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Abstract

We construct two-parameter families of integrable A-deformations of two-dimensional field theories.
These interpolate between a CFT (a WZW/gauged WZW model) and the non-Abelian T-dual of a prin-
cipal chiral model on a group/symmetric coset space. In examples based on the SU(2) WZW model and
the SU(2)/ U (1) exact coset CFT, we show that these deformations are related to bi-Yang—Baxter general-
isations of n-deformations via Poisson—Lie T-duality and analytic continuation. We illustrate the quantum
behaviour of our models under RG flow. As a byproduct we demonstrate that the bi-Yang—Baxter o-model
for a general group is one-loop renormalisable.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction and motivation

One of the most powerful tools available to the modern holographic practitioner is integra-
bility. Most famously, the problem of determining the anomalous dimensions of single trace
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operators in the planar limit of A" = 4 supersymmetric Yang-Mills gauge theory with gauge
group SU(N) can be mapped to the problem of determining eigenvalues of an integrable spin-
chain Hamiltonian [1]. On the other side of the AdS/CFT conjecture, the AdSs x $3 string
o-model is, classically at least, integrable. The reason for this is that the o-model’s target space
is exceptionally symmetric; the world sheet theory takes the form of a o-model on a semi-
symmetric space PSU(2,2(4)/SO(4,1) x SO(5) [2]. The two-dimensional o-model admits a
Lax pair formulation from which an infinite tower of conserved quantities can be deduced [3].

Given this success, one would hope to find ways in which the AdS/CFT correspondence can
be generalised from the AdSs x §> setting whilst still maintaining the properties of integrability.
Two novel and related classes of two-dimensional o-models, that we shall refer to as n- and
A-deformations, have recently been developed and provide a new perspective on this challenge.

The n-deformation of the AdSs x S° superstring proposed by Delduc, Magro and Vicedo [4,5]
is a generalisation of the Yang—Baxter (YB) deformations introduced by Klim¢ik in [6]. A central
role in the construction of such YB deformations is played by the antisymmetric R-matrix; an
endomorphism of a Lie-algebra g that obeys a modified YB (mYB) equation

[RA, RB]—R(RA, Bl+[A,RB]) = —c*[A,B], VYA,Beg, ceC. (1.1)

There are three distinct choices for the parameter c; >0, c? <0 and ¢ =0 and the corre-
sponding solutions of the mYB are referred to as being, respectively, on the real, complex and
classical branch.! The complex branch, c? <0, is the setting for the n-deformations. Using such
an R-matrix one can construct a one-parameter family of deformations of the principal chiral
model on a group G which were shown in [6,7] to be integrable. This approach was generalised,
and integrability shown, for symmetric cosets in [4] and for semi-symmetric spaces in [5]. These
n-deformations are particularly interesting since although the corresponding target spaces only
display an Abelian subset of the original AdSs x S° isometry group, it is thought that the full
symmetries of the string o-model are governed by a quantum-group with a real quantum-group
parameter ¢ = e/ " [4], where f is a real function of 7, and perturbative evidence for this has
been given in [8].

The A-deformation was introduced by one of the present authors in [9] and can be realised
as an integrable interpolation between an exact CFT (a WZW/gauged-WZW model) and the
non-Abelian T-dual of the principal chiral model on a group/coset space. In the bosonic case this
deformation is constructed by applying a gauging procedure to the combination of a PCM on a
group (coset) and a (gauged)-WZW model. The deformation parameter is given in terms of the
radius of the PCM /{2, and the WZW level &, by

k
= i
For cosets, this construction was initiated in [9] (where more emphasis was given to the cases
corresponding to group spaces), and performed more rigorously for symmetric coset spaces in

[10] and further generalised to semi-symmetric spaces and applied to the AdS5 x > superstring in
[11]. It has been conjectured in [10,11] that like the n-deformation, these also can be interpreted

(1.2)

1 Contracting (A.4), equivalent form of (1.1), with f;5. and using the Jacobi identity we easily find that

. 3
cg?dmG+ S IEIP=0. |61 =dapbats. €= fabe Ric-

which has no solution for compact groups and ¢2 =1, referred to as the real branch.
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as a quantum-group deformation but in this case the quantum group parameter is a root of unity
q= ei b4 /k.

Although, at a first glance, the n- and A-deformations may seem quite different since for
instance the corresponding o -models have different isometry groups, they are, in fact, closely
related. At the level of currents, Rajeev observed some years ago [12], that the canonical
Poisson-structure of the PCM admits a one-parameter deformation which defines two com-
muting Kac-Moody algebras and preserves integrability. In the case of SU(2), a brute force
calculation in [13] led to a Lagrangian realisation of Rajeev’s canonical structure. For arbitrary
groups, the n- and A-deformations provide Lagrangian realisations for this Poisson-structure
but for different ranges of Rajeev’s deformation parameter. The connection between the n- and
A-deformations is expected to be a bracket-preserving canonical transformation followed by an
appropriate analytic continuation of the deformation parameter and of the fields. Specifically,
the implementation of this transformation turns out to be a generalisation of T-duality known as
Poisson—Lie (PL) T-duality [14,15] which can be understood as a canonical equivalence between
a pair of o-models [16,17].

PL T-duality incorporates the familiar Abelian T-duality and non-Abelian T-duality as well
as cases in which no isometries are present. The crucial idea is that a o-model possess some
currents for the action of a group G that, although they are not conserved in the usual sense,
are covariantly conserved with respect to a dual group G. The choice of groups G and G are
constrained such that the direct sum of the corresponding algebras defines a Drinfeld double
0=gdag.

As shown for the case of principal chiral models in [6], the YB o-models take precisely the
form of one-half of a PL T-dual related pair. Recently this PL action has been considered in
the case of symmetric spaces [18] where it was shown that it leads to an equivalence between
the Hamiltonian of the YB o-model on the real branch (when it can be defined as per footnote
1 and the A-deformation. This does not quite explain the link between the n-deformation and
the A-deformation since the former is on the complex branch. Instead, one should start with an
n-deformation (i.e. a YB o-model on the complex branch), perform a PL T-duality using the
double 2 = g€ (the complexification of g) and then analytically continue certain coordinates and
the deformation parameter to arrive at the A-deformation. At the present moment the details of
this process are not fully understood for an arbitrary group or coset. Recently, a two-dimensional
example based on SU(2)/U (1) has been provided in [19] and conjectured to hold in general.

2. Summary and outlook

The focus of this paper is to consider certain multi-parameter generalisations of both the -
and A-deformations for which less in known. In the case of n-deformations, there is an integrable
class of two-parameter YB deformations introduced for an arbitrary semi-simple group in [7,20].
Such deformations are called bi-YB deformations. For A-deformations, the gauging procedure
of [9] can be performed starting with an arbitrary coupling matrix in a PCM. This gives rise to
a wide family of deformations labelled by a matrix A,p. For an isotropic coupling, A,p = A8ap,
integrability was proven directly in [9] for an arbitrary semi-simple group, for symmetric cosets
in [10] and for semi-symmetric spaces in [11]. For the case of SU(2), it has been shown in [21]
that providing A, is symmetric, the deformation is integrable. In this paper we will construct
a two-parameter family of integrable A-deformations in which A, acquires some off-diagonal
antisymmetric components.
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There are quite a few novel results in this paper and so now is an opportune moment to
summarise them:

e We give concise expressions for the one-loop beta-functions for the deformation parameters
of bi-YB deformations for a general group G. These are parametrised by just two parame-
ters out of the (dim G)? possible ones. The fact that the flow preserves this two parameter
truncation renders the construction as non-trivial.

e We construct a new class of two-parameter generalised A-deformations that are obtained by
performing a standard (one-parameter isotropic) A-deformation on a YB deformed o -model.
We construct a Lax pair representation for the equations of motion for groups as well as for
symmetric cosets, hence demonstrating the integrability of the aforementioned deformations.

e For groups these multi-parameter deformations can be constructed in general but for general
cosets we find a stringent condition for them to be admissible. For compact groups an exam-
ple of when this condition is satisfied is given by CP? = SU(3)/U(2) and example of when
it is not satisfied is given by S°> = SO(6)/SO(5).

e We study the connection between such generalised A-deformations and the bi-YB n-de-
formation through examples based on the group SU(2) and the coset SU(2)/U(1). We
show that PL T-duality plus analytic continuation relate these deformations to a generalised
A-deformation of the type described above.

e For the SU(2)/U (1) case we show that the A-deformation, obtained after PL T-duality and
analytic continuation, is integrable by explicitly constructing the Lax pair. We also interpret
the generalised A-deformation as driven by para-fermion bilinears of the exact SU(2)/U (1)
coset CFT.

The structure of the paper is as follows.e In Section 3 we review the construction of the YB
and bi-YB n-deformations and their interpretation in terms of PL T-duality; in Section 4 we
describe the one-loop renormalisability of the bi-YB deformation; in Section 5 we describe the
generalised A-deformations and their integrability properties; in 6 we study explicit examples
based on SU(2) and the SU(2)/U (1) coset.

This work suggests many exciting avenues for further related research. These include the
embedding of our new A-deformations into the full type-II string theory as well as applications
in holography. The examples presented based on SU(2) and SU(2)/U (1) make the Poisson—Lie
plus analytic continuation connection explicit between the two-parameter A- and n-deformations;
we expect this to hold in full generality. It will also be interesting to extend considerations of the
generalised A-deformations to semi-symmetric spaces. In this work we consider only classical
integrability and understanding how this transfers to the quantum setting will be an important
direction.

3. YB type models and Poisson-Lie T-duality

Before we begin let us set conventions that are used throughout. For a compact semisimple
Lie group G corresponding to an algebra g, we parametrise a group element g € G by local
coordinates X*, u =1,2,...,dim(G). The right and left invariant Maurer—Cartan forms, as
well as the orthogonal matrix (or adjoint action) relating them, are defined as

LY =L%3: X" =—iTre(T,g '0+g), R =R40LXM =—iTr(T,0:887 "),

RC=DyL?, D = Tr(T,eTpg ™" G-D
w=DaL,, , Dap(g) =Tr(TagTrg ) .
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The generators T, obey [Ty, Tp] = i fap©Te, are normalised as Tr(7, T) = 845, and with respect to
the Killing metric, defined by f,c¢ fpa® = —cG 8ap, the structure constants with lowered indices
fabe are totally antisymmetric. Group theoretic indices are frequently raised out by using §,p.
World-sheet light cone coordinates are defined as 0* =7 £+ 0.

3.1. YB-type deformations of Principal Chiral Models
The bi-invariant (isotropic) PCM for the group G is given by

1
Spem = —— / d*0 RIR_, (3.2)
2t
>

in which X is the world sheet and 7! is a dimensionless coupling, playing the role of tension
measured in units of «’, that we shall need to keep track of in what follows. The PCM is classi-
cally integrable and its equations of motion can be readily recast in a Lax pair formulation.

Given a solution R of the modified YB equation (1.1), the integrable YB deformation of this
PCM is given by [6]

Syp = 1 / o RT1 - nR)"'R_, (3.3)
2t +

where 7 is a real non-negative constant. When R is restricted to be on the complex branch (i.e.
¢? <0in (1.1)) then we use the terminology 1-deformation to refer to this model but for the time
being we keep R general. A two-parameter deformation, known as the bi-YB deformation, is
given by [7,20]

1 -
Swvn =5 [ o RI@ 1R - Ry R (3.4)
2wt
where Ry = adgRad,-1 = DRDT. Since both R and R are antisymmetric, this action is in-
variant under the parity transformation
op <o, n—=>-n, {—-C, (3.5)

as well as the transformation
1

g—>g ', nel. 3.6)
It is convenient to consider a general action
1
Syg==— | o RT(E,—nR)"'R_, 3.7
n.E Gy +( g — 1N ) 3.7
where E is an arbitrary constant matrix and E, = adgEadgfl = DEDT. This reduces to (3.3)

when £ =1 and to (3.4) when E = 1 — {'R. By interchanging right-invariant Maurer—Cartan
forms with left ones using eq. (3.1), this action can be rewritten as

1
Sy g=— [ o LT(E—qR,- 1) 'L_
n, 27Tt + 8
(3.8)
1 2 T —1
=—— | doLliM-)'L_,
2t n

where
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1
M=-E-R, N=MN(g=R;1-R. (3.9)
n

This rewriting of the action exposes an important property; it has a left acting PL symmetry
[14,15]. Although (3.8) is not invariant under the left action of G, the currents J, corresponding
to this left action obey the modified conservation law’

d*Ja=gf”°‘a*meJC, (3.10)
where

Jr=(El +0R) 'Ry, J-=(E;—nR)"'R_,

fe=—Ra" fuc” + Ra® fac" = —

with no symmetry at the third index c. Algebraically, the f are the structure constants that arise
from a second Lie-algebra g defined by the bracket

[A,Blr =[RA,B]+[A,RB], VA,Beg. (3.12)

(3.11)

Thus over the vector space of g we have two algebras, g and gr whose direct sum defines a
Drinfeld double ? = g @ gr (see Appendix A for details). One needs here to distinguish a little
between the complex branch (2 < 0 in the mYB (1.1)) for which the Drinfeld double is the
complexification ? = g€ = g ® C of a real Lie-algebra g, and the real branch (c2 > 0) in which
case the double is given by d = g4%¢ @ p (further discussion of the construction of the Drinfeld
double from the R-matrix can be found in [18] and also chapter 4 of [22]).3

When a o-model is invariant under some action of a group G then one can dualise the theory;
when the group is Abelian, this is just T-duality and when the group is non-Abelian this leads to
so-called non-Abelian T-duality. Although not invariant under left action of G, the PL symmetry
of eq. (3.8) is such that there is still a generalised notion of T-duality that is applicable. This goes
by the name of PL T-duality which is an equivalence between two o -models*

_ 1 2 7T -1
Sigl = CoLlM-m~'L. geq,
2wt n
) (3.13)
Sigl=—— [ dPelTM'—)7'L_, geg.
(8] 27””/ oL ( ) 8€yg

The matrix M was defined in (3.9) but can, for the purposes of dualisation, be an arbitrary
constant matrix.” Here the algebras g and g, with generators T, and T“, form a Drinfeld dou-
ble ? = g @ g which is equipped with an inner product such that (7, Tp) = (T*, T?) =0 and
(T,, T = 83 . The group theoretic matrix IT is defined by

a’ = (g ' T,g. T, b =(g7'T%., Ty, N=b"a, (3.14)

2 The world-sheet coordinates (6F,07) and (t, o) are related by

oti=tto, =0 =01 +0_, 05 :=05=0r—0_,
sothat xdo* = +dot & xdr = do, xdo = dr in Lorentzian signature.

3 Although it will not be discussed here, the utility of the classical branch (¢2 =0) in describing integrable defor-
mations was shown in [23] and the link to a wide class of known deformations including the gravitational duals of
non-commutative Yang—Mills and Schrédinger deformations was elucidated in [24,25] and [26,27].

4 To match the conventions of [28]: g+ g~ !, T1(g) = —Tg 1 (g ") and of [29]: M > —Ej !, 1+ —t.

3 Though, of course, for an arbitrary choice of M the theory is not expected to be integrable.
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with similar for the tilded quantities. In a following section, we study in detail the case of g =
su(2), for a YB deformation on the complex branch where the relevant Drinfeld double is D =
g(C =s5u(2) @ e3.

As a final remark in this section we note that the bi-YB deformation is neither left nor right
invariant under the action of G but instead is both left and right PL. symmetric. We will, however,
in this work only consider PL T-duality applied to the left PL symmetry.

3.2. YB-type deformations of symmetric coset spaces

To introduce YB-type deformations on symmetric cosets, let us first take a small digression
and consider the construction of general PL-type theories on cosets originally considered in the
literature in [38,29] and revisited in [42]. Here we follow the construction of [29] which turns out
to be relevant for our purposes. Consider the general form of PL T-dual pairs given in eq. (3.13)
which a priori describe the dynamics of dim G degrees of freedom. At certain special points
in the moduli space of such theories, i.e. for particular choices of M, the theory may develop
a gauge invariance under some subgroup H C G leaving a dynamical theory for just dimG/H
coset degrees of freedom. Let us use the notation in which 7; are generators of the sub-algebra
b corresponding to the subgroup H and 7, are the remaining generators of £ = g — h. Points
where one might expect to find an enhanced H gauge redundancy can be reached by taking a
limit, understood be acting uniformly on all matrix elements,

M|y =M —0. (3.15)

In this limit one can see that the first of (3.13) becomes [29]

1
S[g] = E / dZO‘LiEal[jLé s Eaﬁ = (Maﬁ — Haﬁ)71 . (316)

Although the action only involves the left-invariant one-forms in the coset, it is still not a coset
theory. This will be the case if it develops gauge invariance under the action of the subgroup. The
condition on invariance is given in [29] as

FBs = £, MY 4 fio P MY (3.17)

Having understood this general construction one can now forget this limit procedure and simply
look for dim G/H matrices that obey eq. (3.17) with which to build a coset theory. To do so we
use as a starting point the matrix M corresponding to the bi-YB o-model given in eq. (3.9) and
define the dim G/H matrix Myg entering into eq. (3.16) as the projection into the coset

Mypg = <l]l— <£+1) R) . (3.18)
n n of

Making use of the expressions for the dual structure constants in terms of the R-matrix given in
eq. (3.11), the gauge invariance condition becomes

OZ%(_Ryafyiﬁ-f-Ryﬁfyia):%faﬂi . (3.19)

For ¢ # 0 this implies that the projection of the R-bracket into the sub-algebra ) must vanish
[X,YIrlp =(RX, Y]+ [X,RYIDl =0, VX, Y et. (3.20)
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For the case of ¢ =0, eq. (3.16) with this choice of Myg defines a theory that for a symmetric
space (i.e. [h, h] C b, [, €] C € and [¢, €] C b) has already been considered in the literature — an
integrable YB o -model is given by [4]

1
SYB.G/H = 2—m/d20 (PILy) @ —nRe1P)'PIL_, (3.21)

in which, to make contact with formulations given elsewhere, we introduce the projector P into
the coset generators € of the algebra g = b + ¢ so that Myg = (P1M PlT)a,g. The corresponding
expression for the bi-YB case is given by

1
S,/ = 5 / Po (PIL) (L~ (R Py~ Ryt P PIL | (3.22)

in which one needs to also impose eq. (3.20). Being a natural extension to cosets of the bi-YB
deformations it will be rather interesting to study the integrability properties of this theory.® This
theory admits a PL T-dual and it seems likely to us that it can be related, in general, to certain
2-parameter integrable A-deformations that will be constructed in Section 5.2.2 via a such a
duality plus analytic continuations — this will be illustrated with an example in the rank 1 case.
We leave a more direct study of the theory defined by eq. (3.22) for the future. However, at this
stage it is worth studying the constraint of eq. (3.20) in more detail. It is certainly a stringent
condition on the admissibility of the subgroup H C G given an R-matrix. It is rather trivial to
see that this constraint can be solved in the simple rank 1 case but the existence of solutions for
general G/H is less clear.

The symmetric coset CP? = %(23)) provides an example in which eq. (3.20) is satisfied. In
the usual SU(3) Gell-Mann basis of generators A,, a =1, ..., 8 the anti-symmetric R-matrix
solving the mYB for ¢? < 0 acts as that

Ro {2, As, A7} = {A1, A4, A6},

with vanishing action on the rest of the generators. Choosing the U (2) subgroup that generated
by {A1, A2, A3; Ag} one finds that eq. (3.20) holds. On the other hand, for the U(2) subgroup
generated by {A4, As, %)\3 + 4)\8; 4)\3 — %)»8} — which also defines a symmetric space — the
constraint eq. (3.20) does not hold.

For §° = SO(6) /SO(5) the anti-symmetric R-matrix solving the mYB for c2 <0 acts as

R o {123, T4, Tos, Tae, Tus, Tae} = {113, T14, T1s, Ti6, T35, T36}

with vanishing action on the rest of the generators. Picking an explicit basis for the subgroup T;;
fori < j=1,...,5 one finds that eq. (3.20) does not hold.

3.2.1. General YB-type cosets
Following the procedure described above we can project the general “YB-type” of models,

(3.7) or equivalently (3.8), on a general coset G/H. The end result of this procedure reads

1
S)EG/H= %/dzo (PILy)"(EPy —nR,-1 P 'PIL_, (3.23)

whereas the gauge invariance condition reads

6 We that Benoit Vicedo for communications on this point.
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Eoy fpyi + Eyg fayi =0. (3.24)

This condition is trivially satisfied in the YB case whereas for the bi-YB case, E =1 — 'R, and
(3.19) and (3.22) trivially follow. We emphasise that this coset construction for generic G/H and
E is not integrable.

4. Quantum aspects of the bi-YB model

The renormalisability of the general PL T-dual o-models in (3.13) at one-loop was proved in
[28]. In [30] it was demonstrated that the one-loop RG flow matches one obtains for the coupling
matrices M, from both of the dual theories are in fact equivalent which is physically sensible
given the canonical equivalence of PL related o-models [16,17]. This can also be understood in
terms of a first-order duality invariant type formalism [14] (cf. the doubled formalism of abelian
T-duality) from which the one-loop beta functions for the couplings contained in the matrix M,
of eq. (3.13) can be obtained [31]. Although the full expressions for the renormalisation of M
are rather involved, here we are able to specialise to the case of the bi-YB equation and obtain a
very simple set of RG equations governing the flow of the deformation parameters n and ¢.

One should emphasise that although the most general o-model with M, encoding (dim G)?
coupling constants is renormalisable, this does not imply that the renormalisability of the bi-YB
o-model. The later is a truncation parametrised by just two parameters out of the (dim G)? pos-
sible ones. The RG flow equations for M, could, in principal, not preserve this truncation. The
fact that the flow preserves this two parameter truncation renders the construction as non-trivial.

Before specialising to the bi-YB case, we first present the general RG equations for the models
of (3.13) which we shall do using the notation introduced in [30]. We define

b _ fabc _ fcdaMdb , Babc — ]Fabc + Madfdcb , 4.1
as well as their duals
A’ = fap’ — My} . Ba® = fur® + My . (4.2)

Using these we construct

L —[M ]cd (Bah Med + Adh M — AadeMeb> ,
1
Rabc — 2 d (A Mdc + Bad Meb BdbeMae) ,
) | “4.3)
La® = 5101; 1]“1( pM) 4 Ayt M — AugM e—bl) ,
1 - ~
Rop = U1 (A M, + Baa M35 — BanM!) .
where
1 T Y 1 -1 -T
My =M+ M), MFE[M M ] (4.4)
The one-loop RG flows are
1
_ (Mah) — Rachdbc + Rahc%-(,‘ , (45)

n
and
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1 —15- p dj ¢ p Cg&
ﬁ (Mab ) = Rac" Lap® + Rap“c (4.6)

where £€, €. are constants corresponding to field redefinitions (diffeomorphisms) and dot corre-
sponds to derivatives with respect to the logarithmic energy scale. It was shown in [30] that the
two systems (4.5) and (4.6) turn out to be equivale:nt.7

We can now specialise these relations to the bi-YB deformation for which we have the corre-
sponding M matrix

1
M=;(1—(H+C)R)- 4.7

Making heavy use of the identities obeyed by R detailed in the appendix, see eqs. (A.4) and
(A.5), one finds that

¢ Am?—-¢H -1

Labc = Ram fbmc + fabc s
. o “8)
c“(n” — —
Rahc = Rbmfamc - A fabc )
1 2n

in which we recall that ¢? is the parameter entering into the mYB equation. To ensure that the
renormalisation of M stays within the truncation specified by eq. (4.7) one requires a redefinition
generated by £ = —¢ /0 f*° Ry in (4.5). Upon plugging (4.8) into (4.5) and making further
use of the identities (A.4) and (A.5) and the Jacobi identity, one then finds the system of one-loop
RG equations for ¢, n and ¢ given by

= (1= -0?) (1-Ea+07)

tnand ¢/n = constants.

4.9)

For the corresponding n-deformation we set { = 0 and again ¢ = constant. In this particular
case and for ¢ = —1 the B-functions were derived in [32]. However, in that work the ratio ¢/n
was found to be constant, a statement with which we disagree. In fact, it turns out to be rather
important that it is the combination #7 that is a RG invariant; under the Poisson—Lie plus analytic
continuation that relates n-type deformations to A-type we require that 47 n = ik—! where k is
quantised WZW level that should not run.

We elaborate briefly on the form of the solution of the B-function for the n-deformed theory
(setting for the moment ¢ = 0). When ¢? < 0 then it is evident that the energy scale is a bounded
function of the coupling 1, which implies that in this model the UV and the IR energy regimes
cannot be reached. Consider, for example, ¢ = i, then the RG flows (4.9), setting ¢ = 0, can be
easily integrated

t
€ nlniz il 2~|—tan_1n, tn=constant, n € [0,00), 4.10)
2 ro l+n

where Lo is an integration constant. We note that the right hand side of (4.10) is bounded on the

domain [0, /2). n will thus diverge at some UV scale % = e<6"" and achieves its minimum

7 The diffeomorphism terms were not incorporated in the analysis of [30] but are easily included by relating them via
&= 7Ma_bl £ and using the identity, proved in [30], R%? . = M“‘fong_c1 Re_fg.



K. Sfetsos et al. / Nuclear Physics B 899 (2015) 489-512 499

value n — 0 at an IR scale pp. One should be careful; thinking of the theory as a non-linear
o-model means we should only trust perturbative results (including the above S-functions) when
the curvature radius of the target space is small compared to ¢ . However, in the limits of  — 0
and 1 — oo this is no longer the case and perturbation theory breaks down.® In contrast, when
¢? > 0 (c?> = 0) it is easy to see, via an analogue to the above integration, that in the UV n — 1~
(n — oo) and n — 0T at an IR scale p.

5. Generalised integrable A-deformations

The purview of this section is to introduce a generalised notion of A-deformations and to
show for a particular case, which can be thought of as the A-deformed YB o-model, classical
integrability is ensured through the existence of spectral dependent classical Lax pair.

5.1. Constructing the deformation

This subsection reviews the construction of A-deformations by following the original literature
[9] and also [21]. Compared to that work we have formulated the PCM and the WZW model in
terms of the right invariant Maurer—Cartan forms so as to match the YB o -models of the previous
section.

We begin with PCM on the group manifold for an element ¢ € G but generalised to incorpo-
rate an arbitrary, not-necessarily bi-invariant, constant matrix Eap,

" 1 s N N
Spem(8) = 7— / o EpRLQR(2). (6.1
We also consider a WZW action for a group element g € G defined by
SWZWk(g):i/dzoRaRa_Lffb RYARP ARC (5.2)
* 4 VT ’ ’
= B

where B is an extension such that 43 = X and the normalisation is such that, with our conven-
tions for the generators, & is an integer for SU(N). The approach of [9] was to consider the sum
of the actions in (5.1) and (5.2) and to gauge a subgroup of the global symmetries that acts as

g—>8h, g—hl'gh, heG. (5.3)

This is achieved by introducing a connection A = AT, valued in the algebra of G that trans-
forms as

A h 'Ah+h~lan . (5.4)

We replace derivatives in the PCM with covariant derivatives defined as: Dg = dg — gA and
replace the WZ W with the G/ G gauged WZW given by

8 For example, consider the scalar curvature of the YB o-model for su(2) (whose target space is just a squashed
sphere):

_tn B=nHU+n?)
=5 e

R

and so the perturbative description in powers of ¢ ) breaks down as n — 0 and as n — oo.
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k _ _ _
Sowzws = Swzwa + o [ Tr(AL0gg ™! — g MugA + ArgA_gT = ALA).

The gauge symmetry can now be gauged fixed by setting ¢ = 1 such that all that remains of the
gauged PCM is a quadratic term in the gauge fields. The gauge fields, which are non-propagating,
obey constraint type equations,

W '—D)A_=irR_, W T-DNHA,=—iL,, (5.5)
where we have introduce a generalised A-deformation matrix,
A =k NE +k). (5.6)

Upon integrating out these gauge fields one finds the o-model action [9]

k
Sk.x(8) = Swzwk(®) + o~ / d>o L4 = D) R . (5.7)
T

Although the equations of motion of g that arise from this action will be rather intricate it was
shown in [21] that when written in terms of the gauge fields obeying (5.5) they take a simpler
form

0 A — o (,\—TA+) — 1 TALL AL,
(5.8)
o (rlA,) 9 AL =[Ay, 0 AL

Note that unless A = 1 these are not conditions for a flat connection.
To prove integrability we would like to rewrite these equations of motion as a Lax equation

dC=LAL or 8+£_ —8_£+ = [£+,£_], (59)

where L1+ = L (7,0; u) depends on a spectral parameter u € C. For a general choice of Eab
one certainly would not expect this to be possible, thus posing an interesting question; for what
choices of Ej is this an integrable system?

I |
As a warm up let us revisit the isotropic case E = — 1 which is known to be integrable [13.9]

(see also [10,33]). In this case A = Aol and the equations of motion (5.8) reduce to

kt

1
0+tAr=*——[A+, A ], Qo

— . (5.10)
1+ X0 1 +kt
A Lax connection encoding these equations is given by
2 2z
Ly = — AL, eC. 5.11
=T T pFl JZ (5.11)

5.2. Generalisation to YB o -models

The key idea in constructing integrable A-deformations is to take two integrable theories (e.g.
the bi-invariant (isotropic) PCM together with the WZW) and reduce half of the degrees of
freedom in such a way that what is left remains integrable. In order to find other examples where
the generalised A-deformation is integrable, it is natural to consider as a starting point PCM’s
(5.1) that are known to be integrable and then apply the A-deformation.
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5.2.1. The group case
We recall that the integrable YB o -model defined in (3.3) can be written as a PCM of the form
in (5.1) for the choice

S|
E= ?(1—7772)—1, (5.12)

so let us consider this as a starting point for a generalised A-deformation.
With this choice of E one finds, making use of the mYB equation (1.1), that the equation of
motion (5.8) admits the nice rewriting

+0: Az = i[RAL, Ax]+alAy, A_], (5.13)
where we have defined AL = (1 +7R)~! Ay and
1+ 272 ki
PR e R Y . (5.14)
14+ Ap 14kt

From this rewriting one can then see that the equations of motion can be written in terms of a
Lax connection as

Li=(axl+AR)AEL7FR) Ay,

"
= , eC,
o+ al+a2M:F1 M (5.15)

ar=a—+/a2 —c*?, ay=2\/a?— 2.

This result proves that for an arbitrary choice of group, in addition to the A-deformation of
the isotropic PCM, the A-deformation of the YB o-model is integrable. This provides a two-
parameter family of deformations labelled by 7 and Ag. We will see later for the specific case
of G = SU(2) that this two-parameter family can also be obtained as the PL T-dual combined
with analytic continuation of the bi-YB deformation (on the complex branch). We conjecture that
such a relation holds true in general.

5.2.2. The symmetric coset case

Let us now consider applying these ideas to symmetric cosets. Motivated by the integrability
of the YB o-model (3.21) on a symmetric space G/ H, corresponding to a Lie-algebra g = + ¢,
let us consider starting with the following

A A . ~ - 1 o
E=Ey®Em, En=0, Eom==0-iR)". (5.16)

Here R is an anti-symmetric matrix of dimension dim G — dim H which one could — but need
not — think of as the R-matrix satisfying the mYB equation projected into the coset. With this
choice of E and assuming that the coset is a symmetric space, the equations of motion (5.8)
simplify to

9:By=—[Bz,As], 9+ (RBs)=—[RB, Axl. (5.17)
1 ~ ~ e~ P~

014~ —0-Ar=[Ay A+ (B B +iREy Bo) - Ai[m, RE_)
0 0

— 7*[RB+,RB_1,
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8+A_—8_A+:[A+,A_]+%0[§+,§_]+)%[R§+,E_]—ﬁ[§+,R§_]
—*[RBy, RB-],
where we defined
Bi=1+iR) "By, ro= k’~~, Areh, Biet. (5.18)
1+kt

For consistency of the two forms of equations of motion for AL, one finds that the projection of
the R-bracket into the sub-algebra fh must vanish

#[By, B_1gly = 7([RB1, B_1+[B1, RB_1)|y =0. (5.19)

For 7 # 0, this constraint is exactly in agreement with that found for the two-parameter theories
constructed in Section 3.2 to develop a gauge invariance that reduces their dynamics to the coset.
When R entering in to eq. (5.16) is identified with the projection of an R-matrix on the group
then this constraint is quite stringent; see discussion in Section 3.2.

From this rewriting one can see that the equations of motion can be written in terms of a
classical Lax connection

1

Ly=Ay+p*! (
VAo

:l:ﬁ)\(fl/zR) L+iR)"'By, pecC. (5.20)

Thus, there is a two-parameter family of integrable deformations labelled by 7 and Ag for an
arbitrary symmetric coset.

For comparison we may note that the 77 = 0 limit returns to the known isotropic A-deformation
of a symmetric coset for which the Lax connection was given in [10] as

M:l:l
Li=Ar+—Bs, neC. (5.21)
VAo

6. The SU(2) paradigm

In this section we examine the connection between the bi-YB n-deformations and the gener-
alised A-deformations considered in the preceding section. In [6,18,19] a PL T-duality transfor-
mation followed by an analytic continuation related the single parameter n- and A-deformations.
We expect that this also will be the case for multi-parameter deformations. We explicitly demon-
strate this in specific examples based on SU(2) and SU(2)/U (1).

For n-deformations based on SU(2), the relevant Drinfeld double for performing PL T-duality
is SU(2) @ E3. In the Appendix B we provide explicit details for the parameterisations of the
group elements, for the matrix realisation of generators, for the left-invariant one-forms and for
the group theoretic matrices IT and IT that enter into the definitions of the PL T-dual pairs in
(3.13).
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6.1. The bi-YB on SU(2)

The SU(2) bi-YB o-model was shown in [34] to be the Fateev model [35] and its RG flows
can be read from (4.9) for cg = 4 and ¢ = —1. This can be shown to be in agreement with the
result for the RG flow in [35].°

The target space geometry and anti-symmetric tensor of the bi-YB o -model are given by [29]

1
ds? = ” (d1p2 +do*+ d(p2 + 2cosfdyrde

+((n + ¢ cosB)dg + (¢ + 11 cos@)d¢)2> , 6.1)

A=1+>+n>+2cncosd, Hy=dB, =0,

where the first line in ds® corresponds to the round three sphere and we work in the coordinates
of Appendix B.

The bi-YB o-model is symmetric under both left and right PL actions and here we perform a
PL T-duality with respect to the left action. This results into a dual o -model whose target space
geometry is

1
ds? (—4rdrd)( <n+ <r2 + l) — m+ezx> + 4dr? (nzezx + n+r2)

:nztE
+ 4n2r262Xd192 + d)(2 (E — 4r262X>) ,
4r 2 2 2
B=—s (dr/\dﬁ (n+ (r +1) —mye X) —2re Xdszx) :
n
8re*
H; = re (m_E—i—Ser (n2+§‘2r2)) dr Andy A dv,
mx?

2
T =n_e" —2¢% (m+ - m—rz) +ny <F2 + 1) )

in which we work in the coordinates for dual model defined in the Appendix B. We have also
introduced the constants

ne=1+@+n>, me=1+E"—n7.
We now perform an analytic continuation, which was used in the case of an SU(2)/U (1)

single n-deformation in [19]

r>isinasinf, eX > cosa+isinacospf,
i(1—2) (I+2)
[ , ot ——
(1+2) 4k(1 — 1)

This results in the following expressions

6.2)

9 The map between the parameters (1, ¢, t) and those of Fateev (r, £, u) (defined after eq. (76) of [35]) is given by [34]
but needs to be slightly amended to include an overall tension ¢ needed for the renormalisability of the model:

2

27 gyt I _
n=—Cu "+, "=—-@u "+1), t=u.
u u
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1 1+ 1+ )2 1 — a2
%dszHlj:—A(l—i—g“z( z) sinzasinzﬂ)da2+ = sin® wd23

+2¢ sin’ & sindadg,

(14 2)2
A

1 1
CHy = = ((4A — 21+ 0HA

+2 ((1 — A2 4 22(1 4 2)* sin® a sin? ,3)) sin? & dar A voI(S2),
A=1+2>—2xrcos2a + ;(kz — 1)sin2acos B + {2(1 + k)z sinzacoszﬂ , (6.3)
with d23 = dB? + sin? B d¥? and vol(§?) = sin B dB A d¥. We note that the field strength Hj is
real, but the gauge potential produced by this continuation includes an imaginary piece.

These o-model background fields can be obtained via a generalised A-deformation of the
form,

Co+D24ar 21222
2O+ 4+4 CZ(A+1)24+4
hap=| _ 2022 2osn’am g |, (6.4)
2041244 2041)2+4
0 0 A

with the group element entering into eq. (5.7) parametrised as

.. . : —iv
_ (cosa +isinacos f8 sina sin Be ) . (6.5)

- —sina sin Be'? cosa — i sina cos B

In this parametrisation one finds that in the ¢ — O limit the known expressions for the
A-deformation of SU(2), see e.g. [9,36], are recovered.

The procedure of integrating out gauge fields in the derivation of the A-deformation means
that, when performed in a path integral, one should also complement the background fields with
the dilaton factor

e 222%0 A (6.6)
in which @ is simply a constant additive contribution. One can verify that although these back-
ground fields do not solve the three-dimensional bosonic truncation of the supergravity equations,
the dilaton beta function drastically simplifies to

~ ~ —~ ~ 1 —~

B® =R +4V>D —4(VD)? — EH2
3 1

O 2k(1=22)(1+1)?

That such cancellations occur gives a strong hint that it may be possible to embed this two-
parameter A-deformation as a solution of supergravity along the lines of [36,37]. In these works
the contribution to the dilaton beta-function is cancelled off against an opposite contribution that
arises from performing the A-deformation to a non-compact SL(2, R). It seems likely that such
a solution can be embedded into ten-dimensional IIB supergravity by including a spectator CFT
on a T* and generalising the symmetry considerations leading to the RR-sector of [36].

We close this section with a rather appealing observation; the background fields of (6.3) which
was obtain from the bi-YB deformation by PL T-duality plus analytic contribution can be thought

(8(1 FoA+ 223+ + 821+ 02 — 41 +,\)4) .
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of as the A-deformation of an n-deformed o -model as described in Section 5.2.1. To be precise,
making use of the definition

O N =k"NWE +kD)gp , (6.7)

one finds that the PCM coupling matrix E corresponding to the A-matrix (6.4) is of the YB
o-model form

|
E= ?(1 —iR)~!, (6.8)
with
ki 2ki +1
A= — , n=-— = 6.9
el 1T T (©9)
and where the R-matrix of SU(2) is given by
0 10
R=|-1 0 0], (6.10)
0 00

in a basis where the generators are the normalised Pauli matrices 7; = %a". This YB o-model
is renormalisable at one-loop in 1/k with RG equations

S+ AHA2 (1 + 772%) i
k(14 1)2 1=
Study of the above RG-flow equations reveals that there is an arbitrary finite energy scale for
which A — 0. However, the matrix (6.4) does not tend to zero, so the conformal point is never
reached.
In total we explicitly showed for the SU(2) case, that the bi-YB and A-deformed YB o -models
are related with PL T-duality and analytic continuation with the parameters identified as follows:

)‘\’:

and k constants. (6.11)

. i kt i—n . 2kt + 1
t,n, k,t,n): k=—, = =— — .
&, n,¢) > (k,t,1) 1 ¢ T

— = 6.12)
4tm’ ki+1  i+n

6.2. The bi-YB on SU(2)/U (1)

We now turn to an example based on the symmetric space SU(2)/U (1). The metric of the
bi-YB (7, ¢)-deformed o-model given in (3.22) reads

, 1 dzdz
§T=- — — .
t 14+ +m?+22204+ 2 =) + 22+ (€ —mH)
Here we have adopted the parametrisation of S used in section 4 of [4] and indeed for ¢ =0
this coincides with the n-deformed S, i.e. eq. (4.2) of [4]. The o-model given by eq. (6.13) is

one-loop renormalisable and the corresponding RG flow equations, given in general in [39-41],
read

(6.13)

=221 =2+1%, i=-2020-24h, (=-2010+—1%. (614
There are two invariants under the RG flow

1 2 2
tn and yzconstant& (6.15)
n
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The metric of eq. (6.13) has also appeared in the studies of PL T-dual coset models associated
with $2 [38,29]. Defining @ = 1/ and b = ¢ /5, and changing to stereographic coordinates z =
cot(8/2) one finds eq. (6.13) results in exactly the metric of eq. (3.16) of [29] multiplied by an
overall tension 7 = %. Indeed, this system of RG flows along with its invariants were also in
found [29], as a consistent truncation of those for the PL T-dual o -model on the Drinfeld double
SU(2) @ E3.

We may now perform a PL T-dualisation of eq. (6.13) using [38,29] resulting in a dual metric
given in eq. (3.18) of [29] multiplied by the overall tension T'. Performing a field redefinition'’
and analytic continuation on coordinates and parameters

¢

1
iT=k=>tn=4l—k, ;:—i(1+2a2), c=if aria. (6.16)

results in the o-model action

k /dza ((1+2a%)? 4+ B%) 04 pd_p + B (34 pd_q + 0_pdsq) + d4q0_q
(1+2a?)(1 — p? —¢?)

We now clarify an interesting point.'! Prior to the PL T-dualisation, it turns out one can effec-
tively set the parameter ¢ = 0 in eq. (6.13) by a transformation that does not affect the global
properties of the metric but simply rescales the overall coupling . One might at first think
that the appearance of ¢ is redundant, however, we shall now interpret the theory eq. (6.17)
as A-deformation in which the parameter k is an integer quantised variable. Rescaling ¢ so as
to remove ¢ would correspond to rescaling k by an arbitrary real number to remove 8. The de-
formation parameter $ is thus significant and cannot be absorbed into a rescaling of k without
spoiling the topological nature of the overall coupling.

This action can also be obtained as a generalised A-deformation applied to an n-deformed
o-model. To see this let us begin by considering the PCM (5.1) equipped with the matrix

S =

. (6.17)
b4

2
A kie? 2%
2 14
E = 4 K2 0 s 0{2=K4+72, IBZ—W (6]8)
0 0 S2 Y 14

As in [9] in order to recover a two-dimensional model we take the limit s2 — 0. This will
implement the truncation of the SU(2) PCM to just the SU(2)/U(1) coset. Explicitly, if one
parametrises the SU(2) group element as

g= £ P1=92)03/2 jiwoy ,i(p1+¢2)03/2 , (6.19)
then in the generalised A-deformed theory (5.7), where 2= k_l(E + k), one finds that after
taking the limit s — O the coordinate ¢, drops out of the action altogether and can be fixed to
any value we choose. This reflects a residual U (1) gauge invariance remaining after fixing the

group element of the PCM, g = 1. The resulting A-deformed theory matches exactly the one in
(6.17) upon changing to algebraic coordinates

10 we change the variables of eq. 3.18 of [29] according to
1 _ —
e=5@+G-D%"H((p+9?=1). p=@+@G-D%"Hyp?-g> 1.

11 Which we thank Ben Hoare for raising.
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P =COSwcoSy|, ¢ =coswsing; . (6.20)

This A-deformed action has an interpretation in terms of the SU(2)/U (1) CFT deformed by a
para-fermionic bilinear generalising the results of [9]. For small « and 8 the dominant term in
(6.17) corresponds to the exact SU(2)/U (1) CFT

k 2 2
Scrr = — | do (3+w8_w + cot w3+(p18_(p1> , 6.21)
T

where we have performed the change of variables (6.20). The full action (6.17) can be expressed
in terms of this CFT and bilinears of para-fermionic operators defined by

o au(p—i L
Yi=e ¥ % - (8+a)+icota) a+(pl)e—l(<ﬂ|+<ﬂ|) ,
vi=pT—¢q
. (6.22)
g 0=(p—iq) : —ip1—¢1)
Yi=e ——(B,w—i—zcota) 8,<p])e ,

/1 — p2 _ q2
and their complex conjugates ' and ¥ '. Here @; is a non-local function of @ and ¢, that

dresses the operators to ensure conservation d_y = 9,y = 0. With these the action (6.17) can
be expressed as

s=erserr+ 2 [ o (v 0 B7) + 52 [ @o (vi-vi).

4o’ + B2 4a’(1+a?) + g2 ip
s 2= G= 5T 5 o
2(1 4+ 2a2) 4(1 4+ 2a2) 2(14+2a2)
In an expansion of small & and 8 one sees that eq. (6.23) perturbs the exact CFT action (6.21) by
para-fermionic bilinears which act as relevant operators since the para-fermions have conformal
dimension 1 — 1/k. In that respect the o -model (6.23) is renormalisable at one-loop in 1/k with
ooy k
k’ y = C k =constant, Aop= P
These RG equations imply in the UV that the parameters «, 8, defined in (6.18), go to zero and
the model flows to the WZW model.

Towards the IR the parameter A¢ tends to unity and one has to perform a stretching of the
coordinates in order to make sense of the geometry. This limit is also achieved by letting in
(6.23) the following rescaling
Q1= nr w= 2

2k 2k’
followed by the limit k — 0o. As we can see the running of y is irrelevant since it can be absorbed
into a field redefinition of ¢;. The end result of this limiting procedure is

, 1 A 1 X\
ds® = 3 K*°—+— dxy + —dx; , (6.26)
K X2

6.23)

c=1+

ho=— (6.24)

(6.25)

X
2
which is the non-Abelian T-dual of the PCM on S as expected on general grounds [9].

6.2.1. Integrability

Since this A-deformed theory falls in the class considered in Section 5.2.2 we have already
proven its integrability. However, we present in Appendix C an explicit demonstration of its
integrality in the hope that the reader may find, as we did, it to be illuminating.
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Appendix A. Properties of the R matrix

This appendix will be devoted to a brief summary of the modified classical YB equation and
properties of the R matrix.

Consider a semisimple Lie group G, a Lie algebra g, and a matrix R (an endo-morphism of g),
assumed to be anti-symmetric with respect to the Killing form on g, which defines a bracket

[A,Blr =[RA,B]+[A,RB], VYA,Beg. (A.1)

A sufficient condition for (A.1) to satisfy the Jacobi identity is the modified classical YB equation
(mYB)

[RA, RB]—R[A, Blr = —c*[A,B], YA,Beg, ceC. (A.2)

Note that R matrix can be rescaled and this results to three different distinct classes: ¢ =0, c =1
and c=1.
Expanding in an arbitrary basis we can write

A=AT,, RA=RATy=RarApT, (A.3)
and using that R, = —Rp4, we find explicitly
C2 fabc + 7?/1111'7%[76 fdec + RbdRcefdea + RcdRaefdeb =0, (A4)

or

Road focd + Red fabd + Rid fead = 2¢* fabe s fabe = Rad fodc — Rid fade = — foac -
(A.5)

The fupe, fabc are the structure constants of the usual and the R-bracket (A.1) respectively,
satisfying the Jacobi identities

fabd face + fead fave + focd fiae =0, fabd face + fead fave + foed faae =0, (A.6)

and identically satisfying the relation

fabd feed + Faac faeb — fabe faea — faae fach + Fave faca =0. (A7)



K. Sfetsos et al. / Nuclear Physics B 899 (2015) 489-512 509

The choice of matrix R in fact specifies a Drinfeld double
0=g®gr, (A.8)

as fube, fabc satisfy their Jacobi identities (A.6) and the mixed one (A.7).

In what follows, we shall focus on ¢ = i, referred to as the complex branch or the “non-split
case”. In this case the Drinfeld double is just the complexification 9 = g ® gr = g© viewed as a
Lie algebra. On g we have an inner product

(A+iB,A+iBY=3(A+iB,A'+iB),

with respect to which g is a maximal isotropic and when R is anti-symmetric w.r.t. (-, -) S0 is gg.
This Drinfeld double admits an Iwasawa decomposition

D=G®=GAN = ANG, (A.9)
where an element AN can be expressed in terms of positive roots and a Hermitian element
e’ exp Z Vo Eq .
a>0

For D = SL(n, C) groups, AN can be identified with the group of upper triangular matrices of
determinant 1 and with positive numbers on the diagonal and G = SU(n).

Appendix B. The s1(2) @ e3 Drinfeld double

We follow with small modifications the parametrisation of [29] and rederive the necessary for
our purposes results.
We use a block diagonal matrix representation for generators of su(2) and e3 given respec-
tively by
1

1 1
lei(O'l,O’l), T2—2(02702)7 T3=§(U3’03)’
T'=i(c",—07), T?’=(c"07), T°= %(03, —03)

+ = %(al +io?). We define an inner product on su(2) @ e3 by

where o
(X,Yy=—itr (P, XP,Y — P4 XP;Y) ,

where P, projects onto the top left two by two block and Py onto the bottom right. If we let
TA = {T;,T/}with A=1,...,6,i, j=1,2,3, be a basis for the generators of the double then

(0 13

indicating that su(2) and e3 span mutually orthogonal maximal isotropic subspaces with respect
to this inner product.
We parametrise a group element as

g0 = exp(i /290 ) exp(i /2002) exp(i /2V0°) ,  gsu) = (g, 8) ,

(e ey — i) ~ e x/2 0
=\ o e x/2 C ST e 2ty )

8e; = (8+.8-).
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_ Using this parameteri§ation one finds that the left-invariant one-forms for su(2) defined by
L'=—i (ggL}(z)ngU(z), T') are given by
L' =sinf cos Ydep — sinyrdo L? =sin6sin Yde + cosyrdd L= cosfdy +dyr
whilst those of ¢3 defined by Li= —i(ggj dgg,, T;) are
Li=—eXdy,, Ly=—e*dy,, L3=—dy.

The group theoretic matrices defined in (3.9) are

0 —2sin*§  —sin6siny
M=| 2sin? % 0 cos i sin6 ,
sinfsinyy —cosy sinf 0
y 0 %6—2)( (—yf +e2X — y% —1) —ety
M= %8—2)( (yl2 — e+ y% + 1) 0 e Xy
e Xy —e Xy 0

We will further define y; + iy, = re'”.
Appendix C. Integrability of the generalised A-deformed SU(2)/U (1)

The starting point of our proof are the equations of motion for Ay (5.8), where A~ is given
in terms of (6.18) for s =0

M A O 2
. k
ek B = | —a a0 =i 2T .1
0 0 1 k k

Plugging the latter in (5.8) and solving we find
1 2 43 2 1 43

0+AL=—AT AL, 0:AT=A_AL,

3 3 1 42 2 41 1 42 1 42 (C.2)

04+A” —0_A7 =M(ALAT —ATA) —AM(A AT +ALAY).

Classical integrability is ensured by rewriting the equations of motion in terms of a spectral
dependent classical Lax pair
Li=(cL AL+ AD T+ (dLAL +di AT+ AL T, (C3)
where the various coefficients are given by
A2

ch=vVhpt, d=-di=-—2p, Z=dl=0, &=Vui",  ©CH

—

where (i € C. This is in agreement with Lax pair presented in the general discussion (5.20) when
(A1, A2, ) > (1, Ao, p):

/\1_1+ﬁ2/\0 P 1+ 72X oy — 7 1—xo ©5)
ro(1+72)° 1+x0 1+42 X ’

for the R-matrix given by the projection into the coset of the SU(2) R-matrix, i.e. the top left
2 x 2 block of (6.10).




K. Sfetsos et al. / Nuclear Physics B 899 (2015) 489-512 511

Specialising for Ay = 0, we find the Lax pair for an isotropic deformation [10]

Lo =/ it! (A;Tl + AiTz) + AT (C.6)

Since there is an equivalence at the level of equations of motion, this also shows the integrability
of the model eq. (3.22) for this specific case of SU(2)/U (1).
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