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Abstract 42 

 43 

In the process of impact testing of large-scale mechanical equipment, the measured forced 44 

response signals are often polluted by strong background noise. The forced response signal has a 45 

low signal-to-noise ratio, and this makes it difficult to accurately estimate the modal parameters. 46 

To solve this problem, the mean averaging of repeatedly measured frequency response function 47 

estimates is often employed in practical applications. However, a large number of impact testsare 48 

not practical for the modal testing of large-scale mechanical equipment. The primary objective of 49 

this paper is to reduce the number of averaging operations and improve the accuracy of the modal 50 

identification by using an adaptive noise removal technique. An adaptive denoising method is 51 

proposed by combining the Wiener and improved minimum mean square error short-time spectral 52 

amplitude estimators. The proposed method can adaptively remove both stationary and highly 53 

non-stationary noise, while preserving the important features of the true forced response signals. 54 

The simulation results show that the proposed noise removal technique improves the accuracy of 55 

the estimated modal parameters using only one impulse response signal. The experimental results 56 

show that the proposed two step method can accurately identify a natural frequency that is very 57 

close to a strong interference frequency in the modal test of a 600MW generator casing. 58 

 59 

KEY WORDS: Modal identification; Adaptive noise reduction; Low SNR; MMSE-STSA 60 

estimator; WIENER-STSA estimator 61 

  62 
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1. Introduction 63 

Modal identification estimates the modal model of a structure, i.e. natural frequencies, 64 

damping ratios and mode shapes, from measured input-output data. The accuracy of modal 65 

identification is highly sensitive to the signal-to-noise ratio (SNR) of the measured output 66 

signals(forced response signals). In modal tests of large-scale mechanical equipment, the 67 

measured forced response signals are always polluted by strong background noise, and the noise is 68 

rather complex as the contributing factors are diverse and complicated. The noise sources are 69 

thought to originate from test environment including non-linear effects, extraneous structural noise 70 

as well as ‘noise’ in electronic devices[1]. Hence, the forced response signals have a low SNR and 71 

this makes the estimation of the modal parameters difficult. To obtain the ideal forced responses 72 

the background noise should be removed from the measured forced response signals. Denoising 73 

methods have been proposed for noise removal from frequency response functions(FRFs). Kim 74 

and Hong [2] proposed a robust wavelet denoising method for FRFs estimation, which is based on 75 

a wavelet-related median filtering and wavelet shrinkage to reduce the effect of outliers and 76 

zero-mean Gaussian noise respectively. But the method requires many averaging operations for 77 

accurate FRF estimation, which reduces the scope of its application. Sanliturk and Cakar [1] 78 

presented a method based on the singular value decomposition(SVD) for the elimination of noise 79 

from measured FRFs so as to improve the accuracy of modal identification, but the method needs 80 

to set an appropriate threshold to avoid loss of valuable information. Alamdari et al. [3] introduced 81 

a Gaussian kernel algorithm to reduce unnecessary noise from noisy FRFs, and it is designed to 82 

localize damage in the presence of heavy noise influences by using FRFs of the damaged structure 83 

only. Huet al. and Bao et al.[4,5] introduced a Cadzow’s algorithm to reduce unnecessary noise 84 

from noisy FRFs, but the denoising method needs to set a reasonable noise threshold based on the 85 

measured signals. The effectiveness of the denoising methods in [3-5] was illustrated by 86 

simulation and experimental data, but none of the results show that the two denoising methods can 87 

remove strong background noise mixed in a forced response signal. 88 

 89 

Insert Figure 1 here 90 

 91 
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Figure 1 shows the basic breakdown of signals into different types[6,7]. The most 92 

fundamental division is into stationary and non-stationary signals. Stationary signals have 93 

statistical properties that are invariant with time, whereas for non-stationary signals the statistical 94 

properties vary with time. Figure 1 highlights that typical measured forced response signals 95 

contain both stationary and non-stationary components for modal tests on large-scale mechanical 96 

equipment. The ideal forced response signal has a transient component that is non-stationary, 97 

background noise that is mainly stationary, and often a continuous component that is 98 

non-stationary. The existing denoising algorithms cannot remove stationary noise and 99 

non-stationary noise simultaneously, and these different types of noise should be dealt with 100 

separately. The short-time spectral amplitude(STSA), Wiener filter(WIENER) and minimum mean 101 

square error(MMSE) methods have been widely used in denoising and coding [8-15]. The 102 

MMSE-STSA estimator is effective in removing stationary signals and the continuous components 103 

of non-stationary signals from measured speech signals[8], although the technique requires the 104 

SNR a priori. Hence this SNR is a key parameter in the MMSE-STSA estimator. The 105 

decision-directed(DD) approach[8] is a widely used method to estimate the a priori SNR, but has 106 

two inherent drawbacks: 107 

• The estimated a priori SNR is biased since the DD approach depends on the estimate of the 108 

spectrum in the previous window[8,9]. 109 

• The estimated a priori SNR is distorted when the measured signal has a low SNR[8]. 110 

The first problem has been solved by an improved a priori SNR estimation method proposed by 111 

Plapouset et al.[9], which removes the bias in the DD approach. However, the second problem is 112 

still unsolved and hence the MMSE-STSA estimator method cannot be directly used to remove 113 

strong background noise mixed in a forced response signal. The Wiener filter is an optimal method 114 

to remove stationary noise in stationary environments[16],whereas the Wiener short-time spectral 115 

amplitude estimator (WIENER-STSA)improves the application scope of the Wiener filter. Here, 116 

the WIENER-STSA estimator can be used to eliminate stationary noise from the measured forced 117 

response signal, so as to solve the second problem. In this paper, we propose an adaptive 118 

denoising method combining WIENER-STSA and MMSE-STSA estimators with improved a 119 

priori SNR estimation. The proposed denoising method can adaptively remove stationary noise 120 
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and continuous components of non-stationary noise, while preserving the important features of the 121 

true forced response signals. The proposed method can reduce the number of averaging operations 122 

and improve the accuracy of modal identification for low SNR measurements. 123 

The paper is organized as follows. Section 2 introduces some background about denoising, and 124 

compares two a priori SNR estimation methods. Section 3 introduces the proposed method. In 125 

section 4, the proposed method is validated using simulated signals. Section 5 applies the 126 

proposed method to measured forced response signals collected from a 600MW generator. Finally, 127 

conclusion are given in Section 6. 128 

 129 

2. Background 130 

2.1. The MMSE-STSA estimator 131 

 Ephraim and Malah [8] proposed the minimum mean-square error short-time spectral 132 

amplitude(MMSE-STSA) estimator. Previous studies[8, 17] have shown that the MMSE-STSA 133 

estimator has a beneficial effect for the processing of non-stationary signals when the SNR level is 134 

high. Here the MMSE-STSA developed in [8] is reviewed. 135 

 In the usual additive noise model, the measured impulse response signal is given by 136 

���� = ���� + ����, 0 ≤ � ≤ �(1) 137 

where ����  and ����  denote the noise-free impulse response signal and the noise signal, 138 

respectively, in the analysis interval 
0, ��. Applying the Short Time Fourier Transform (STFT), 139 

we have 140 

����� = 		 ����� + ����� (2) 141 

where � and �denotethe short-time window and the frequency indices, respectively. Using 142 

exponential notation, the �-th spectralcomponent ofthe noise-free impulse response signal and the 143 

noisy signal can be expressed as����� = ������ and����� = ������, respectively[8, 9]. 144 

The objective of the MMSE-STSA estimator is to determine���, the estimate of the spectral 145 

amplitude �� of the noise-free impulse response signal����. Ephraim and Malah [8] estimated 146 

���through the minimization of a Bayesian cost function which measures the mean square error 147 

between��� and ��. Thus the Bayesian cost function can be expressed as: 148 
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� = �  !�� − ���#$%(3) 149 

where �&∙( is the expectation operator. The Bayesian estimator is then given by 150 

��� = 	�&��|����, 0 ≤ � ≤ �((4) 151 

Assuming the individual spectral components are statistically independent of one another, the 152 

expected value of ��given&����, 0 ≤ � ≤ �(is equal to the expected value of ��given��only. 153 

We therefore have 154 

��� = �&��|��( = * * +�,�-�|+�,���,�+�,���.+�.��/01∞1
* * ,�-�|+�,���,�+�,���.+�.��/0

1
∞

1
(5) 155 

where the symbol 2� denotes the sample value of ��,and ��∙� denotes a probability density 156 

function(PDF). In order to develop the theory along the lines that it has been done in the past it is 157 

necessary to treat the Discrete Fourier Transform(DFT) coefficients as Gaussian distributions, the 158 

assumption is quite poor in some cases but it appears that the resulting algorithm can still provide 159 

useful results. With the Gaussian distribution assumption of each individual spectral component of 160 

the noise-free impulse response signal and the noisy signal, the conditional PDF of the observed 161 

spectral component given 2�and 3�, ����|2� , 3��, is given by 162 

����|2� , 3�� = 4
567��� exp  − 4

67��� |�� − 2�exp�;3��|$%(6) 163 

and the joint PDF of the impulse response signal spectral amplitude,	��2� , 3��, is given by 164 

��2� , 3�� = +�
56<��� exp  − +�/6<���%(7) 165 

where =>��� ≜ E&|��|$( and =A��� ≜ E&|��|$( are the variance of the �-th spectral component 166 

of the noisy signal and the noise-free impulse response signal, respectively. Substituting Eqs. (6) 167 

and (7) into Eq. (5), the MMSE-STSA estimator of the impulse response signal spectral amplitude 168 

is obtained as 169 

��� = BC 4
6<��� + 4

67���D
E4 ⋅ Γ�1.5� ⋅ J K−0.5; 1;− MNOPQRSQ���

4TMNOPQRSQ��� ���,UAV���W ⋅ ��(8) 170 

whereΓ�⋅�is the gamma function, withΓ�1.5� = √5
$ ,J�2; Y; Z�is the confluent hyper geometric 171 

function, and ���,[\U[��� and���,UAV��� represent the a priori Signal-to-Noise Ratio (SNR) 172 

and the a posteriori SNR, respectively.���,[\U[��� and ���,UAV��� are defined by 173 
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���,UAV��� = |-�|/
]&|N�|/((9) 174 

���,[\U[��� = ]&|M�|/(
]&|N�|/(.(10) 175 

Finally, applying the inverse STFT operation and the phase information of the measured 176 

signal, the estimator of the noise-free impulse response signal can be obtained. In practical 177 

implementations of the MMSE-STSA estimator, E&|��|$( and E&|��|$( are unknown since only 178 

the measured signal spectrum ��is available. Thus, both E&|��|$( and E&|��|$( have to be 179 

estimated. In practice,E&|��|$(can be easily estimated during pauses in the impulse response using 180 

a classic recursive relation [17], continuously using Minimum Statistics [18] or Minima 181 

Controlled Recursive Averaging [19],whereas the priori SNR is a key parameter in the 182 

MMSE-STSA estimator. The estimation of the priori SNR will be discussed in detail in the 183 

following sections.  184 

 185 

2.2. The a priori SNR estimation method 186 

A widely used method to determine the a priori SNR from distorted speech is the 187 

decision-directed(DD) approach. Ephraim and Malah [8] defined the DD approach as a linear 188 

combination of the a posteriori SNR and the instantaneous SNR, with a weighting parameter, ^, 189 

that is constrained to be 0 < ^ < 1.The linear combination gives 190 

��̀�,[\U[aa ��, �� = β
bM��,E4,��b/

cd7�,,�� + �1 − β�Pf��̀�,UAV��, �� − 1g(11) 191 

where	� and �denote the short-time window and frequency indices, respectively,P
�� = � if 192 

� ≥ 0 and P
�� = 0 otherwise. The parameter ^ is set to a typical value of 0.98 for the DD 193 

approach. However, Plapous et al. [9] showed that the DD algorithm introduces a window delay 194 

when the parameter β is close to one, and this delay introduces a bias in the SNR estimation. 195 

Consequently, the DD algorithm computed at the current window � matches that at the previous 196 

window � − 1. Thus, Plapous et al. [9] proposed to compute the SNR for the next window � + 1 197 

using the DD approach and toapply it to the current window because of the window delay. Hence, 198 

an improved a priori SNR estimation method is 199 

��̀�,[\U[iMNO��, �� = β
bjkk<lmm �,,��-�,,��b/

cd7�,,�� + �1 − β�Pf��̀�,UAV�� + 1, �� − 1g(12) 200 
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The improved a priori SNR estimation method solves the bias problem while maintaining the 201 

benefits of the DD approach [9]. In order to measure the performance of SNR estimators, it is 202 

useful to compare the estimated SNR values to the true(actual) ones, as shown in Figure 2 where 203 

the estimated SNRs are displayed versus the true SNRs. The SNRs are plotted for a simulated 204 

signal(to be described in detail in Section 4) to focus the analysis on the behavior of the SNR 205 

estimators for forced response components. 206 

 207 

Insert Figure 2 here 208 

 209 

Figure 2 compares the actual SNR versus the estimated SNRs using the posteriori algorithm, 210 

the improved algorithm and the DD algorithm given by Eqs.(9), (11) and (12), respectively. In this 211 

case, the solid line corresponds to the actual SNR that can be used as a reference. From Figure 2, it 212 

is obvious that the a priori SNR estimator based on the improved algorithm is closer to the actual 213 

SNR than the a priori SNR estimator based on the DD algorithm at higher SNR levels. However, 214 

the a priori SNR estimator based on the improved algorithm departs from the true SNR at lower 215 

SNR levels. The improved algorithm is superior to the traditional DD algorithm when the 216 

measured impulse response signal has a higher SNR, but is distorted when the measured impulse 217 

response signal has a low SNR. In order to avoid the low SNR situation, the WIENER-STSA 218 

estimator will be introduced to improve the SNR. 219 

 220 

2.3 The WIENER-STSA estimator 221 

The Wiener filter is an optimal method to remove stationary noise in stationary environments 222 

[16]. Here, the WIENER-STSA estimator is introduced to enhance the application scope of the 223 

Wiener filter. Adopting the noise model mentioned in Section2.1, we assume ���� and ���� to 224 

be uncorrelated stationary random process, with power spectral density functions denoted by 225 

�A��� and �>	���respectively, where �denotes the frequency index. One approach to recover the 226 

desired signal���� relies on the additivity of power spectra 227 

�n��� = �A��� + �>	���(13) 228 

To recover a sequence ����  corrupted by additive noise ���� , that is from the sequence 229 

Page 8 of 29

Structural Control and Health Monitoring

http://mc.manuscriptcentral.com/stc

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

9 

 

���� = ���� + ����, a linear filter ℎ���is found, such that the sequence �̂��� = ℎ��� ∗ ���� 230 

minimizes the expected value of the nosie, under the condition that the signals ���� and ����are 231 

stationary and uncorrelated. The frequency domain solution to this stochastic optimization 232 

problem is given by 233 

r��� = M<���
M<���TM7	���(14) 234 

which is referred as the Wiener filter. Since the Wiener filter is derived under uncorrelated and 235 

stationary conditions, the Wiener filter provides noise suppression without significant distortion in 236 

the estimated signal and the background residual. The STFT is applied when the background and 237 

desired signals are non-stationary, and then �A��� and �>	���can be expressed as time varying 238 

functions �A��, �� and �>��, ��, where � represents the short-time window. Thus every time 239 

window is processed by a different Wiener filter, defined as 240 

r��, �� = M�<�,,��
M�<�,,��TM�7	�,,�� =

s̀<	�P,��
s̀7�P,��

4Ts̀<	�P,��
s̀7�P,��

= tùv�,,��
4Ttùv�,,��(15) 241 

The reduction of the noise is based on obtaining an accurate SNR [20]. In order to effectively 242 

remove stationary noise, an instantaneous SNR will be introduced, defined as 243 

���\>AV��, �� = |-�,,��|/E]
|N�,,��|/�
]
|N�,,��|/� (16) 244 

where ���, �� is available, and the estimators of 	E
|���, ��|$�have been introduced in Section 245 

2.1. Hence, the WIENER-STSA estimator is obtained as 246 

����, �� = r��, �� ⋅ ���, �� = MNOR7<w�,,��
4TMNOR7<w�,,�� ⋅ ���, ��.(17) 247 

Finally, applying the inverse STFT operation and the phase information of the measured signal, 248 

the estimator of the noise-free impulse response signal can be obtained. 249 

 250 

3. Proposed Method 251 

We assume that the ideal forced response signal is the transient component of non-stationary 252 

signal, and the background noise has a stationary component and a continuous component that is 253 

non-stationary. An adaptive denoising method is proposed to obtain the ideal forced response 254 
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signal. In the first step, the WIENER-STSA estimator is used to remove the stationary signal 255 

components, which is very helpful in improving the SNR of the measured forced response signals 256 

and make the filtered signals suitable for further processing. In the second step, the MMSE-STSA 257 

estimator with an improved a priori SNR estimation method is introduced, which can be used to 258 

remove the continuous component of the non-stationary signal. The flow chart of the proposed 259 

method is shown in Figure 3. 260 

 261 

Insert Figure 3 here 262 

 263 

The implementation of the proposed denoising method is summarized below: 264 

(1) Estimate the noise PSD E
|���, ��|$� during no forced response using the Minima 265 

Controlled Recursive Averaging approach [19]. 266 

(2) Calculate the instantaneous SNR using Eq. (16). 267 

(3) Remove stationary noise components from the measured forced response signal using the 268 

WIENER-STSA estimator with an instantaneous SNR estimation method. 269 

(4) Re-estimate the noise PSD E
|���, ��|$� during no forced response using the Minima 270 

Controlled Recursive Averaging approach [19]. 271 

(5) Calculate the improved a priori SNR using Eq. (12). 272 

(6) Remove residual non-stationary noise from the filtered forced response signals using the 273 

MMSE-STSA estimator with the improved a priori SNR estimation method. 274 

 275 

In this paper, the a priori SNR estimation always uses the improved a priori SNR estimation 276 

method, and the following parameters have been chosen: short-time window � = 0.06s, windows 277 

overlap 50% and weighting parameter ^=0.98. 278 

 279 

4. Simulated Example 280 

To validate the proposed method, a simulated signal, ����, is generated according to the 281 

model 282 
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t i t i
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s e f t i s e f t i
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s e f t i s e f t i

s f randt s f t s f om noiset

ζ ζ

ζ ζ

π π

π π

π π π

− − − −

− − − −
=

 ⋅ ⋅ − + ⋅ ⋅ −
 =
 + ⋅ ⋅ − + ⋅ ⋅ − 

+ ⋅ ⋅ ⋅ + ⋅ + ⋅

∑

(14)

 283 

The parameters of the simulated signal are given in Tables 1 and 2, and the sampling frequency is 284 

1024Hz. 285 

 286 

Insert Table 1 here 287 

Insert Table 2 here 288 

 289 

The simulated signal, x(t), is composed of two terms. The first term represents a forced 290 

response signal, where �4, �$, �z and �{ are the amplitudes of the impulse response signal, |>4, 291 

|>$, |>z and |>{ are the corresponding natural frequencies and } is the sample time increment. 292 

The second term represents noise components. According to the mathematical model and the 293 

parameters the simulated signal has the following three characteristics. 294 

(1) The forced response signal has a low SNR(SNR=-4.6dB). 295 

(2) The noise components contain stationary noise and non-stationary noise. 296 

(3) The noise components contain a base frequency(|[4), which is very close to a natural 297 

frequency(|>$) and makes it difficult to accurately estimate the natural frequency(|>$). 298 

 299 

The simulated signal x(t) is shown in Figure 4; the simulated signal contains significant 300 

environmental noise, and the forced response signal has a low SNR. The proposed denoising 301 

method was applied to the simulated signal, and the results are shown in Figure 5 and Figure 6. 302 

Figure 5 compares the filtered signals from the MMSE-STSA and the proposed methods in the 303 

time domain, and Figure 6 compares the results in the frequency domain. Figure 6 shows that the 304 

natural frequencies cannot be accurately estimated using the raw simulated forced response signal 305 

spectrum. 306 

 307 

Insert Figure 4 here 308 

Insert Figure 5 here 309 

Insert Figure 6 here 310 
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 311 

Figure 5 shows that both the MMSE-STSA and the proposed method can remove most of the 312 

environmental noise. The zoomed part of Figure 5 shows that the filtered signal with only the 313 

MMSE-STSA method is distorted in the time domain. According to the simulated signal 314 

parameters, the first two true natural frequencies are 44.0Hz and 50.0Hz; however Figure 6 shows 315 

that the filtered first two natural frequencies using the MMSE-STSA method are predicted to be 316 

42.0Hz and 49.5Hz. Figure 5 and Figure 6 show that the filtered signal with the proposed method 317 

has a good consistency with the ideal forced response signal in both the time and frequency 318 

domains. Meanwhile, the strong colored noise frequency(49.5Hz) disappears after the filter 319 

operation of the proposed method, and the two close natural frequencies (44.0Hz, 50.0Hz) are 320 

accurately estimated. The simulation results indicates that using the WIENER-STSA estimator 321 

before the MMSE-STSA estimator under low SNR conditions significantly improves the 322 

estimation. The proposed noise removal technique can improve the accuracy of the estimated 323 

modal parameters using only one impulse response signal in a strong background noise 324 

environment. 325 

 326 

5. Experiment Results from a 600MW Generator 327 

5.1. Experimental setup 328 

In this section, the proposed method is validated using the measured forced response signals 329 

collected from a 600MW generator. The generator exhibits excessive vibration during operation, 330 

and the rotating frequency of the generator is 50Hz. Figure 7 shows the image of the generator, 331 

and the generator shell located inside a sound-proof housing. Figure 8 shows the bode diagram of 332 

the generator; the generator has a resonance frequency at 48.5Hz, which is not the natural 333 

frequency of the rotor according to the simulated results. Hence, this resonance frequency is likely 334 

to be a natural frequency of the generator shell. A modal test was performed to obtain the natural 335 

frequencies of the generator shell. However, the measured forced response signal is polluted by 336 

highly non-stationary noise, and the measured forced response signal has a low SNR. The spectral 337 

analysis of the measured signal shows that the forced response signal contains a strong colored 338 

noise; the strong colored noise frequency is 49.8Hz, which is very close to the resonance 339 
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frequency at 48.5Hz.This makes it difficult to accurately estimate the natural frequency of the 340 

generator shell. It should be mentioned that the state-of-the-art method (PolyMAX algorithm) 341 

estimates the natural frequency to be 49.8Hz, which indicates that the strong colored noise signal 342 

has a great influence on modal parameter identification. 343 

 344 

Insert Figure 7 here 345 

Insert Figure 8 here 346 

 347 

5.2. Experimental results 348 

The time domain waveform of the measured signal is shown in Figure 9.The measured signal 349 

contains high levels of environmental noise, and the forced response signal has a low SNR. The 350 

proposed denoising method was applied to the measured forced response signal, and the results 351 

are shown in the time and frequency domains in Figure 10 and Figure 11 respectively. The filtered 352 

signal from the MMSE-STSA and the proposed methods are compared. Figure 11 shows that the 353 

natural frequencies cannot be accurately estimated from the raw measured forced response signal 354 

spectrum. Figure 10 shows that most of the environmental noise has been removed by both the 355 

MMSE-STSA and proposed methods. Figure 11 shows that the colored noise frequency(49.8Hz) 356 

has been filtered using both the MMSE-STSA method and the proposed method, but a natural 357 

frequency close to the interference frequency(49.8Hz) disappears with the MMSE-STSA method. 358 

This demonstrates that the MMSE-STSA method may lead to distortion of the estimated modal 359 

parameters in noisy environments. In contrast, Figure 11 shows that a natural frequency at 48.9Hz 360 

appears after using the proposed method, and the result is consistent with the Bode diagram during 361 

the rotor startup. Thus, the application of the WIENER-STSA estimator is necessary before the 362 

MMSE-STSA estimator under low SNR conditions, and the proposed method can help to 363 

accurately identify natural frequencies in modal tests of large-scale mechanical equipment. 364 

 365 

Insert Figure 9 here 366 

Insert Figure 10 here 367 

Insert Figure 11 here 368 

 369 
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6. Conclusion 370 

In this paper, we focus on modal parameter identification when the forced response signal has a 371 

low SNR. An adaptive denoising method based on the WIENER-STSA estimator and an improved 372 

MMSE-STSA estimator was proposed. Comparing the proposed method with some 373 

state-of-the-art denoising methods in Ref. [1,2], the proposed method does not need to set an 374 

appropriate threshold to avoid loss of valuable information, and does not require many averaging 375 

operations. The proposed method can adaptively remove stationary and non-stationary noise 376 

components, while preserving the important features of the true forced response signals. The 377 

simulation shows that the proposed noise removal technique improves the accuracy of the 378 

estimated modal parameters using only one impulse response signal, which demonstrates that the 379 

proposed method can reduce the number of averaging operations when the measured forced 380 

response signal has a low SNR. In the modal test of a 600MW generator shell, the measurement 381 

results show that, in contrast to the state-of-the-art method (PolyMAX algorithm), the proposed 382 

method can accurately identify a natural frequency that is very close to a strong interference 383 

frequency. Consequently, the proposed adaptive method is a powerful tool to improve the accuracy 384 

of modal identification when the forced response signal has a low SNR. 385 
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Table list 452 

Table 1. The frequencies of the simulated signal 453 

|>4�Hz� |>$�Hz� |>z�Hz� |>{�Hz� |[4�Hz� 

44.0 50.0 65.0 80.0 49.5 

 454 

Table 2. The parameters of the simulated signal 455 

�4 �$ �z �{ �� �� �� �4 �$ ���� 

8.00 14.00 12.00 13.00 5.90 0.13 0.16 10 6 6.3 

 456 

  457 

Page 17 of 29

Structural Control and Health Monitoring

http://mc.manuscriptcentral.com/stc

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

18 

 

Figure list 458 

Figure 1. Classification of signals. 459 

Figure 2. The actual and estimated SNRs for a simulated signal. 460 

Figure 3. Flow chart of the proposed method. 461 

Figure 4. Time domain waveforms of the simulated signal. 462 

Figure 5. The simulated signal waveform before and after filtering. 463 

Figure 6. The simulated signal spectrum before and after filtering. 464 

Figure 7 The image of the generator: (a) Generator and sound-proof housing, (b) Generator shell 465 

Figure 8. Bode diagram of the rotor response during startup. 466 

Figure 9. Time domain waveforms of the measured signal. 467 

Figure 10. The measured signal waveform before and after filtering. 468 

Figure 11. The measured signal spectra before and after filtering. 469 
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