1λ2√
∆
dv3 −

v3λ3√
∆
h3 .

(5.6)

In terms of these the T-dual SU(2) structure is given by

z = v+iw = h̃3+iẽ3 , j = h̃1∧h̃2+ẽ1∧ẽ2 , ω = (h̃1+ih̃2)∧(ẽ1+iẽ2) , θ̂+ = θ− , θ̂− = θ+ =
π

2
.

(5.7)

It is then relatively simple to plug this into the conditions the structure must obey and see that

supersymmetry is indeed preserved. We relegate the details of this computation to Appendix D.

The succinct expressions for the T-dual geometries, frame fields and SU(2) structure in this

section are an important technical result of this work and provide a unified presentation of previous

results in non-Abelian T-duality. It should be noted though that a more general proof of the solution

generating nature of the non-abelian T-duality exists.

It was conjectured in [21] that a condition for the preservation of supersymmetry is the vanishing

Kossmann-Lie derivative of the corresponding Killing-spinor along all the Killing vectors, kµa∂µ,

generating the SU(2) isometry, i.e. one requires

Lkaǫ = kµaDµǫ+
1

4
∇µkaνΓ

µνǫ = 0 , a = 1 . . . 3 . (5.8)

This conjecture was explicitly verified in [20] by examining the transformations of dilatino and

gravitino supersymmetry variations under T-duality. The Bianchi identities were also shown to

follow in the T-dual from those of the seed solution. It then follows, by the results of [64, 67, 68]

that any supersymmetric solution with a metric that can be decomposed as in eq (4.1), (4.2) and
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arbitrary fluxes that respect the SU(2) isometry, will be mapped to a supersymetric solution of

type II supergravity, provided the Kossmann derivative vanishes. This of course gives no a priori

information about the dual G-structure, which is the main achievement of this section.

It would be interesting to generalise the results above to a more general ansatz, finding the general

G-structure preserved. We note that the requirement of a vanishing Kossmann derivative of the

Killing-spinor is equivalent to the vanishing of the Lie derivative when acting on the corresponding

pure spinors. This hints at how such a generalization could be achieved.

5.1 Lift to M-theory

Since these are solutions of IIA supergravity with no Romans’ mass they can be lifted in the usual

way directly to eleven dimensions with a metric

ds211 = e−
2
3
Φ̂
(
e2Adx21,3 + (ẽi)2 + (h̃i)2

)
+ e

4
3
Φ (dz + C1)

2 , (5.9)

where z denotes the M-theory circle and C1 is a potential such that dC1 = F̂2. The geometry is

characterised by an SU(3) structure on the seven dimensional internal space specified by a one-form

K ′, a two-form J ′ and a three form Ω′ [69] obtained by lifting the SU(2) structure defined above,

K ′ = we−
1
3
Φ̂ , J ′ = e−

2
3
Φ̂j + e

1
3
Φ̂v ∧ (dz + C1) , Ω′ = eiθ̂+ω ∧

(
e−Φ̂v + i(dz + C1)

)
. (5.10)

Using the expressions above these can be directly seen to obey the required differential equations

[69] (see also [68]),

d(e2δK ′) = 0 , d(e3δΩ′) = 0 , d(e4δJ ′) = ⋆7e
4δG4 , d(e2δJ ′ ∧ J ′) = −2G4 ∧K ′e2δ , (5.11)

with G4 = F̂4+dB̂∧ (dz+C1) obeying a Bianchi identity dG4 = 0 and the warp factor δ = A− 1
3Φ̂.

We will now study the Klebanov-Murugan background and its non-Abelian T-dual as a simple

applications of the formalism developed above. See Appendix B for a compendium of other possible

applications.

6 The Klebanov-Murugan Flow

Here we shall study the Klebanov-Murugan (KM) background [9]. This provides an example

in which the solution is known analytically along the flow. In the dual field theory, the flow

corresponds to a vacuum in which certain baryonic operators acquire a VEV. On the gravity side

this is represented by deformations of AdS5 backgrounds.

To be more precise, consider D3 branes at the tip of the conifold or, more generally, other singular

Ricci flat Kahler asymptotically conical manifold. Vacua obtained by moving the D3 branes stack

away from the singularity, by resolution or deformation of the conifold, correspond to a form of

symmetry breaking in the dual QFT. In all these cases, at energies low enough, the field theory

describing the stack of branes will be N = 4 Super-Yang-Mills.
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Using four complex coordinates wi to describe the conifold by the constraint
∑4

i=1w
2
i = 0, the

deformation of the conifold is described by the six-manifold satisfying
∑4

i=1 w
2
i = ǫ. More important

in this section will be the resolution of the conifold, best expressed in terms of the variables ai, bj

w1 = a1b1, w2 = a2b2, w3 = a1b2, w4 = a2b1.

To describe the resolved conifold, we need to saturate the equation,

|a1|2 + |a2|2 − |b1|2 − |b2|2 = a2,

subject to the identification up to a phase,

ai ∼ eiνai, bj ∼ e−iνbj.

The IIB solution for D3 branes at the tip of the resolved conifold reads,

ds2 = H−1/2dx21,3 +H1/2
(
dr2 + r2ds2(X5)

)
.

We will interpret the breaking of symmetry as replacing H(r) ∼ c/r4 by a more general Green’s

function. In this section it will be the Green function found by Klebanov and Murugan in [9], which

describes a deformation of the Klebanov-Witten quiver field theory, obtained by giving a VEV to

bifundamental fields, subject to only non-mesonic operators getting a VEV. This corresponds to

a motion in the Kahler moduli space on the geometry side. In the field theory we study in this

section, there will be an infinite tower of operators developing a vacuum expectation value. The

operator with smallest dimension is taken to be the order parameter for the symmetry breaking.

In the present example, the operator has dimension two and will be written explicitly below. In

the following, we write the Klebanov-Murugan background [9]. We will complement this with some

new calculations and comments not present in the bibliography. We will then generate a new

background in Type IIA, by applying non-Abelian T-duality to the original Type IIB one in [9].

Furthermore, we study different aspects of the strongly coupled QFT associated with our Type IIA

geometry.

6.1 The Klebanov-Murugan geometry

In this section we review the Klebanov-Murugan Type IIB background [9]. The singular conifold

is given by the cone over T 1,1 which is an homogenous space of topology S2 ×S3. At the tip of the

cone the S2 shrinks but however can be resolved to give a finite sized S2 of radius a. This resolved

conifold is topologically R4 × S2 and an explicit Calabi-Yau metric is given by

ds26 =
dr2

κ(r)
+ ds2(M3) +A2(r)

2
(
dθ2 + sin2 θdϕ2

)
,

ds2(M3) = A1(r)
2
(
ω2
1 + ω2

2

)
+A3(r)

2
(
ω3 + cos θdϕ

)2
,

(6.1)
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in which the functions are

A1(r)
2 =

r2

6
, A2(r)

2 =
r2 + 6a2

6
, A3(r)

2 =
κr2

9
, κ(r) =

r2 + 9a2

r2 + 6a2
. (6.2)

In the metric ds2(M3), we have singled out a particular three dimensional subspace which contains

the SU(2) on which we will perform the non-Abelian T-duality.

One can now consider D3 branes at some position ~r in this resolved conifold which gives rise to

a warped supergravity solution supported by RR five form flux and constant dilaton,

ds2 =
1

L2
√
H(~r)

dx21,3 + L2
√
H(~r)ds26, F5 =

1

L4

(
1 + ⋆

)
V ol4 ∧ dH(~r)−1 , eΦ = 1, (6.3)

where we are choosing to extract a factor of L from H with respect to the definition of [9], and

as elsewhere we set gs = 1. The function H(~r) solves a Laplace equation on the resolved conifold

with delta-function sources at the location of the branes. Indeed, if the branes are placed at a fixed

location of the S2(θ, ϕ), which for simplicity we take to be the north pole to have ϕ-independence,

the warp function will be of the form H(r, θ). This yields a smooth solution of supergravity

provided that the Bianchi identity (or Maxwell equation) for F5 is satisfied. Away from the branes,

the differential equation for H(r, θ) reads,

(9a2 + r2)r
∂2H

∂r2
+ 6r

(
∂2H

∂θ2
+ cot θ

∂H

∂θ

)
+ (27a2 + 5r2)

∂H

∂r
= 0. (6.4)

If we assume that H(r) is a function of just the radial direction in the cone, this gives the Pando-

Zayas Tseytlin solution [70] with a singularity characteristic of smearing the branes around the

S2.

More interestingly, the non-smeared solution to eq. (6.4), allowing a more general position for

the branes, was constructed by Klebanov and Murugan [9], as a superposition of an infinite number

of harmonics. It reads,

HKM(r, θ) =
∞∑

l=0

(2l + 1)HA
l (r)Pl(cos θ) , (6.5)

in which Pl are the standard Legendre polynomials and HA
l (r) are a set normalised hypergeometric

functions whose exact details we shall not need for the moment but can be found in equation (33) of

the paper [9]. This infinite summation localises the branes and indeed the solution of Pando-Zayas

and Tseytlin [70] corresponds to truncating to just the zero mode,

HA
l=0 =

2

9a2r2
− 2

81a4
log

(
1 +

9a2

r2

)
(6.6)

The field theory interpretation of the flow described by the background with warp factor H in

eq.(6.5), corresponds to giving a VEV to the dimension two operator

U =
1

N
Tr(|a1|2 + |a2|2 − |b1|2 − |b2|2),
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in which the ai and bi are the bi-fundamental matter fields of the quiver gauge theory. This operator

has protected dimension ∆ = 2 because it is in the multiplet of the baryonic current. Its VEV

also indicates a breaking of the baryonic symmetry. Indeed, placing the branes at the north pole

of the blown up two-sphere is achieved by giving VEVs a1 = a2 = b2 = 0 and b1 = aI. In addition

to providing a VEV for U , this also gives VEVs to an infinite tower of operators. This can be

read from the infinite summation of harmonics that contribute to the solution in eq. (6.5). Each

harmonic entering in the sum is a normalisable mode with a specific fall-off behaviour that defines

in the usual way the dimension of the operator acquiring a VEV. It was shown in [9], that the

presence of a VEV for the field b1, breaks the gauge symmetry SU(N) × SU(N) → SU(N) and

the global symmetry SU(2)×SU(2)×U(1)B ×U(1)R down to SU(2)×U(1)×U(1). The last two

U(1)’s are diagonal combinations between the broken SU(2), U(1)B , U(1)R. Also, it can be seen

that the bifundamental fields a1, a2, b2 now transform under the adjoint of the unbroken SU(N).

The integration out of b1 leaves us with a cubic super-potential indicating that our low energy field

theory is N = 4 Super-Yang-Mills. Other similar flows in more involved field theories have been

studied in [71].

Let us now consider some physical and geometrical aspects of this solution.

6.2 Charges in the Klebanov-Murugan geometry

Let us analyse the quantisation of the RR charge, using the compact manifold defined by X5 =

[θ, ϕ, ω1, ω2, ω3], we impose ∫

X5

F5 = 2κ210T3ND3, (6.7)

where

2κ210 = (2π)7α′4, T3 =
1

(2π)3α′2 , gs = 1,

the previous condition quantises L4 = 27
4 πND3α

′2 with ND3 ∈ N the number of D3 branes sourcing

the solution.

In the full KM solution the D3 charge is computed as

1

2κ210T3

∫

X5

F5 =
1

8
ND3(9a

2 + r2)r3
∫ π

0
sin θ

∂H

∂r
dθ. (6.8)

For the warp factor given in eq. (6.5), this implies computing,

∫ π

0
sin θ∂rH(r, θ) =

∞∑

l=0

(2l + 1)∂rH
A
l (r)

∫ π

0
sin θPl(cos θ)dθ =

∞∑

l=0

(2l + 1)∂rH
A
l (r)2δl,0,

where we used the identity

∫ 1

−1
Pl(x)dx =

sin(lπ)

lπ

2

l + 1
= 2δl,0.
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Indicating that only the zero-mode contributes. Hence we can use HA,l=0 as given by eq. (6.6) and

upon taking the derivative explicitly we find,

∫ π

0
sin θ∂rHKM(r, θ) = − 8

r3(r2 + 9a2)
. (6.9)

Substituting this result into eq. (6.8) confirms indeed that the D3 brane charge is consistent in the

full KM geometry and is given by QD3 = −ND3. Notice that the sign just amounts to a choice of an

orientation (also reflected in the way we computed the ten-dimensional dual ∗10). It is interesting
to observe that the calculation above shows that the charge is all carried by the zero-mode, the

Pando-Zayas-Tseytlin solution. The higher harmonics do not contribute to the quantised charge.

6.3 Limits of the Klebanov-Murugan flow

Let us briefly comment about the end point geometries of the KM flow as this will prove to be

useful for the comparison with the flow after NATD.

As indicated above for large radial distances r ≫ a the metric in eq. (6.1) asymptotes the cone

metric over T 1,1, while HA
l (r) is dominated by its zero mode eq. (6.6), thus at leading order the

warp function becomes

L4H =
L4

r4
+ ..., (6.10)

which corresponds to the AdS5×T 1,1 UV fixed point solution corresponding to the vacua for which

U = 0. In the opposite limit r ≪ a, deep IR region, the behavior is more subtle. Indeed close

enough to the D3 branes stack, r ∼ 0, θ ∼ 0, the metric in eq. (6.1) is given by

ds26 =
2

3
dr2 + d(aθ)2 + (aθ)2dϕ2 +

r2

6

(
ω2
1 + ω2

2 + ω2
3

)
+ ..., . (6.11)

which upon introducing the coordinate transformation

r = 2
√
6R cosα, aθ = 4R sinα (6.12)

the metric in eq. (6.11) becomes, locally, the cone metric over S5; 42dR2 + 42R2ds2S5 Moreover,

following the arguments of [9, 72] the Green’s function will be approximated by,

L4H =
L4
IR

16R4
+ ..., (6.13)

where 4L4
IR = πα′2ND3, which reproduces eq (3.1). This shows that a new throat corresponding

to AdS5 × S5 opens up in the IR.

A natural question to address is what is the fate of physical quantities along this flow. In

particular, an observable which can be defined along the entire RG flow is the c-function, roughly

measuring the degrees of freedom that participate in the dynamics at a given energy. At the end

points of the RG flow this c-function coincides with the central charge and therefore is conjectured
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to satisfy cUV > cIR. Following [60, 37] and according to our normalisations the central charges at

the fixed points of the KM solution are

cN=4 =
1

4
N2

D3, cN=1 =
27

64
N2

D3, (6.14)

which ratio clearly satisfies cUV /cIR = 27
16 > 1 in agreement with the c-theorem. As we will see

below this result will go through even for the end point geometries of the non-Abelian T-dualised

KM solution.

6.4 Dualisation of the Klebanov-Murugan flow

We now apply the technique of non-Abelian T-duality to the geometry in eq. (6.1) along the

directions of the SU(2) isometry parameterised by ωi. The technique has already been outlined in

a preceding section and a set of T-duality rules were given. For concision, below we simply quote

the final result of the dualisation.

6.5 The non-Abelian T-dual IIA solution

The NATD transformation only affects the 3-d part of the metric in eq. (6.1) that contains the

SU(2)-isometry parametrised by ωi. Following the prescription of previous sections this gives,

d̂s2(M3) =
α′2

∆

[
α′2ρ2dρ2 + L4HA2

3A
2
1

(
ρ2 cos2 χdχ2 + ρdρdχ sin 2χ+ (6.15)

sin2 χ
(
dρ2 + ρ2(dξ + cos θdϕ)2

))
+ L4A4

1H
(
cosχdρ− ρdχ sinχ

)2
]
,

where

∆ = L2
√
H
(
α′2ρ2A2

1 sin
2 χ+A2

3(α
′2ρ2 cos2 χ+ L4HA4

1)
)
. (6.16)

As in the case of the dual of AdS5 × S5 we have expressed the Lagrange multipliers as polar

coordinates. The remaining seven-dimensional part of the metric remains unchanged.

The NS 2-form generated by the non-Abelian T-duality, is given by,

B̂2 =
L2α′√H

∆

[
α′2ρ2 cosχ sin2 χ(A2

3 −A2
1)dξ ∧ dρ+ α′2ρ3 sinχ(A2

3 cos
2 χ+A2

1 sin
2 χ)dξ ∧ dχ

−A2
3 cos θ

(
L4A4

1ρH sinχdχ ∧ dϕ+ cosχ(α′2ρ2 + L4A4
1H)dϕ ∧ dρ

)]
, (6.17)

and the dilaton is,

eΦ̂ =
α′3/2
√
∆
. (6.18)

The RR-sector is given by

F̂2 =
L4A3A

2
1

α′3/2√κ sin θ

(
A2

2κ
∂H

∂r
dθ ∧ dϕ+

∂H

∂θ
dϕ ∧ dr

)
, F̂4 = B̂2 ∧ F̂2. (6.19)

Let us study now the corresponding quantised charges.
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6.6 Quantised Charges and Large Gauge Transformations

To begin with, it is clear from eq. (6.19) that there is a non zero D6 Page charge,

QD6 =
1

2κ210T6

∫

S2

F̂2 =
1

8
ND6(9a

2 + r2)r3
∫ π

0
sin θ

∂H

∂r
dθ = ND6, (6.20)

where we fix L4 = 27
2 α

′ 2ND6. One can calculate the quantity b0 defined in eq.(3.11). On the cycle

ϕ = 2π − ξ, dρ = 0, dθ = 0 the NS two form is simply

B̂2 = α′ρ sinχdχ ∧ dξ,

which gives b0 = ρ
π . This suggests, following the logic below eq.(3.11)—and first proposed in [28],

[54]– namely that on crossing the points ρ = nπ, one should perform gauge transformations of the

form

∆B̂2 = −α′nπ sinχdχ ∧ dξ,

to satisfy the requirement that

0 ≤ 1

4π2

∫

S2

B̂2 < 1.

We may compute the page charge of D4 branes induced after n-large gauge transformation and

find the result

1

2κ210T4

∫

S2×S2

(
F̂4 − (B̂2 +∆B̂2) ∧ F̂2

)
= n

1

8
ND6(9a

2 + r2)r3
∫ π

0
sin θ

∂H

∂r
dθ.

In other words

QPage
D4 = nQPage

D6 .

Just like in the case of AdS5×S5 studied previously, we generate D4 branes. The D6 branes can be

thought as D4’s that polarised under the influence of the B2-field. They are supersymmetic when

wrapping ρ and (ρ, χ, ξ) respectively and placed at r = 0.

6.7 Limits of the NATD Klebanov-Murugan flow

In this section we shall identify the end point geometries of the KM flow after dualisation paralleling

the arguments given in Section 6.3.

The unperturbed geometry at the UV fixed point can be identified by taking the limit r ≫ a in

the dualised KM solution of eqs. (6.15). After the limit, one can easily see that, at leading order,

this solution will approach the one of the dualised KW geometry. This background is related to the

gravitational duals of N = 1 TN or ‘Sicilian’ theories first introduced in [12] and carefully studied

in [14, 73].

In the IR, as the duality transformation has acted non trivially on the internal geometry, one

should not expect that locally the space will look like flat space. Moreover, as we approach this

fixed point the resulting geometry will develop a singularity. To be more precise, close to the stack
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of branes and using the coordinate transformation in eq. (6.12) one can prove that, at leading

order, the background in eq. (6.15) approximates that of eq. (3.2). This solution, as explained in

Section 3, corresponds to a background of the Maldacena-Gaiotto type. Therefore we can interpret

the flow described by the background in eqs. (6.15)-(6.19) as realising a deformation of a particular

Sicilian CFT by an operator of dimension two. The field theory flows in the IR to a particular

Gaiotto-Maldacena CFT.

Finally, let us study the fate of the central charges of the end point geometries of the dualised

KM flow. Indeed, quite generally, it has been shown that the central charge of the backgrounds

obtained via NATD is an invariant up to a constant term [23]. For the fixed point geometries after

NATD using a similar logic to the one described in Section 3 we find central charges

ĉN=2 =
1

12
N2

D6N
3
NS5, ĉN=1 =

9

64
N2

D6N
3
NS5, (6.21)

which ratio ĉUV /ĉIR = 27
16 is in agreement with the c-theorem. As pointed out in [23], the quotient

of central charges before and after non-Abelian T-duality is invariant.

We will now move to calculate field theory observables of our new Type IIA background. More

precisely, we will study baryonic condensates and the axionic strings associated with the baryon

symmetry breaking. This was studied in great detail in the papers [72]. Nevertheless, note that

the calculations of the papers [72] are based on the configuration being AdS5 × X5 and RR five

form (or an AdS4 ×X7 with F4 in M-theory). In the next subsection, we will compute observables

in the Type IIA background of eqs. (6.15)-(6.19). The structure of the geometry and fluxes is

very different, but the matching of our results with those in [9], [74], [72] suggests that the nice

Mathematics described by [72] may also be at work in our IIA backgrounds.

6.8 Comments on the field theory and its observables

In this section, we briefly comment on two observables in the field theory dual to our new background

generated by NATD in eqs.(6.15)-(6.19). The first of them, the baryonic condensate, was originally

analyzed in [75]. The idea was used in [9] to study the one point function of a particular baryonic

operator in the field theory dual to the warped resolved conifold prior to non-Abelian T-dualisation

—see also [72] for a general discussion. The second observable, the axionic strings, that appear

due to the existence of a Goldstone boson associated with the baryonic symmetry breaking, was

studied in [74]. Below, we find the objects that represent these QFT observables in our type IIA

background.

6.8.1 Baryonic condensates

In [9] it was shown that the baryonic operator VEV’s correspond to D3 branes wrapping the R4

bundle of the resolved conifold. Here we will propose that such baryonic operators correspond to

D0 branes which extend in the radial direction, r, in the range [r0, rΛ] (a UV-cutoff, that should

be supplemented by the usual substraction procedure) and a D2 brane which, in addition to their
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radial extent, wrap the S2 spanned by (χ, ξ) . The D0 branes will be placed at arbitrary fixed values

of (θ, ϕ) with ρ = 0. For the D2 branes, things are little more subtle as large gauge transformations

are relevant for this object.

The corresponding induced 1d metric and dilaton for the D0 brane are

d̂s
2

D0 =
L2H1/2

κ(r)
dr2, e−Φ̂ =

√
∆

α′3/2

∣∣∣
ρ=0

=
L3H3/4A2

1A3

α′3/2 , TD0 =
1

α′1/2 . (6.22)

Evaluating these in the DBI action we get

SD0 = −TD0

∫ rΛ

r0

e−Φ̂dr
√
det[ĝD0],

=

(
3ND6

4

)∫ rΛ

r0

drr3
∞∑

l=0

(2l + 1)HA
l (r)Pl(cos θ). (6.23)

We can compare this result with the one obtained in equation (6) of [9], and conclude that the rest

of the calculation for e−SD0 will go exactly as in [9]. Indeed, the dimension of the baryon field after

dualisation is ∆ = 3ND6

4 .

For the D2 brane, things are more complicated. This is because it extends along r and wraps

(χ, ξ) which means the NS 2-form contributes to its action. We choose to place the D2 at an

arbitrary point on ρ within a cell of length π i.e. ρ ǫ [nπ, (n + 1)π), as discussed earlier, this will

require a large gauge transformation that will send B̂2 → B̂2 +∆B̂2, which gives

B̂2 +∆B̂2 = α′ sinχ

(
L2ρ3α′ 2√H

∆

(
A2

1 sin
2 χ+A2

3 cos
2 χ
)
− nπ

)
dχ ∧ dξ, (6.24)

while the induced metric on the world volume of the D2 is

ds2D2 = L2
√
H

(
dr2

κ
+
α′ 2L2ρ2A1

√
H

∆

(
A2

1 sin
2 χdχ+A2

3

(
cos2 χ2 + sin2 χdξ2

))
)
. (6.25)

One can then compute the DBI action, which turns out to be rather complicated except at ρ = nπ,

which is an extremum of the integrand, and leads to

e−Φ̂
√

det[gD2 + B̂2 +∆B̂2]
∣∣∣
ρ=nπ

=
L4nπr3H

18
√
α′ sinχ , (6.26)

and so the DBI action gives

SD2,n = −TD2

∫ rΛ

r0

∫

S2

e−Φ̂drdχdξ

√
det[gD2 + B̂2 +∆B̂2]

∣∣∣
ρ=nπ

= n

(
3ND6

4

)∫ rΛ

r0

drr3
∞∑

l=0

(2l + 1)HA
l (r)Pl(cos θ). (6.27)

Thus the D2 branes give rise to a non zero baryonic VEV at each point ρ = nπ for n > 0 and the

dimension of the corresponding baryon field is ∆n = n3ND6

4 = 3ND4

4 . This gives a total of (n + 1)

baryonic vevs, one coming from the D0 and n coming from D2 branes.
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One can also check that the D0 brane is SUSY at ρ = 0 and also are the D2 branes precisely at

ρ = nπ. To do this one can use the SU(2)-structure calibration form

Ψcal = −8e−Φ̂−AImΨ̂− ∧ e−B̂2−∆B̂2

which may be extracted from Section 5 and Appendix B. The calculation amounts to showing that

Ψ
(1)
cal

∣∣∣
ρ=0

= e−Φ̂
√

det[gD0]
∣∣∣
ρ=0

dr, Ψ
(3)
cal

∣∣∣
ρ=nπ

= e−Φ̂
√

det[gD2 + B̂2 +∆B̂2]
∣∣∣
ρ=nπ

dr ∧ dχ ∧ dξ,

where the superscript refers to the form degree. Let us discuss axionic strings following the treat-

ment in [74].

6.8.2 Axionic strings

In [74], the authors study the presence of axionic strings, namely objects that couple to the Gold-

stone mode that follows the spontaneous baryonic symmetry breaking. The authors of [74] proposed

that the dynamics of the axionic string is given by the DBI action of a D3 brane placed at r = 0

which wraps the S2 of the manifold

Σ4 = [t, x1, θ, ϕ].

This leads to

Taxion,D3 =
a2

2πα′2gs
,

In Type IIB. We propose that in our Type IIA background, the axionic string is represented by a

D4 wrapped on Σ5 = [t, x1, θ, ϕ, ρ] The Lagrangian density of the DBI term of such a brane is

Laxion,D4 = e−Φ̂
√

− det(g +B) =
A2√
α′

√
A2Ξ1 cos2 θ +A2

2Ξ2 sin
2 θ, (6.28)

where

Ξ1 = α′2ρ2 + L4A4
1H cos2 χ, Ξ2 = α′2ρ2 + L4A2

1H
(
A2 sin2 χ+A2

1 cos
2 χ
)
.

We fix the χ dependence by minimising eq. (6.28) which leads to χ = pπ/2 for some integer p, we

find

Taxion,D4 =
a2N2

NS5

8πα′2 , (6.29)

where the N2
NS5 is due to integrating in 0 < ρ < (n+1)π and we use that r4H(r, θ) → 0 away from

θ = 0.

In this way we close this brief analysis of two interesting dual field theoretical observables in our

new Type IIA backgrounds. We present now some summary and conclusions for this work.

26



7 Summary and Conclusions.

In this work we elaborated on various aspects of the application of non-Abelian T-duality on string

backgrounds with well-established holographic field theory duals.

To begin with, we discussed new aspects of the case of AdS5 × S5. We achieved an improved

understanding of the range of the T-dual coordinates and a sharp expression for the holographic

central charge, connecting our examples with others already studied in the bibliography.

Then, we presented a set of general and powerful formulas showing that when non-Abelian T-

duality is applied on a large class of background (of relevance to holography), it acts as a solution

generating technique. This result heavily used the formalism of SU(2) and SU(3)-structures exis-

tent for backgrounds with N = 1 SUSY in four dimensions. The existing literature [20, 64, 67, 68]

does already imply the solution generating nature of the duality when performed on our ansatz,

but in addition to explicitly presenting the dual G-structure, we have provided an alternative proof

confirming the result of [20] in this case.

Finally, as an application of the material developed above, we studied the non-Abelian T-duality

of the Klebanov-Murugan background, generating a type IIA (or M-theory) background describing

a very interesting flow. The end points of this flow are supergravity solutions that are related to

the gravity duals of N = 1 and N = 2 TN CFTs in the UV and IR respectively. Different aspects

of the field theory dual to our new Type IIA configuration have been discussed. Various technical

appendixes complement the presentation.

This work opens the field to many possible future developments. At present, the most interesting

avenues to pursue are described below.

To begin with, further developing the map between Gaiotto field theories and backgrounds

obtained using non-Abelian T-duality. In this line, to find, if possible, other Gaiotto-Maldacena

backgrounds using non-Abelian T-duality on a given seed configuration.

It would be interesting to explore in more detail the holographic understanding of the ρ-coordinate

and better explain its range. For example, if its non-compactness implies that we are dealing with

a QFT in 4+1 dimensions. Also, it would be good to understand better the Myers effect we are

describing in Section 3 for different intervals in the ρ-coordinate.

Our result for the central charge c ∼ N2
D6N

3
NS5 suggest that we are dealing with QFT similar to

those recently studied in [76] [62]. It would be important to make this correspondence sharper.

On the geometry side, it is worth extending the derivation of the T-dual G-structure given in

Sections 4-5 to other cases. For example to include cascading theories, where the fields F3,H3,Φ are

present in the seed solution or situations with sources in the seed solution (corresponding to QFT

with flavors [77]). Indeed calibrated smeared sources, were not considered in [20]. An extended

G-structure derivation would be a necessary step to prove that non-Abelian T-duality is a solution

generating technique for supersymmetric R1,3×M6 in the presence of such sources, using the results

of [79, 80]. It is likely that the criteria for SUSY to be preserved is the existence of a set of N = 1

pure spinors Ψ± supported by the seed solution that are independent of the SU(2) coordinates
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in the frames of eq. (4.2). A similar condition on the Killing spinor is required for unbroken

supersymmetry.

Of slightly different geometrical interest would be to apply our results, summarised in the table of

Appendix B to other backgrounds. Also, the SU(2)diag-background obtained applying non-Abelian

Duality to the KW solution was not studied in the bibliography. It may present very interesting

holographic properties, of interest to physicist working on N = 1 TN theories. In this same line,

application of our formalism to the background proposed by the authors of [10] is suitable to provide

us with the holographic version of an RG flow interpolating between N = 2 and N = 1 TN SCFT

as one flows from the UV to the IR. Of similar interest is applying non-Abelian T duality to the

background in [82], however this would require a generalisation of the ansatz of Section 4.

We hope to study these and other topics in forthcoming publications.
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A Further comments on the non-Abelian T-dual of AdS5 × S5

A.1 A comment on the potentials VST and Vapp

It may seem a reason to worry that the potential obtained in [21] is different from the approximate

one obtained in a series expansion close to σ ∼ η ∼ 0 on potential in eq.(3.9), for the solution in

[52]. We will analyse this more closely below.

To establish the comparison, it is convenient to work in eleven dimensions. We will uplift the

solution in eq.(3.5). We will use the well-known formulas,

ds211 = e−2Φ/3ds210 + e4Φ/3(dx11 +A1)
2,

C3,M = B2 ∧ (dx11 +A1), F4,M = dC3,M = B2 ∧ F2 +H3 ∧ (dx11 +A1).

28



After a short calculation, using that Φ0 is the constant value of the dilaton and rescaling

x11 = 2µ4
√
α′x11

we find,

ds211 =
α′e−2Φ0/3

µ2
(
V̇∆

2V ′′ )
1/3
[
4AdS5,µ + µ2dΣ5 + 8e2Φ0µ14(

2V̇ − ˙̇V

V̇∆
)(dx11 −

2V̇ V̇ ′

2V̇ − ˙̇V
dβ)2

]
,

C3,M = 2µ6α′3/22(
V̇ V̇ ′

∆
− η)dΩ2 ∧ (dx11 −

2V̇ V̇ ′

2V̇ − ˙̇V
dβ). (A.1)

We now choose conveniently e−2Φ0 = 4µ12 and use that the eleven dimensional Newton constant is

related to the string tension as κ2/3 = (π2 )
2/3L2

P = 41/3µ4α′. For the case of the IIA background in

eq.(3.4) we can find a solution to the supergravity approximation of M-theory [13] reads,

ds211 =
κ2/3

µ2

( V̇∆

2V ′′

)1/3[
4AdS5,µ +

2µ2V ′′V̇
∆

dΩ2
2(χ, ξ) +

2µ2V ′′

V̇
(dσ2 + dη2) +

4µ2V ′′

2V̇ − ˙̇V
σ2dβ2 +

2µ2(2V̇ − ˙̇V )

V̇∆
(dx11 +

2V̇ V̇ ′

2V̇ − ˙̇V
dβ)2

]
.

C3 = 2κ
[
− V̇ 2V ′′

∆
dβ + (

V̇ V̇ ′

∆
− η)dx11

]
∧ dΩ2. (A.2)

We can define an ’interpolating potential’

Vint = η
(
log(

σ

k
)− σ2

2k

)
+
η3

3k
. (A.3)

Such that for k = 1, we get VST and for k = 2 we get the approximate potential. We will calculate

the components of the metric for a generic value of k. We obtain,

( V̇∆

2V ′′

)
=

(k2 − σ2)

4k2
(k2 + 4kη2 − 2kσ2 + σ4),

2V ′′V̇
∆

=
4η2(k − σ2)

k2 + 4kη2 − 2kσ2 + σ4
.

2V ′′

V̇
=

4

k − σ2
,

4V ′′

2V̇ − ˙̇V
σ2 =

4σ2

k
,

2(2V̇ − ˙̇V )

V̇∆
=

4k3

(k − σ2)(k2 + 4kη2 − 2kσ2 + σ4)

2V̇ V̇ ′

2V̇ − ˙̇V
=

(k − σ2)2

k2
, (A.4)

V̇ 2V ′′

∆
=

8η3(k − σ2)2

k(k2 + 4kη2 − 2kσ2 + σ4)
, (

V̇ V̇ ′

∆
− η) = − −8kη3

k2 + 4kη2 − 2kσ2 + σ4
.

Given these ’scalings’ with the parameter k, we observe that if we change variables η →
√
kη and

σ →
√
kσ, all the terms in the metric are invariant (the overall global factor scales like k1/3), while

the last two terms, that enter in the definition of the C3 field scale as k1/2. Hence, we could rescale

the Newton constant in eleven dimensions

κ→ κ
√
k; (A.5)

so that both in the metric and in the C3 these global ’scalings’ are absorbed. These shows that

both solutions are the same.
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A.2 An interesting operator and cells of the ρ-coordinate

Let us now display two calculations that will add support to our interpretation of the ρ coordinate

presented in Section 3, its range and division in cells of size π. Below, we work mostly with the

coordinates (η, σ) related to (ρ, α) by eq.(3.3).

We will compute first the mass of the operator discussed by Gaiotto and Maldacena around

eq.(2.10) of their paper [13]. We start by proposing that in the coordinates of eq.(A.2), the operator

is represented by a M2 brane that extends in the three-space Σ3 = [t, x11, η]σ=0. This is the same

set of coordinates used in eq.(3.4) for the Type IIA background. The three-cycle is placed at σ = 0

and R = R0.

We then calculate the induced metric in M-theory,

ds2ind =
κ2/3

µ2
(
V̇∆

2V ′′ )
1/3
[
− 4R2

0dt
2 +

2µ2(2V̇ − ˙̇V )

V̇∆
dx211 + 2

V ′′

V̇
dη2
]
. (A.6)

computing the Action of this M2 brane and using that it is equal to the product of its Energy E

and the time interval elapsed τ , we have

S = TM2

∫

Σ3

√
−detgind = E × τ =

2π

µ
Lx11

TM2κR0τ

∫ (n+1)π/2

0
dη ∼ (n+ 1). (A.7)

So, we observe that the mass of the BPS operator is proportional to the range of integration of

the η-coordinate. This is proportional the range of the ρ-coordinate according to eq.(3.3). As we

discussed this integral should be, after crossing the position ρ = (n+ 1)π, the same as the number

of crossed NS-five branes in the IIA picture. This is then the number of M5 branes in the M-theory

picture. Hence the dimension or mass of the BPS operator is proportional to the number of M5-

branes, ∆ ∼ (n + 1). This coincides with the result of [13] if we interpret the range of the η or

ρ-coordinates as we explained in Section 3, rendering support to our proposal.

The second point we want to briefly discuss is the calculation of the number of M5-branes directly

in eleven dimensions. We will integrate F4 = dC3 given by eq.(A.2). The four cycle on which we

will integrate is given by Σ4 = [x11, η, χ, ξ]σ=1, that is the cycle is sitting on the singularity of the

background at σ = 1 (or α = π
2 ). We calculate the four form in this submanifold and we obtain,

F4|Σ4
= 2 sinχdχ ∧ dξ ∧ dx11 ∧ dη. (A.8)

The integral we want to consider is

TM5

∫

Σ4

F4 = 2TM5

∫ π

0
sinχdχ

∫ 2π

0
dξ

∫ L11

0
dx11

∫ (n+1)π/2

0
dη ∼ (n+ 1). (A.9)

We observe then that in coincidence with the point made around eq.(A.7) above and in Section 3,

the range of the η or ρ-coordinates should be associated with the number of NS-five branes in the

IIA picture or M5-branes in the eleven dimensional one. As above, this computation supports our

proposal of Section 3. It should be interesting to extend this sort of calculations to geometries that

do not admit an electrostatic description [83].
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B Backgrounds falling into the general ansatz

Table 1: A compendium of AdS5 supergravity backgrounds within the ansatz use in section 4

A λ1 λ2 λ3 h1 h2 h3 A3 θ−

a) T 1,1 w.r.t. SU(2)L log r 1√
6

1√
6

1
3

1√
6
sin θdφ 1√

6
dθ dr

r cos θdφ 0

b) T 1,1 w.r.t. SU(2)diag log r cos θ√
3

1√
3

√
f

3
√
2

−
√
8 sin θdφ√
3
√
f

√
2

3
(2r cos θdθ+3 sin θdr)

r
√
f

√
2(2 cos θdr−r sin θdθ)

r
√
f

8 cos θ
f dφ 2φ

c) KM flow of [9] −1
4 logH H1/4A1 H1/4A1 H1/4A3 H1/4A2 sin θdφ H1/4A2dθ H1/4 dr

κ cos θdφ 0

d) KW flow of [10] logH0
H3

H0

H4

H0

vH5

H0

uH1

H0
dφ −H1

H0
du H2

H0
dv H6dφ νφ

e) AdS5 × Y p,q logR 1−y
6

1−y
6

√
g 1

3

√
qw
g dα

(1−y)dy
3
√
gqw + dR

6R

√
qw
g

dy
6
√
g − dR

3R
(1−y)√

g
fw
g dα 0

f) AdS5 × S5 log 2R cosα cosα cosα 2R cosαdα+sinαdR
R 2 sinα dβ 2 cosαdR−R sinαdα

R 0 β

Row a. presents the AdS5 × T 1,1 background adapted to the SU(2)L isometry group; Row b. is the AdS5 × T 1,1 background
adapted to the diagonal SU(2)diag isometry group in which we define f(θ) = 7 + cos 2θ. Row c. is the Klebanov Murugan flow
where the functions A1(r), A2(r), A3(r) and κ(r) entering into the resolved conifold metric are defined in eq. (6.2) and H(r, θ)
obeys a Laplace equation given in eq. (6.4); Row d. gives the ansatz of [10] for the Klebanov Witten flow in which Hi(u, v) for
i = 1 . . . 5 obey a set of BPS equations (see section 4 of [10]) and can be determined in terms of a single function obeying a
quasi-linear, second order PDE “master equation”, and H0(u, v) is a warp factor that obeys a similar master equation. Row e.
indicates the AdS5 × Y p,q geometry of [65, 66] where the functions f(y), q(y), w(y) are defined in [66] and g = q

6 + wf2 . For
completeness, f) gives one option for embedding AdS5 × S5 into our ansatz, where the RAdS = RS5 = 2. In all cases constant
factors such as L are set to unity.

For convenience we recall the full IIB ansatz is given in terms of this data by

ds2 = e2Adx21,3 +
∑

i=1...3

(hi)2 +
∑

j=1...3

(ej)2 , ei = λi(ωi +Ai) , F5 = (1 + ⋆10)(⋆3dA) ∧ e1 ∧ e2 ∧ e3 ,

J = h3 ∧ e3 + e1 ∧ e2 + h1 ∧ h2 , Ωh = (h3 + ie3) ∧ (e1 + ie2) ∧ (h1 + ih2) , A1 = A2 = 0 .
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C Rules for non-Abelian T-duality

In this appendix we shall present a relatively simple set of Buscher rules that give the non-Abelian

T-dual of a background with a SU(2) isometry that fall within the class described in section 4.

We perform the non-Abelian T-dualisation on these frame fields and choose a gauge fixing in

which the Lagrange multipliers, vi, play the rôle of T-dual coordinates. The T-duality acts only

on the frame fields ei introduced in eq. (4.2) leaving the remaining seven-dimensional part of the

geometry untouched. A direct application of the Buscher procedure described in detail in [23] shows

that these frame fields are T-dualised to

êi± =
1

∆

(
µi± + νi±

)
, (C.1)

where
∆ = detM = λ21λ

2
2λ

2
3 + λ2i v

2
i ,

µi± = ǫ(i)jkλ(i)λ
2
jvjdvk ∓ v(i)λ(i)vjdvj ∓ λ21λ

2
2λ

2
3

dv(i)

λ(i)
,

νi± = λ2jv
2
jλ(i)A(i) − λ2jvjAjλ(i)v(i) ∓ ǫ(i)jkλ

2
1λ

2
2λ

2
3

Ajvk
λ(i)

,

(C.2)

in which indices in brackets are not summed. The plus and minus frame fields are those seen by

left and right movers respectively after duality. Though they seem formidable, these frame fields

obey nice relations

3∑

i=1

λiviê
i
± = ∓vidvi, (C.3)

ê1± ∧ ê2± ∧ ê3± = ∓λ1λ2λ3
∆

(
dv1 ∧ dv2 ∧ dv3 +A[ivj] ∧ dvi ∧ dvj + ǫijk(vivkdvi +

1

2
v2kdvk) ∧ Ai ∧Aj

)
.

The T-dual metric on the three-dimensional space in which the duality acts is given by

d̂s
2
=
∑

i=1...3

êi+ê
i
+ =

∑

i=1...3

êi−ê
i
− = Gijdv

idvj + 2Aidv
i + AiGij

Aj ,

Gij =
1

∆

(
vivj +

λ21λ
2
2λ

2
3

λ2(i)
δ(i)j

)
, Ai =

λ21λ
2
2λ

2
3

∆
ǫ(i)jk

Ajvk
λ2(i)

.

(C.4)

The T-dual NS two form is given by,

B̂ =
1

2
ǫijkvi

êj± ∧ êk±
λjλk

+ ǫijkvjλ
−1
k Ai ∧ êk± +

1

2
ǫijkviAj ∧ Ak ∓ λiê

i
± ∧Ai ,

=
1

2∆

(
ǫijkλ

2
i vidvj ∧ dvk − λ21λ

2
2λ

2
3ǫijkviAj ∧ Ak + 2λ21λ

2
2λ

2
3dvi ∧ Ai + 2λ2jvjvidvi ∧ Aj

)
(C.5)

and, as usual, the Dilaton acquires a one-loop shift

e−2Φ̂ = e−2Φ∆ . (C.6)
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Since êi+ and êi− define the same metric they are related by a Lorentz rotation,

ê+ = Λê− , Λi
j =

1

∆

((
∆− 2λ21λ

2
2λ

2
3

)
δij − 2λiviλjvj − 2λ1λ2λ3ǫijkvkλk

)
. (C.7)

This Lorentz rotation gives rise to an action on spinors

ΩΓiΩ−1 = Λi
jΓ

i , Ω =
Γ11

∆

(
λ1λ2λ3Γ

123 + λiviΓ
i
)
. (C.8)

Using this rotation one derives that the T-dual RR forms

F̂2 = λ1λ2λ3F2 , F̂4 =
1

2
ǫijkλiviF2∧ êj+∧ êk+ = B̂2∧ F̂2+(dvi∧Ai+

1

2
ǫijkviAj ∧Ak)∧ F̂2 , (C.9)

together with their Hodge duals,

F̂6 = − ⋆ F̂4 = e4A ⋆3 F2 ∧ d4x ∧ vidvi ,

F̂8 = ⋆F̂2 = e4Aλ1λ2λ3 ⋆3 F2 ∧ d4x ∧ ê1+ ∧ ê2+ ∧ ê3+ = B ∧ F̂6 −
1

3!vi
ǫijkdvj ∧ dvk ∧ F̂6 .

(C.10)

The frame fields that enter in eq. (C.3) are the ones that arise directly by following the Buscher

procedure as detailed in the appendix of [23] however these are not the simplest ones with which

to describe geometries with supersymmetry. Simpler results are obtained after a supplementary

Lorentz rotation of the frame fields in the basis Ê = {h3, ê1+, ê2+, ê3+} given by [30]:

R =
−1√
1 + |ζ|2




1 ζ1 ζ2 ζ3

−ζ1 1 −ζ3 ζ2

−ζ2 ζ3 1 −ζ1
−ζ3 −ζ2 ζ1 1


 , ζ i =

λivi
λ1λ2λ3

. (C.11)

Setting A1 = A2 = 0 (as required by supersymmetry) and computing Ẽ = R · Ê produces the

rather simple result of the frame fields in (5.6).

D Verification that the Dual SU(2)-Structure obeys the Super-

symmetry Conditions

In this appendix we show explicitly that the SU(2)-Structure of Section (5) obeys the required

supersymmetry conditions.

Since the NS 3-form H3 is generically rather complicated we find it easier to work with a modified

form of the supersymmetry conditions, namely

d(e2A−Φ̂Ψ̂+ ∧ e−B̂) = 0, (D.1)

d(eA−Φ̂ReΨ̂− ∧ e−B̂) = 0, (D.2)

d(e3A−Φ̂ImΨ̂− ∧ e−B̂) =
e4A

8

(
⋆6 F̂2 − ⋆6F̂4

)
∧ e−B , (D.3)
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where H does not appear explicitly8. Eq. (D.1) yields two conditions

d(e3A−Φ̂+iθ̂+ω) = 0 , d(e3A−Φ̂+iθ̂+ω ∧ (2B̂ − z ∧ z̄)) = 0 . (D.4)

Using eq. (4.12) and eq. (4.14) it is possible to show that

ie3A−Φ̂+iθ̂+ω = d

(
e3A+iθ̂+λ3(λ1v2 − iλ2v1)(h

1 + ih2)

)
, (D.5)

so the first of these is solved trivially. In a similar vein, one can re-express

ie3A−Φ̂+iθ̂+ ∧ ω ∧ (2B̂ − z ∧ z̄)) =− 2
(
A3 − iλ−1

3 h3
)
∧
[
− λ3e

3A+iθ̂+
(
h1 + ih2

)
∧ d
(
(λ1v2 − iλ2v1)

)
+

(
λ1v2 − iλ2v1

)
d
(
λ3e

3A+iθ̂+(h1 + ih2)
)]

∧ dv3. (D.6)

The term in square brackets is exact so one need only consider d(A3 − λ−1
3 h3) to take the exterior

derivative. Clearly this gives zero when wedged into the second square bracketed term, as M3 is

three-dimensional, the remaining term then vanishes once we apply eq.(4.13).

Moving on the eq. (D.2) we find three further conditions,

d
(
e2A−Φ̂w

)
= 0, d

(
e2A−Φ̂(v∧j+w∧B̂)

)
= 0, d

(
e2A−Φ̂(w∧j∧j−w∧B̂∧B̂−2v∧j∧B̂)

)
= 0. (D.7)

Using eq. (4.10) one finds that

e2A−Φ̂w = −d
(
e2Aλ1λ2v3

)
, (D.8)

e2A−Φ̂(v ∧ j + w ∧ B̂) = e2A(h1 ∧ h2 − λ3A3 ∧ h3) ∧ vidvi − d(e2Aλ1λ2) ∧ dv1 ∧ dv2 − e2Aλ1λ2λ3V ol(M3),

e2A−Φ̂(w ∧ j ∧ j − w ∧ B̂ ∧ B̂ − 2v ∧ j ∧ B̂) = −2e2A(h1 ∧ h2 − λ3A3 ∧ h3) ∧ d3v,

where d3v = dv1 ∧ dv2 ∧ dv3. These are all closed due to eq. (4.11) and so eq. (D.2) is satisfied.

All that remains is to show that eq. (D.3) is also solved. It gives rise to the following conditions,

d
(
e4A−Φ̂v

)
+ e4A ⋆6 F̂4 = 0 (D.9)

d
(
e4A−Φ̂(w ∧ j − v ∧ B̂)

)
− e4A

(
⋆6 F̂2 + B̂ ∧ ⋆6F̂4

)
= 0,

d
(
e4A−Φ̂(v ∧ j ∧ j − v ∧ B̂ ∧ B̂ + 2w ∧ j ∧ B̂)

)
+ e4A

(
2B̂ ∧ ⋆6F̂2 + B̂ ∧ B̂ ∧ ⋆6F̂4

)
= 0.

First we need to find the flux terms which may be extracted from eq. (5.3). We have

e4A ⋆6 F̂4 = −d
(
e4Avidvi

)
, e4A

(
⋆6 F̂2 + B̂ ∧ ⋆6F̂4

)
= −d

(
e4Ad3v

)
, B̂ ∧ B̂ ∧ ⋆6F̂4 = B̂ ∧ ⋆6F̂2 = 0,

(D.10)

8These are simply e−B∧ the standard differential supersymmetry condition the pure spinors must satisfy, which
may be found in section 4.1 of [78].
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where we use that ⋆3F2 = 4dA. The terms inside derivatives can be manipulated with eq. (4.10)

to give

e4A−Φ̂v = e4Avidvi −
1

2
d
(
e4Aλ21λ

2
2

)
,

e4A−Φ̂(w ∧ j − v ∧ B̂) = −e4Ad3v − e2Ad
(
e2Aλ1λ2v3

)
∧
(
h1 ∧ h2 − λ3A3 ∧ h3

)
,

e4A−Φ̂(v ∧ j ∧ j − v ∧ B̂ ∧ B̂ + 2w ∧ j ∧ B̂) = −2e4Aλ3dv1 ∧ dv2 ∧ V ol(M3). (D.11)

Acting on these with the exterior derivative and using eq. (4.11) then gives precisely minus the

contribution coming from the fluxes, solving eq. (D.3). This completes the demonstration that the

pure spinor conditions are solved after dualisation.
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