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Slower carriers limit charge generation in organic
semiconductor light-harvesting systems
Martin Stolterfoht1, Ardalan Armin1, Safa Shoaee1, Ivan Kassal1,2, Paul Burn1 & Paul Meredith1

Blends of electron-donating and -accepting organic semiconductors are widely used as

photoactive materials in next-generation solar cells and photodetectors. The yield of free

charges in these systems is often determined by the separation of interfacial electron–hole

pairs, which is expected to depend on the ability of the faster carrier to escape the Coulomb

potential. Here we show, by measuring geminate and non-geminate losses and key transport

parameters in a series of bulk-heterojunction solar cells, that the charge-generation yield

increases with increasing slower carrier mobility. This is in direct contrast with the well-

established Braun model where the dissociation rate is proportional to the mobility sum, and

recent models that underscore the importance of fullerene aggregation for coherent electron

propagation. The behaviour is attributed to the restriction of opposite charges to different

phases, and to an entropic contribution that favours the joint separation of both charge

carriers.
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C
harge generation in electron donor:acceptor blends of
excitonic organic semiconductors is complex and still not
fully understood1,2. The blends form molecular

heterojunctions, and the so-called bulk-heterojunction (BHJ)
where the organic semiconductors create nanoscale interconnected
neat and mixed phases3 is the preferred and dominant architecture
in organic solar cells and photodiodes. Although a complete
understanding of the critical mechanisms and pathways from the
photoexcitation to free charges remains elusive, an increasing body
of evidence suggests that it is the dissociation of charge transfer
(CT) states that defines the charge generation efficiency and
overall performance of organic solar cells4–8. In order to establish
strategies to optimize the dissociation of CT states, it is of
particular importance to understand how the carrier mobilities
affect the separation dynamics.

Braun’s model9, based on Onsager’s theory of ionic
dissociation10, describes charge generation in donor:acceptor
systems as depending on the kinetic competition between the
dissociation (kd) and decay (kf) rate constants of CT states.
The recombination from the charge-separated (CS) state back to
the CT state with rate constant kr is assumed to be described by
the Langevin theory11,12, which, in a single material phase,
predicts that kr should be proportional to the sum meþ mh of
electron and hole mobilities because both carriers drift towards
each other due to their electric fields. Another key assumption of
the Braun model is that dissociation and recombination are
related by detailed balance. Since detailed balance requires that
the ratio kd/kr equals the equilibrium constant K for charge
separation, Braun concluded that kd must also be proportional to
meþmh. If the charge carriers can move away from the interface
as quickly as they can return, kd and the (geminate) kr depend, in
the same way, on the carrier mobilities.

The situation is more complicated in a BHJ. Since recombina-
tion in a BHJ occurs at the donor:acceptor interface, the faster
carrier (f) has to wait at the interface for the slower carrier (s)
before recombination is possible. As a result, Blom and Koster
proposed that the arrival of the slower carrier should be the
recombination rate-limiting step, giving krpms, the mobility of
the slower carriers13–15. Following Braun’s thesis that dissociation
and recombination are opposite processes, this reasoning would
suggest that CT state dissociation yield in BHJs should also
depend on the slower carrier mobility. However, Blom and
Koster’s premise does not consider the influence of the domain
size on the recombination rate, and this has been investigated
recently in ref. 16, wherein the authors showed that the Langevin
and Blom–Koster rates are relevant in the limits of very small and
very large domains, respectively.

Despite the importance of these kinetic considerations on the
charge carrier separation, most studies have focused on the
impact of the donor and acceptor energy levels17–19 and
nanoscale morphology20–25. For example, Gélinas et al.24 have
shown that a high fullerene loading is crucial for fullerene
aggregation, which assists ultrafast charge separation by enabling
electron delocalization. Fullerenes are the dominant n-type
organic semiconductor and present particularly intriguing
challenges in understanding their basic physics because of their
molecular size and symmetry. Gélinas et al.24 concluded—as have
others4,26,27—that the faster electrons determine the charge-
generation yield, arguing that they can escape via delocalization,
leaving the slower hole free to diffuse away at its own pace. This
prediction is consistent with Braun’s assertion of kd determined
by mfþms, provided that mfcms, as is often the case.

Here we experimentally explore the correlation between the
generation yield of free charges and their mobilities, similar to a
previous study28, and thereby test Braun’s model in BHJ solar
cells with varying blend compositions. We do so by decoupling

geminate and non-geminate recombination using recently
introduced experimental methods applied to operational
devices29–31. Our results show that the dissociation efficiency of
CT states is not dependent on meþ mh, as predicted by Braun’s
theory, but is instead governed by the slower carriers, whether
they are the electrons or the holes. We describe the local
dynamics of separating CT states by taking into account the
interface that breaks the translational symmetry, changes in the
donor:acceptor domain size, and entropic effects that favour
the movement of both carriers away from the interface, and not
just the escape of the faster carrier.

Results
Studied systems. We studied two archetypal BHJ organic
solar cells using a polymeric donor with a fullerene acceptor,
[(poly[N-900-heptadecanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-
20,10,30-benzothiadiazole)]:[6,6]-phenyl-C70-butyric acid methyl
ester (PCDTBT:PC70BM)32 and poly[(4,8-bis{2-ethylhexyloxy}-
benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl)(3-fluoro-2-{[2–ethyl-
hexyl]carbonyl}thieno[3,4–b]thiophenediyl)] (PTB7):PC70BM33.
The solar cell fabrication details are provided in the Methods. The
results for PCDTBT:PC70BM are shown below. For the
PCDTBT:PC70BM blends we varied the composition ratio from
0.1 wt% to 95 wt% PCDTBT in PC70BM, and for the
PTB7:PC70BM blends we used 10 wt% to 95 wt% PTB7 in
PC70BM. Varying the blend ratio allows one to tune the
efficiencies of charge generation and collection in a systematic
way. Average current density versus voltage (JV) scans were
obtained under standard AM 1.5-G illumination and are
provided in Supplementary Figs 1 and 2, and Supplementary
Tables 1 and 2 for the PCDTBT:PC70BM and PTB7:PC70BM
blends, respectively. As the composition ratio varies, the power
conversion efficiency is predominantly determined by differences
in the short-circuit current density (JSC).

Photogeneration yields of all blend compositions. To study the
relation between charge generation and the carrier mobilities, we
performed intensity-dependent internal quantum efficiency (IQE)
measurements. In Fig. 1a we plot the IQE as calculated from the
intensity-dependent photocurrent (iPC; Supplementary Fig. 3)
and the actual photojunction absorptions in operational devices
(Supplementary Fig. 4) versus the photocurrent at an excitation
wavelength of 532 nm. The results for PTB7:PC70BM are shown
in Supplementary Fig. 5. These measurements have allowed us to
quantify the combined efficiencies of carrier photogeneration and
extraction, and to decouple first- and higher-order photocurrent
losses with respect to the incident light intensity. By increasing
the light intensity, the photocurrent can reach the slower carrier
space-charge-limited photocurrent (ISCLC), where bimolecular
(non-geminate) recombination of oppositely charged carriers
starts to strongly influence the charge extraction efficiency29. This
is seen as an IQE that decreases at higher light intensities (or
photocurrents). We note that the recombination of free charges
with trapped charges is bimolecular in nature, and is thus distinct
in the iPC measurements30. Moreover, the equilibrium charge
carrier density is low in all studied devices (much less than CUBI,
where C is the device capacitance and UBI the built-in voltage),
which prevents significant pseudo-first-order recombination
between free and equilibrium carriers. Therefore, charge
extraction free of non-geminate losses in the bulk can be
realized if the light intensity is sufficiently low to guarantee a
photocurrent lower than the ISCLC. If geminate recombination
losses of free carriers or losses because of back diffusion into the
reverse electrode34,35 are considered to be minimal, then the

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11944

2 NATURE COMMUNICATIONS | 7:11944 | DOI: 10.1038/ncomms11944 | www.nature.com/naturecommunications



charge generation can be readily quantified from the constant
IQE value30.

To corroborate the electrical measurements of the charge-
generation efficiency, we employed transient absorption spectro-
scopy (TAS) to monitor the populations of photogenerated
bound and free charge carriers following low-intensity laser
excitation, as shown in Fig. 1b. At low intensities, the signals

exhibit intensity-independent exponential decay dynamics, indi-
cating first-order losses in the bound-charge states, which is
consistent with a previous report36. The dissociation yield of the
CT states is obtained from the fraction of free charges remaining
at long times (see Methods and Supplementary Fig. 6 for further
details).

The estimated photocarrier generation yields from iPC are in
good agreement with the CT dissociation yields from TAS as
shown in Fig. 1c. Furthermore, all the blends studied by TAS
showed similar spectra but very short exciton lifetimes compared
with neat PCDTBT, suggesting efficient exciton dissociation (see
Supplementary Table 3). Therefore, the geminate recombination
losses obtained by iPC can be largely attributed to CT state
recombination losses37, as opposed to exciton losses. In line with
previous studies38 and our JV measurements, we observe that
geminate recombination losses are minimized at a polymer
loading of 20 wt%.

Carrier mobilities of all blend compositions. To correlate the
generation efficiency with charge carrier mobilities, we deter-
mined the mobilities using two independent methods: first,
resistance-dependent photovoltage (RPV), which allows to
directly monitor the arrival of extracted charges on the device
electrodes31 (see Methods, Supplementary Figs 7 and 8); and,
second, iPC to estimate the charge-extraction-limiting slower
carrier mobility. Figure 1a shows that ISCLC varies from 10� 8 to
almost 10� 2 A in the 95 wt% and the 20 wt% PCDTBT blends,
respectively. The ISCLC is proportional to the product of
the slower carrier mobility and the square root of the reduction
factor of the Langevin recombination coefficient (msg1/2) (ref. 29).
RPV measurements at high laser intensities39 reveal Langevin
recombination in blends with imbalanced donor:acceptor
concentrations (gB1) and non-Langevin recombination in
efficient blends (gB25 to 33; Supplementary Fig. 9).

Figure 2 shows good agreement between the mobilities
obtained by the two techniques. Increasing the donor content
from 0.1 to 20% considerably increases the slower carrier (hole)
mobility, where we also observe a peak in the charge collection
efficiency (Supplementary Fig. 10). Further increasing the donor
fraction decreases the electron mobility and electrons become the
slower carriers, similar to previous findings40. Therefore, we
observe a switch between electrons and holes as the slower carrier
between 20 wt% to 50 wt% of donor polymer. Across all blend
ratios, the slower carrier mobility changes by more than
five orders of magnitude from B1� 10� 10 to
B3� 10� 5 cm2 V� 1 s� 1 in the 95 wt% and the 20 wt% donor
devices, respectively. In contrast, the faster carrier mobility is

Figure 1 | Charge-generation yields from iPC and TAS. (a) IQEs as a

function of the photocurrent of PCDTBT:PC70BM devices with different

donor fractions (wt%, marked by the numbers). The constant IQE at low

photocurrents (as marked by the dotted lines) before non-geminate

recombination causes the downward deviation, is an estimate of the

charge-generation yield. (b) Normalized transient absorption spectra of the

blends monitoring the polymer positive polarons, following excitation at

560 nm at a fluence of 500 nJ cm� 2. Solid lines are single exponential fits,

indicating a geminate decay of bound and free charges, which absorb at

1,000 nm. The dissociation yield of the CT states is given by the fraction of

charges remaining at long times (as marked by the arrows). (c) The

generation efficiency of free charges determined from a,b as a function of

the donor fraction. iPC error bars are determined from the first s.d. of the

constant IQE regime considering two measurements on different pixels and

a relative variation of 5% of the active layer absorption. TAS error bars

represent the first s.d. of the plateau regime of the transient absorption

signals.
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relatively constant (around 1� 10� 4 cm2 V� 1 s� 1 to
2� 10� 3 cm2) and is controlled by the majority phase, that is
PCDTBT (PC70BM) for high (low) donor content blends.

Figure 2 also shows that the slower carrier mobility and the
generation efficiency follow a similar trend as a function of the
blend composition, which indicates that the generation efficiency
does not depend on the faster carrier as predicted by Braun’s
theory. The results for PTB7:PC70BM are shown in
Supplementary Fig. 11 and confirm this critical observation.

Discussion
These experimental results indicate an important and counter-
conventional view: slower carriers—and not the faster ones—play
the decisive role in the dissociation of CT states. To gain further
insights into the underlying mechanism, we plot in Fig. 3a the
measured generation efficiencies against the slower carrier
mobilities and compare the observed trend with the CT state
dissociation efficiency from Braun’s model (dashed line) ZCT¼
kd/(kdþ kf), but where the dissociation rate constant kd is
assumed proportional to ms, and not mfþ ms. The CT state decay
rate constant kf is fitted to the data, assuming it to be independent
of the charge carrier mobilities9, which is also consistent with the
roughly constant decay times observed in the transient absorption
signals shown in Fig. 1b. The match highlights the dominant role
of the slower carriers on the dissociation of CT states. We now
examine the potential physical mechanisms underlying this
important correspondence.

Higher mobility allows the slower carrier to leave the interface
and escape recombination: We consider a system with very
imbalanced charge transport where the electron and hole are also
separated by an interface between different domains, as illustrated
in Fig. 3b. Because the faster carrier can escape but also return to
the interface substantially quicker than the slower carrier, the
motion of the slower carrier cannot be neglected. If the slower
carrier is so slow as to be effectively immobile, it remains at the
interface and is liable to recombine with the faster carrier
(Fig. 3c), whose random walk will be biased towards the slower
carrier by their Coulombic attraction. In contrast, if the slower
carrier is mobile, it will be able to leave the interface, even if only
by a few hops (Fig. 3b). Doing so can temporarily protect the CT
state from recombination because the faster carrier cannot enter
the slower carrier phase. This increases the likelihood of escape

for the faster carrier. It is important to note that the faster carrier
can still escape even if the slower carrier is immobile. Pure faster
carrier escape can explain why the generation does not decrease
to zero at very low slower carrier mobilities, but reaches a plateau
of 5% in PCDTBT:PC70BM (Fig. 3a) and 14% in PTB7:PC70BM
blends (Supplementary Fig. 11b).

We note that the local mobility in a nm regime (roughly
5–10 nm, which is relevant for CT state separation) might differ
from the measured bulk mobility; however, if both mobilities
scale in the same way with the blend ratio composition, this
mechanism offers a possible explanation of our experimental
results.

Larger domains allow the slower carrier to leave the interface—
protecting the CT state from recombination: As the fraction of
the dilute phase is increased, its domains grow. Larger domains
will decrease the recombination rate and thereby increase the
dissociation probability of CT states as shown in ref. 25 and
illustrated in Fig. 3d. Using Monte Carlo simulations16, it has
recently been shown that in the limiting case of very small
domain sizes the recombination rate will be dependent on the
faster carrier (Langevin; Fig. 3e), while the Blom–Koster rate is
applicable in the limiting case of a bilayer (if the faster carrier
reaches the interface first). The transition to a Langevin system
occurs if the domain size approaches B5 nm. These theoretical
predictions can qualitatively explain our recombination rate
measurements, where we find that kr scales, in both systems, with
the sum of the mobilities (gB1) in low donor and acceptor blends
and becomes most ‘non-Langevin’ in the most efficient blends
(gB25 to 33; Supplementary Fig. 9). It is interesting to note that,
besides encounter-limited recombination, a recent study also
suggests that a large CT state re-dissociation rate constant after
free carrier encounters (relative to kf) could contribute to the
suppression of the Langevin recombination coefficient in efficient
devices41.

Although both properties—a high slower carrier mobility and a
sufficiently large domain size—are expected to increase the ability
of the slower carrier to leave the interface, their relative
contribution to the likelihood of a successful separation event
may not follow the same trend as a function of blend ratio
composition. For example, in PTB7:PC70BM blends with 10 wt%,
25 wt% and 45 wt% PTB7 we find a relatively constant high
slower carrier mobility, while the generation efficiency decreases
as the PTB7 concentration is reduced below 45 wt%
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(Supplementary Figs 5 and 11). Our recombination coefficient
measurements suggest that CT states in low donor
PTB7:PC70BM blends are less protected from recombination,
which could explain the observed drop in the generation
efficiency. However, further work is required to disentangle the
effect of the domain size and slower carrier mobility.

Entropy favours the simultaneous dissociation of both carriers:
Lastly, changes in the donor and acceptor domain sizes will also
change the entropic contribution to the dissociation, as illustrated
in Figs 3f and g. A growing body of evidence suggests that
entropy facilitates charge separation because of the expansion of
the number of available states as the carriers diffuse away from
the interface42–45. The free energy of dissociation is given by

DG ¼ E�TDS ¼ E� kBT ln
OCS

OCT
; ð1Þ

where OCS and OCT are the numbers of accessible CS and CT
states, respectively, E is the CT state binding energy, kB the
Boltzmann constant and T the temperature. In the extreme case
of very imbalanced donor:acceptor concentrations, where only
the faster carrier has ways to escape, OCS would equal Of—the
number of states accessible to the faster carrier (Fig. 3g). By
contrast, in balanced donor:acceptor systems, where the slower
carrier is also able to leave the interface, the factor OCS will be
proportional to Of Os, which greatly increases the entropic
contribution to charge separation (Fig. 3f). This means that the
entropic drive is stronger in blends where both carriers are mobile
and are able to leave the interface, reducing the free-energy
barrier for dissociation. The entropic contribution to the
dissociation rate thereby further supports our fundamental
assertion that the dissociation is largely dependent on the slower
carrier.

In conclusion, we have experimentally studied the impact of
the charge carrier mobilities on the dissociation yield of CT states
in organic semiconductor blends using the archetypal BHJ
organic solar cell architecture. Our electrical transport results,
which are supported by independent TAS measurements, do not

agree with the common view that charge separation occurs when
the faster carrier makes a rapid escape, and underscore the failure
of a simple Braun model, which is based on the dissociation rate
being proportional to the sum of the mobilities. Our data strongly
suggest that it is largely the ability of the slower charge carriers to
leave the donor:acceptor interface that dictates the efficiency of
CT state dissociation. Possible mechanisms that enable the slower
carriers to leave the interface are as follows: a high enough
mobility, a sufficiently large domain size and enough conduction
pathways that lower the Coulomb barrier for dissociation because
of entropic effects. Our findings are important as they shed new
insight into the fundamental physics of organic semiconductors,
and also provide new structure–property strategies for optimizing
charge generation in excitonic light-harvesting systems. Namely,
they underscore the need for high mobilities to maximize not
only charge collection but also charge generation, and further
demonstrate the role of a balanced donor:acceptor blend ratio to
maintain the mobility and domain size of slower carriers and a
high system entropy.

Methods
Device preparation. Glass substrates with an 80 nm indium tin oxide (purchased
from Kintec) layer were cleaned by sonicating in sequence with Alconox, deionized
water, acetone and 2-propanol for 5 min. Subsequently, the substrates were coated
with 30 nm of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PED-
OT:PSS; Baytron P VPAl4083). PCDTBT (SJPC, Canada, �Mw¼ 122,200 g mol� 1,
polydispersity index (PDI)¼ 5.4) and PC70BM (American Dye Source Inc.,
Canada, �Mw¼ 1,032 g mol� 1) active layer blends were fabricated by first pre-
paring solutions of PCDTBT (30 mg) in 1,2-dichlorobenzene (5 ml) and PC70BM
(120 mg) in chlorobenzene (5 ml). The solutions were then mixed in an appropriate
ratio to obtain the specified blend ratio compositions. The solutions were spin-
coated on the substrates for 90 s, while the spin speed was varied to achieve the
same target-active layer thickness (75 nm) for each blend. Blends of PTB7 (1-
Material, �Mw¼ 97.5 kDa, PDI¼ 2.1) and PC70BM were prepared by first sepa-
rately dissolving PTB7 (90 mg) and PC70BM (120 mg) in a mixture of 1,2-
dichlorobenzene and chlorobenzene (50:50%, 5 ml). The solutions were again spin-
coated on the substrates for 90 s, while the spin speed was varied to achieve a
similar target-active layer thickness (125–150 nm) for each blend. The active layer
thicknesses were measured with a DekTak 150 profilometer. All devices were
completed by vacuum evaporation of 1.2 nm of samarium, followed by 75 nm of
aluminium under a 10� 6-mbar vacuum. The device area was 0.2 cm2. The device
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the CT state from recombination. (f,g) The entropic contribution to dissociation is maximized in systems where both carriers are mobile because the

density of states of two separated charges is vastly larger than the density of states where only one charge is mobile.
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fabrication took place within a glove box with o1 p.p.m. O2 and H2O, and JV and
EQE measurements were also performed inside a glove box. Subsequently, the
devices were encapsulated for the iPC, TAS, RPV and charge extraction mea-
surements in the dark using linearly increasing voltage (dark-CELIV). Reflecto-
metry for calculating the IQE was measured on duplicate devices with a device area
of 6.25 cm2 using an integrating sphere and a PV Measurements Inc. QEX7 system.

Current density–voltage characteristics. JV curves were obtained in a two-wire
source-sense configuration, and an illumination mask was used to prevent pho-
tocurrent collection from outside of the active area. An Abet Class AAA solar
simulator was used as the illumination source, providing 100 mW cm� 2 of
AM1.5G light. The exact illumination intensity was used for efficiency calculations,
and the simulator was calibrated with a standard traceable photodiode from the
National Renewable Energy Laboratory.

Light-intensity-dependent measurements. Steady-state intensity-dependent
photocurrent measurements were performed with a 532-nm continuous wave laser
(Ningbo Lasever Inc.), providing a power of 1 W. Optical filters (ThorLabs) were
used to attenuate the laser power, and the photocurrent transients were recorded
with an Agilent semiconductor device analyser (B1500A). Each measured data
point corresponded to a steady-state photocurrent measurement at the respective
incident laser power, which was simultaneously measured with a Silicon photo-
detector to improve the accuracy of the measurement. iPC was repeated on several
pixels for each blend composition. The EQE was obtained from the ratio of the
photocurrent and the laser power. The EQE values obtained from the iPC mea-
surement were compared with the EQE spectra that were measured using a PV
Measurements Inc. QEX7 system. The IQE was subsequently calculated from the
ratio of the EQE and the active layer absorption. The latter was obtained from
specular reflectance spectra and simulated absorption by the non-active layers
using a code developed by van de Lagemaat and co-workers46 from the National
Renewable Energy Laboratory. More details on how the active layer absorptions are
obtained are provided in Supplementary Fig. 4.

Repetitive and resistance-dependent photovoltage. RPV for mobility, recom-
bination coefficient and trapping measurements was recorded with an oscilloscope
(LeCroy WaveRunner 6200A) with different external load resistances (RLoad), while
a delay generator (Stanford Research Systems DG535) was used to trigger a
function generator (Agilent 33250A) and a pulsed Nd:Yag laser (Brio Quantel)
with a pulse length of 10 ns. An excitation wavelength of 532 nm was used to
generate the charge carriers, while neutral optical density filters were used to
attenuate the B50 mJ energy output. For the RPV mobility measurements, low
laser pulse intensities (resulting in a photovoltage close to 100 mV at a load
resistance RLoad of 1 MO) were used to avoid space charge effects and to maintain
quasi short-circuit conditions31. However, the transients were also measured under
various applied biases. To estimate the recombination coefficients, the extracted
charge (Qext) was calculated at different load resistances by integrating the
photovoltage transients measured at highest pulse intensities that saturate the
photovoltage. Repetitive photovoltage transients for charge-trapping measurements
and very low mobility detection (on the order of 10� 10 cm2 V� 1 s� 1) were
recorded at RLoad¼ 1 MO and different laser repetition rates (2–20 Hz). Summaries
of these measurement techniques are provided in the figure captions of
Supplementary Figs 7–9, respectively. The error bars in the mobility values as
measured by RPV indicate the uncertainty of the carrier transit times. The
uncertainty of the transit time was approximated from the range at which the
photovoltage signals deviate and saturate to tangents fitted to the rise and plateau
regions of the photovoltage transients (as plotted in Supplementary Figs 7 and 8).

TAS. Femtosecond TAS was carried out using a commercially available transient
absorption spectrometer, HELIOS (Ultrafast Systems). Samples were excited with a
pulse train generated with an optical parametric amplifier, TOPAS (Light Con-
version). Both the spectrometer and the parametric amplifier were seeded with an
800 nm, o100 fs pulse at 1 KHz generated with a Solstice Ti:Sapphire regenerative
amplifier (Newport Ltd). Changes in the optical density of the films induced by the
laser excitation were followed with a second broadband pulse (830–1,450 nm)
generated in a sapphire crystal. The HELIOS transient absorption spectrometer was
used for recording the dynamics of the transient absorption spectra up to 2.7 ns
with an average 200-fs instrument response function. Measurements were per-
formed on the active layer next to the top electrode of the same devices as used for
the electrical measurements (structure: glass/indium tin oxide/PEDOT:PSS/Active
Layer). Samples were excited at 560 nm with a fluence of 500 nJ cm� 2. The low
fluence ensured the absence of second-order recombination processes. The decay
dynamics were analysed corresponding to the polymer exciton (1,300 nm) and
positive polaron (cation) absorption (1,000 nm). Global analyses of the data were
carried out using the programme OriginLab. Repetitive TAS signals have been
averaged 10 times and measurements repeated twice.

Data availability. All relevant data are available from the authors.
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34. Sandberg, O. J., Nyman, M. & Österbacka, R. Effect of contacts in organic bulk
heterojunction solar cells. Phys. Rev. Appl. 1, 024003 (2014).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11944

6 NATURE COMMUNICATIONS | 7:11944 | DOI: 10.1038/ncomms11944 | www.nature.com/naturecommunications



35. Reinhardt, J., Grein, M., Bühler, C., Schubert, M. & Würfel, U. Identifying the
impact of surface recombination at electrodes in organic solar cells by means of
electroluminescence and modeling. Adv. Energy Mater. 4, 1400081 (2014).

36. Etzold, F. et al. Ultrafast exciton dissociation followed by nongeminate charge
recombination in PCDTBT:PCBM photovoltaic blends. J. Am. Chem. Soc. 133,
9469–9479 (2011).

37. Lenes, M., Morana, M., Brabec, C. J. & Blom, P. W. M. Recombination-limited
photocurrents in low bandgap polymer/fullerene solar cells. Adv. Funct. Mater.
19, 1106–1111 (2009).

38. Park, S. H. et al. Bulk heterojunction solar cells with internal quantum
efficiency approaching 100%. Nat. Photon. 3, 297–302 (2009).

39. Philippa, B. et al. Molecular weight dependent bimolecular recombination in
organic solar cells. J. Chem. Phys. 141, 054903 (2014).

40. Armin, A. et al. Balanced carrier mobilities: not a necessary condition for high-
efficiency thin organic solar cells as determined by MIS-CELIV. Adv. Energy
Mater. 4, 1300954 (2014).

41. Gregg, B. A. Entropy of charge separation in organic photovoltaic cells: the
benefit of higher dimensionality. J. Phys. Chem. Lett. 2, 3013–3015 (2011).

42. Burke, T. M., Sweetnam, S., Vandewal, K. & McGehee, M. D. Beyond Langevin
recombination: how equilibrium between free carriers and charge transfer states
determines the open-circuit voltage of organic solar cells. Adv. Energy Mater. 5,
1500123 (2015).

43. Vithanage, D. A. et al. Visualizing charge separation in bulk heterojunction
organic solar cells. Nat. Commun. 4, 2334 (2013).

44. Monahan, N. R., Williams, K. W., Kumar, B., Nuckolls, C. & Zhu, X.-Y. Direct
observation of entropy-driven electron-hole pair separation at an organic
semiconductor interface. Phys. Rev. Lett. 114, 247003 (2015).

45. Clarke, T. M. & Durrant, J. R. Charge photogeneration in organic solar cells.
Chem. Rev. 110, 6736–6767 (2010).

46. Morfa, A. J., Nardes, A. M., Shaheen, S. E., Kopidakis, N. & van de Lagemaat, J.
Time-of-flight studies of electron-collection kinetics in polymer:fullerene bulk-
heterojunction solar cells. Adv. Funct. Mater. 21, 2580–2586 (2011).

Acknowledgements
We thank Samantha Hood for providing insights from Monte Carlo simulations. M.S. is
funded by a University of Queensland International Postgraduate Research Scholarship.
I.K. was supported by an Australian Research Council (ARC) Discovery Early Career

Researcher Award (DE140100433) as well as by ARC Centres of Excellence for Engi-
neered Quantum Systems (CE110001013) and Quantum Computation and Commu-
nication Technology (CE110001027). P.B. is a University of Queensland Vice-
Chancellor’s Researched Focused Fellow, and P.M. is an ARC Discovery Outstanding
Research Award Fellow. This programme has also been supported by the Australian
Government through the Australian Renewable Energy Agency (ARENA) Australian
Centre for Advanced Photovoltaics.

Author contributions
M.S. and A.A. conceptualized the research work, which was supervised by P.M. and P.B.
M.S. fabricated the devices and performed the electrical measurements with the help of
A.A. S.S. performed TAS measurements. M.S. analysed the electrical measurements and
S.S. and A.A. analysed the TAS data. M.S., I.K., S.S. and A.A. equally contributed to the
interpretation of the results. M.S., A.A., S.S., I.K. and P.M. equally contributed in the
development of the manuscript, which was initially drafted by M.S. and optimized by all
the co-authors.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Stolterfoht, M. et al. Slower carriers limit charge generation in
organic semiconductor light-harvesting systems. Nat. Commun. 7:11944 doi: 10.1038/
ncomms11944 (2016).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11944 ARTICLE

NATURE COMMUNICATIONS | 7:11944 | DOI: 10.1038/ncomms11944 | www.nature.com/naturecommunications 7


