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A GRASSMANN ALGEBRA FOR MATROIDS

JEFFREY GIANSIRACUSA AND NOAH GIANSIRACUSA

ABSTRACT. We introduce an idempotent analogue of the exterior algebra for which the theory
of tropical linear spaces (and valuated matroids) can be seen in close analogy with the classical
Grassmann algebra formalism for linear spaces. The top wedge power of a tropical linear space
is its Plücker vector, which we view as a tensor, and a tropical linear space is recovered from its
Plücker vector as the kernel of the corresponding wedge multiplication map. We prove that an
arbitrary d-tensor satisfies the tropical Plücker relations (valuated exchange axiom) if and only if
the dth wedge power of the kernel of wedge-multiplication is free of rank one. This provides a new
cryptomorphism for valuated matroids, including ordinary matroids as a special case.

1. INTRODUCTION

Matroids, which provide a combinatorial abstraction of linear dependence over a field, have a
deep and fascinating history [Oxl11, Whi86, Whi92, Kat14]. Valuated matroids are an enrichment
where each basis in the matroid is weighted by an element of a fixed totally ordered abelian group
and the usual exchange axiom is replaced by a valuated exchange axiom taking into account
these weights [DW92]. Just as for matroids, there are many equivalent definitions of a valuated
matroid; some of these come from variants of the exchange axiom or from redirecting attention
from bases to, e.g., circuits [Mur97, MT01] whereas others are of a drastically different flavor,
such as the characterization of valuated matroids as precisely those matroid basis weightings where
an optimization problem involving the weights can always be solved using the greedy algorithm
[DW90].

Associated to every matroid is a polyhedral complex known as the Bergman fan [Ber71, FS05].
Speyer extended this to the valuated case and termed the resulting polyhedral complexes tropical
linear spaces, since they generalize the tropicalizations of linear subspaces over a valued field;
moreover, he showed that, like the non-valuated case, this polyhedral complex uniquely determines
its valuated matroid [Spe08]. Thus valuated matroids and tropical linear spaces are two sides of the
same coin, one combinatorial and one geometric. Many concepts in the theory of tropical linear
spaces are inspired by their classical counterparts through ‘tropicalization’ in a colloquial sense, yet
the tools of the trade and proof techniques rest primarily in the framework of matroid polytopes.

In this paper we introduce a tropical variant of the exterior algebra of a vector space that makes
precise many of these analogies between classical and tropical linear spaces, and which provides a
setting in which to study the latter using familiar ideas from (multi)linear algebra. We derive a novel
characterization of valuated matroids in terms of top wedge powers, revealing a striking parallel to
vector spaces. All of our results specialize to the case of ordinary matroids and so reinforce the
connections to linear algebra/geometry at the heart of matroid theory.

Exterior algebras have appeared in the context of matroids previously, but playing a quite
different role than ours. The Orlik-Solomon algebra [OS80] and the Whitney algebra [CS00] are
both algebraic invariants of matroids, meaning they associate to each matroid an algebra encoding
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2 JEFFREY GIANSIRACUSA AND NOAH GIANSIRACUSA

certain salient features of the matroid but not determining the matroid itself. Our exterior algebra
is associated to a ground set and is used to study all matroids on that ground set simultaneously,
inspired by the Plücker embedding of the Grassmannian. This is more similar in spirit to Dress and
Wenzel’s paper [DW91], though our constructions and results are nonetheless quite distinct from
theirs, perhaps largely due to the emergence of tropical geometry since their paper was published.

1.1. Summary of results. Let S be an idempotent semifield. That is, S satisfies all the axioms of a
field except for the existence of additive inverses, and moreover s+ s = s for all s ∈ S. For instance,
given a totally ordered abelian group we obtain an idempotent semifield by letting the multiplication
be the group operation and addition be maximum with respect to the ordering. The most important
examples, for us, obtained this way are the tropical numbers T = (R∪{−∞},max,+) and its
Boolean subfield B = {0,−∞}. However, to avoid confusion we shall always write the additive
and multiplicative identities as 0 and 1, respectively.

Given a free S-module V of rank n < ∞, we define the tropical Grassmann algebra
∧

V to be the
quotient of the symmetric algebra on V by the relations identifying the squares e2

i of the elements
of a basis {e1, . . . ,en} with zero. Unique to the idempotent setting is that this does not depend on a
choice of basis. Despite the commutativity in the construction, many of the familiar properties of
the exterior algebra on a vector space carry over. For instance, this idempotent algebra is graded
and the dth component

∧dV is free of rank
(n

d

)
with basis the elements eI := ei1 ∧·· ·∧ eid for each

I = {i1, . . . , id} ⊂ [n]; given a collection of vectors v1, . . . ,vd ∈V , the coefficients of v1∧·· ·∧ vd in
this basis are the minors (in the tropical sense of permanents) of the matrix of coefficients of the vi.

A rank d valuated matroid is a map f :
([n]

d

)
→ S satisfying the valuated exchange axioms; we

can now view this as a tensor w = ∑ f (I)eI ∈
∧dV , and the valuated exchange axiom becomes an

algebraic (in fact, tropical, in the sense of [GG13]) condition on the tensors in this idempotent
module. Speyer calls valuated matroids tropical Plücker vectors, since they play the role for
tropical linear spaces that the usual Plücker vectors of maximals minors do for linear spaces over a
field [Spe08, SS04]. The following results, though quite straightforward to prove, reinforce this
analogy and illustrate the conceptual clarity in working with the tropical Grassmann algebra. Let
V =

⊕n
i=1 Sei as above, and let V∨ = Hom(V,S) be the linear dual.

(1) The tropical linear space Lw ⊂ V associated to a tropical Plücker vector w ∈
∧dV is the

tropical kernel (see Definition 2.4.1) of the wedge multiplication map −∧w : V →
∧d+1V .

(2) If w j ∈
∧d jV are tropical Plücker vectors, j = 1,2, then w1∧w2 ∈

∧d1+d2V is the tropical
Plücker vector of the stable union (the operation dual to stable intersection in tropical
geometry) of Lw1 and Lw2 , when this is defined (cf., §5).

(3) The rank d Stiefel tropical linear spaces [FR15] correspond precisely to the totally decom-
posable tensors in P

(∧dV
)

.

(4) The valuated matroid elongation of w ∈
∧dV is given by w∧ (∑n

i=1 ei) ∈
∧d+1V .

(5) Fixing an isomorphism V ∼= V∨, there is a Hodge star operator ? :
∧dV

∼=→
∧n−dV that

sends the tropical Plücker vector of a tropical linear space L⊂V to that of its orthogonal
dual L⊥ ⊂V .

Over a field k, the tensors in
∧dkn which are Plücker vectors (i.e., lie on the Grassmannian

Gr(d,n) in its Plücker embedding) are those for which the corresponding wedge multiplication
map has d-dimensional kernel, which in turn is equivalent to this kernel having 1-dimensional dth

wedge power. In the tropical setting, to any nonzero tensor w ∈
∧dV we can associate the tropical

kernel Lw ⊂V of the corresponding wedge map −∧w : V →
∧d+1V , and this tropical kernel is a

tropical linear space if and only if w is a tropical Plücker vector. Our main result, whose proof is
significantly more involved than that of the preceding results, is that the dth tropical wedge power
similarly characterizes when w is a tropical Plücker vector, and hence gives a new cryptomoprhism
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for (valuated) matroids. Given an arbitrary vector w, we define a quotient Qw of V∨ by imposing
the bend relations of (−∧w); note that Q∨w = Lw, though it is not always the case that L∨w = Qw.
Our main result is:

Theorem. Let w ∈
∧dV be a nonzero element with associated quotient module Qw. Then w is a

tropical Plücker vector if and only if
∧dQw is free of rank one. Moreover, in this case the line(∧dQw

)∨
∈ P(

∧dV ) is the tropical Plücker vector of the tropical linear space Lw = tropker(−∧w)
associated with w.

Acknowledgements. JG was supported by EPSRC grant EP/I003908/2, and he thanks Johns
Hopkins University, where much of this work was carried out. NG was supported by NSA grant
H98230-16-1-0015. We thank Matt Baker, Alex Fink, Diane Maclagan, Andrew Macpherson, Sam
Payne, and Felipe Rincón for useful discussions and comments.

2. PRELIMINARIES

In this section we establish some notation to be used throughout the paper, and we recall some
relevant concepts from the theory of semirings [Gol03] and from the scheme-theoretic perspective
of tropical geometry [GG13]. We also discuss the useful concept of the “tropical kernel” of a linear
map in the tropical setting.

2.1. Semirings, their modules, and quotients. Let S denote an idempotent semifield; as men-
tioned in the introduction, being a semifield means S satisfies all the axioms of a field except for the
existence of additive inverses, and the idempotent property means s+ s = s for all s ∈ S. We will
write 0S and 1S for the additive and multiplicative units of S, respectively.

For any S-module M and integer d ≥ 0, we let SymdM denote the dth symmetric power of M and
Sym M =

⊕
d≥0 SymdM the symmetric algebra; these are defined exactly as they are for modules

over a ring.

A congruence on an S-module M is an equivalence relation which is a submodule of M×M; the
quotient by this equivalence relation is then an S-module, and in fact quotients of M are in bijection
with congruences on M. Submodules of M only define a special class of congruence in which
certain elements are identified with zero (of course, over a ring every congruence is of this form,
since m∼ m′⇔ m−m′ ∼ 0). Similarly, an algebra congruence on an S-algebra A is an equivalence
relation that is an S-subalgebra of A, and again these are in bijection with quotient S-algebras of A.

Given a homomorphism ϕ : M→ N of S-modules, or S-algebras, we shall use the term congru-
ence kernel to denote the congruence M×N M = {(m,m′) ∈M×M | ϕ(m) = ϕ(m′)} and reserve
the unadorned term kernel for the pre-image of zero, which is an ideal.

For more on these topics, one can consult [Gol03] in general or [GG13, §2.4] for specifics on
the concepts mentioned above.

2.2. Notation and conventions. Throughout this paper we will fix an idempotent semifield S and
a free S-module V of finite rank n. For any S-module M, we denote the linear dual by

M∨ = HomS(M,S).

We will write 〈−,−〉 for the canonical bilinear pairing V ×V∨→ S. Note that there is a canonical
isomorphism V ∼= V∨∨. We will fix a basis {ei} for V and let {xi} denote the dual basis for V∨; it is
characterized by

〈ei,x j〉=

{
1S if i = j,
0S if i 6= j.
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Remark 2.2.1. Although we choose a basis for V and define constructions in terms of this choice,
the constructions in this paper are actually independent of the choice. This is because bases for free
modules over an idempotent semifield are unique up to rescaling and permutation; i.e., the group
GL(V ) of linear automorphisms of V is Σn n (S×)n. This fact follows from the observation that
the only primitive elements (i.e., elements a such that a = b+ c implies either b or c is equal to a)
in a free module are the scalar multiples of the basis vectors, and any automorphism must send
primitives to primitives.

We use the notation [n] := {1, . . . ,n}, and for I⊂ [n] we write I + j := I∪{ j} and I− j := I r{ j}.

2.3. Tropical hyperplanes and the bend relations. Let f = ∑ fixi ∈V∨ be a linear form. When
S is the tropical real numbers T = (R∪{−∞},max,+), the tropical hyperplane of f has been
defined as the locus in Tn where the maximum in f is attained at least twice or f attains the value
−∞ = 0T ∈ T [RGST05, Mik06]. Note that this definition makes sense not just for T but for any
totally ordered idempotent semifield.

In [GG13] we proposed that tropical hyperplanes are the solution sets to systems of S-linear
equations canonically associated with their defining linear forms. These equations are called
the bend relations and they exist not just for S a totally ordered idempotent semifield, but any
idempotent semiring.

Definition 2.3.1. The bend relations of a linear form f = ∑ fixi ∈V∨ are the relations{
f ∼∑

i 6= j
fixi

}n

j=1

.

We write B( f ) for the S-module congruence generated by these relations. The tropical hyperplane
f⊥ ⊂V is the linear dual of the quotient:

f⊥ = (V∨/B( f ))∨ ⊂V∨∨ ∼= V.

If L⊂V∨ is a submodule, then B(L) denotes the congruence generated by B( f ) for all f ∈ L. If M
is an arbitrary module and ϕ : V →M is a linear map then we write B(ϕ) for the congruence B(L)
where L⊂V∨ is the image of the dual map ϕ∨ : M∨→V∨.

Remark 2.3.2. Here are some comments on these definitions.

(1) The condition that v = ∑viei ∈V satisfies the bend relations of a linear form f says that any
single term in the summation f (v) = ∑ fivi can be omitted without changing the value of
the sum. When S = T, or any other totally ordered semifield, this is equivalent to requiring
that the maximum element of the sequence { fivi}n

i=1 is attained at least twice (or there is
only a single term and it vanishes), for if the maximum were attained exactly once then
deleting the unique maximal term would strictly decrease the value of the sum. See [GG13,
Proposition 5.1.6].

(2) In [GG13] this notion of tropical hyperplane was termed a “set-theoretic bend locus” to
avoid confusion with two distinct scheme-theoretic notions of a hypersurface in the tropical
setting. Since in this paper we primarily discuss modules and linear forms rather than
polynomials and schemes, we feel free to use the term tropical hyperplane here without
confusion.

(3) By transitivity and idempotency, the congruence B( f ) is also generated by

{∑
i6= j

fixi ∼∑
i 6=k

fixi} j,k∈[n]

(4) The notation f⊥ is borrowed from a more general notion of tropical orthogonal dual
discussed later (see §4.4).
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(5) For a submodule L⊂V∨, we have

(V∨/B(L))∨ =
⋂
f∈L

f⊥ ⊂V.

2.4. Tropical kernels. Tropical kernels first appeared in [RGST05] as the tropical analogue of the
kernel of a linear map between free T-modules. Here we recall this notion and generalize it mildly.

Definition 2.4.1. Let M be an S-module and ϕ : V →M a linear map. The tropical kernel of ϕ is
the submodule tropker(ϕ)⊂V consisting of all those elements ∑

n
i=1 viei ∈V such that

ϕ

(
∑

i
viei

)
= ϕ

(
∑
i6= j

viei

)
for each j ∈ [n]. Thus

tropker(ϕ) = (V∨/B(ϕ))∨.

That is, tropker(ϕ)⊂V is the set of points v ∈V that satisfy all the relations in the congruence
B(ϕ), which is to say the set of v ∈V such that 〈v,−〉 : V∨→ S descends to V∨/B(ϕ). When M is
free, say of rank m, then the map ϕ is given by an m-tuple of linear forms ϕi ∈V∨ and tropker(ϕ)
is the intersection of the corresponding tropical hyperplanes:

tropker(ϕ) =
m⋂

i=1

ϕ
⊥
i .

In particular, if f : M→ S is a linear form then the tropical kernel of f is exactly the tropical
hyperplane defined by f .

Example 2.4.2. Let S = T and consider the linear map ϕ : S3→ S2 defined by the matrix(
0 1 2
0 0 −∞

)
,

(note that 0 here is the multiplicative unit in T). The congruence B(ϕ) is generated by the relations

x1 +1x2 ∼ x1 +2x3 ∼ 1x2 +2x3

x1 ∼ x2.

Looking at the x1 = 0 slice, the first line of relations carves out a tropical line (Y-graph) with
vertex at (0,−1,−2), and the second cuts out the vertical line x2 = 0, as shown in Figure 2.4. The
tropical kernel of ϕ is then the intersection of these two tropical hyperplanes, which is spanned by
(0,0,−1). In this case the tropical kernel is indeed a tropical linear space, but if the second row of
the matrix had instead been (0,1,−∞) then the resulting tropical kernel would instead be the span
of the vectors (0,−1,−2) and (0,−1,−∞), corresponding to the lower leg of the Y, which is not a
tropical linear space.

3. AN IDEMPOTENT EXTERIOR ALGEBRA

In this section we define the exterior algebra of a free module, and of a quotient of a free module,
over an idempotent semifield, and we observe some (limited) similarities with the usual exterior
algebra of modules over a ring.
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(0,−1,−2)

(0,0,−1)

x2

x3

(x1 = 0 slice)

FIGURE 1. Illustration of the e1 = 0 slice of two tropical hyperplanes whose
intersection is the tropical kernel of the linear map from Example 2.4.2.

3.1. Exterior algebra of free modules. Since bases for finitely generated free S-modules are
unique up to rescaling and permutation (Remark 2.2.1), we have:

Lemma 3.1.1. The S-algebra congruence on Sym V generated by e2
i ∼ 0 is independent of the

choice of basis {ei}.

This allows us to make the following definition:

Definition 3.1.2. The tropical Grassmann algebra of V is the quotient of Sym V by the S-algebra
congruence generated by the relations in Lemma 3.1.1:∧

V := Sym V/〈e2
i ∼ 0〉ni=1.

The grading on Sym V descends to a grading on
∧

V , and we call the direct summand
∧dV the dth

tropical wedge power of V .

Remark 3.1.3. A few words are in order.

(1) There is nothing inherently “tropical” in this construction, but we choose the name due to
the relevance it will play for tropical linear spaces, discussed subsequently.

(2) We use the notation
∧

V for the tropical Grassmann algebra and denote the product in it by
∧ by analogy with the usual exterior algebra and wedge product over a ring, even though the
multiplication here is commutative. This commutativity is an artifact of the nonexistence of
the element −1, the additive inverse of the multiplicative unit, in an idempotent semiring.

(3) It is crucial that we only kill the squares of basis elements in this definition, since if
a+b = 0 in an idempotent module then a = b = 0.

(4) This tropical
∧

only forms an endofunctor on the category of finite rank free S-modules
with respect to the restricted class of module homomorphisms which send basis elements
to scalar multiples of basis elements; these are given by matrices where each column has at
most one nonzero entry.

The tropical Grassmann algebra
∧

V =
⊕

d≥0
∧dV is free as an S-module, with the wedge power∧dV free of rank

(n
d

)
for d ≤ n and trivial for d > n; a basis is given by

{ei1 ∧·· ·∧ eid | 1≤ i1 ≤ ·· · ≤ id ≤ n}
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as usual. Since this wedge product is commutative, we shall abbreviate our notation by writing

eI := ei1 ∧·· ·∧ eid

for any I = {i1, . . . , id}⊂ [n]. It is straightforward to see that the perfect pairing V×V∨→ S induces
a perfect pairing

∧dV ×
∧d(V∨)→ S, so that (

∧dV )∨ is canonically isomorphic to
∧d(V∨) and the

elements {xI}, where xI := xi1 ∧·· ·∧ xid , form a dual basis to {eI}.
Recall that the permanent of a square matrix is defined by the same formula as the determinant

except with the sign of the permutation omitted [Min78]. The permanent plays the role in the
idempotent setting that the determinant does for rings; since there is no possibility for confusion,
we will therefore use the term minor to refer to the permanent of a square submatrix of a matrix.

Proposition 3.1.4. If v j = ∑
n
i=1 ai jei, for 1≤ j ≤ d, then the coefficient of eI in v1∧·· ·∧vd ∈

∧dV
is I-minor of the matrix (ai j).

Proof. This follows from the exact same formal manipulation as for the usual exterior algebra. �

Remark 3.1.5. Over a field, it is primarily this relation to determinants that renders the exterior
algebra so useful, especially for studying linear dependence of vectors [Gra69]. In the idempotent
setting, the relevant replacement for linear dependence is encapsulated by the notion of a matroid
and the geometry is that of tropical linear spaces. As we shall see below, permanents only capture
certain aspects of tropical linear dependence, but the tropical Grassmann algebra nonetheless plays
a very similar role for tropical linear spaces as the usual exterior algebra does for linear spaces.

3.2. Exterior algebra of quotient modules. We now turn to the case of a module that is not
necessarily free. The role played by a special class of vectors, the basis vectors in the case of a free
module, appears indispensable in our construction, so we shall restrict attention to modules over
S that are presented as a quotient of a free module. This is not a particularly artificial restriction
from the perspective of tropical geometry, where for instance the tropicalization of an affine variety
depends on its embedding in affine space (cf., [Pay09]) and hence one studies coordinate algebras
that are presented as quotients of free commutative algebras.

Definition 3.2.1. The tropical Grassmann algebra of an S-module M, relative to a quotient presen-
tation V � M, is the tensor product∧

M :=
∧

V ⊗Sym V Sym M.

Concretely, this means we quotient the symmetric algebra Sym M by setting the squares of
the images of the basis vectors ei under the map V � M to be zero. As before, this is graded,∧

M =
⊕

d≥0
∧dM, and as in the case of commutative rings, this tensor product of commutative

algebras over a semiring can be computed degree-wise:
∧dM =

∧dV ⊗SymdV SymdM.

We can also view
∧

M as a quotient of
∧

V . Later on, we shall need the following result which
provides an explicit description of this latter presentation:

Lemma 3.2.2. Suppose the congruence kernel of V � M is generated by the relations {ui ∼ vi}.
Then the congruence kernel of

∧dV �
∧dM is generated by the relations

ui∧ eI ∼ vi∧ eI

for I ∈
( [n]

d−1

)
.

Proof. Since Sym M is presented as the free algebra Sym V modulo the S-algebra congruence
generated by the relations ui = vi, it follows that the S-module SymdM is presented as the free
module SymdV modulo the S-module congruence generated by the relations produced by multi-
plying ui ∼ vi by a degree d− 1 monomial in the ei. It then follows directly from properties of
pushouts of modules that

∧dM is presented as
∧dV modulo the S-module congruence generated by

the relations produced by multiplying ui ∼ vi by a square-free monomial in the ei. �
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Given a module M, the algebra
∧

M depends crucially on the choice of a presentation of M as a
quotient of a free module, even if M itself is free, as this example shows.

Example 3.2.3. Consider M = S2. Relative to the presentation of M as a trivial quotient of the
free module S2, we have

∧2M ∼= S. Now consider M as a quotient of S3 via the surjection
π : S3→ S2 = M corresponding to the matrix(

1 1 0
1 0 1

)
with respect to bases {e1,e2,e3} and { f1, f2}. Relative to this presentation, the module

∧2M is
spanned by degree 2 monomials in the fi modulo the relations π(ei)2 ∼ 0. Since π(e1) = f1 + f2,
we have 0∼ π(e1)2 = f 2

1 + f 2
2 + f1 f2, and hence

∧2M = 0 since a+b = 0 implies a = b = 0 in an
idempotent monoid.

However, a straightforward consequence of the preceding lemma is that we do have compatibility
between the absolute and relative constructions if M is free and the quotient is coordinate projection.

Corollary 3.2.4. If V � M is projection onto the free module spanned by a subset of the basis,
then the tropical Grassmann algebra of M coincides with that of M relative to this presentation.

4. TROPICAL PLÜCKER VECTORS AND TROPICAL LINEAR SPACES

We will now describe how tropical Plücker vectors and tropical linear spaces fit into the frame-
work of the tropical Grassmann algebra in a way that is almost entirely parallel to the classical
picture over a field.

4.1. Tropical Plücker vectors. As defined by Speyer [Spe08], a rank d tropical Plücker vector is
an element (vI) ∈ R(n

d) satisfying the “three-term tropical Plücker relations”: for every J ∈
( [n]

d−2

)
and {i, j,k.l} ⊂ Jc, the maximum

max{vJi j + vJkl,vJik + vJ jl,vJil + vJ jk}
is attained at least twice. This was extended to the tropical numbers T = R∪{−∞} where some
coordinates are allowed to be infinite (see, e.g., [MS15]); in this generality, one must use all the
quadratic relations obtained by tropicalizing the standard generating set for the classical ideal of
Plücker relations. By using the formalism of §2.3 we can extend this notion further to arbitrary S
and recast it in the setting of the tropical Grassmann algebra.

Definition 4.1.1. A rank d tropical Plücker vector is a nonzero v = ∑vIeI ∈
∧dV whose image

under the natural map
∧dV → Sym2∧dV lies on the tropical hyperplanes defined by the functions

∑
i∈ArB

xA−ixB+i ∈ Sym2
(∧d

V∨
)

, A ∈
(

[n]
d +1

)
,B ∈

(
[n]

d−1

)
.

Concretely, this means that the tropical Plücker relations hold for v:

∑
i∈ArB

vA−ivB+i = ∑
i∈ArB,i6=p

vA−ivB+i,

where A and B range over the subsets indicated above, and p ranges over the monomials terms on
the left-hand side of this equality.

Speyer noted that tropical Plücker vectors in his sense are the same as valuated matroids,
supported on the uniform matroid, with coefficients in T [Spe08, DW92]; when S is totally ordered,
the tropical Plücker vectors defined above are the same as valuated matroids, again in the sense
of Dress and Wenzel, with coefficients in the abelian group S×. In particular, when S = B is the
booleans, rank d tropical Plücker vectors are equivalent to rank d matroids on the ground set [n].
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More precisely, for a rank d matroid on [n] defined by its set of bases B⊂
([n]

d

)
, the corresponding

tropical Plücker vector is ∑I∈B eI , and an arbitrary element ∑I∈I eI ∈
∧dBn satisfies the tropical

Plücker relations if and only if the collection I⊂
([n]

d

)
is the set of bases of a rank d matroid on [n].

4.2. Tropical linear spaces. The significance to Speyer of tropical Plücker vectors is that they
determine T-modules called “tropical linear spaces,” which are a common generalization of the
Bergman fan of a matroid [Ber71, FS05] and of the tropicalization of a linear subspace over a
valued field [Spe08, SS04]. In this section we set out a straightforward reformulation of Speyer’s
construction in terms of the tropical Grassmann algebra.

Classically, which is to say over a field k, one recovers a d-dimensional linear subspace W ⊂ kn

as the kernel of the wedge-multiplication map

−∧w : kn→
∧d+1

kn,

where w ∈
∧dkn ∼= k(

n
d) is the Plücker vector of W , which is well-defined up to multiplication by

a nonzero scalar. This won’t work in the idempotent setting if applied verbatim; for instance, we
recover a 1-dimensional subspace as the wedge-kernel if and only if it is spanned by a basis vector
(for example, if v = e1 + e2 then v∧ v = e1∧ e2 6= 0, whereas if v = e1 then v∧ v = 0). The key is
to replace the kernel with the tropical kernel introduced in §2.4.

The tropical linear space Lw ⊂ Tn associated to a tropical Plücker vector w = (wI) ∈ T(n
d) is by

definition [Spe08, MS15] the intersection of the tropical hyperplanes defined by the linear forms

∑
i∈J

wJ−ixi ∈ (Tn)∨

for all J ∈
( [n]

d+1

)
. We can extend this definition without any trouble to define tropical linear spaces

Lw ⊂V for a free module over an arbitrary idempotent semifield S. With the tropical kernel and
tropical Grassmann algebra replacing their classical counterparts, we see that this definition of
Speyer is indeed what one would hope for based on the classical situation.

Proposition 4.2.1. The tropical linear space Lw ⊂V associated to a tropical Plücker vector

w = ∑
I∈([n]

d )
wIeI ∈

∧d
V

is the tropical kernel of the wedge-multiplication map

−∧w : V →
∧d+1

V.

Proof. We must show that, for each J ∈
( [n]

d+1

)
, the J-component of the homomorphism −∧w is

the linear form ∑i∈J wJ−ixi. Given any v = ∑
n
i=1 viei ∈V , we have

v∧w =
n

∑
i=1

∑
I∈([n]

d )
viwIeI ∧ ei = ∑

J∈( [n]
d+1)

∑
i∈J

viwJ−ieJ,

since eI ∧ ei = 0 when i ∈ I, as desired. �

Note that Lw = Lsw for all nonzero s ∈ S. For this reason we will often view tropical Plücker
vectors as elements of the projectivization P

(∧dV
)

, just as in the classical setting.



10 JEFFREY GIANSIRACUSA AND NOAH GIANSIRACUSA

4.3. Submodules versus quotients. Having just seen that the passage from a tropical Plücker
vector to the corresponding tropical linear space proceeds quite analogously to the classical situation,
it is natural to ask about the converse. We will address this fully in §6, but for now we note an
important contrast to the classical situation that requires a slight change in perspective.

Over a field k, given a d-dimensional subspace L⊂ kn, the space
∧dL is a line in

∧dkn, and the
Plücker vector of L spans this line. We will be concerned with a tropical analogue of this picture,
but to proceed we must deal with the fact that the tropical Grassmann algebra is defined only for
quotients of free modules (§3.2), and in particular, it is not defined for submodules of free modules.

Definition 4.3.1. The tropical quotient module associated to an element w ∈
∧dV is

Qw := V∨/B(−∧w),

where B(−∧w) denotes the congruence defined in §2.4 generated by the bend relations of the
linear map −∧w : V →

∧d+1V .

Let us set Lw := tropker(−∧w). By Proposition 4.2.1, if w is a tropical Plücker vector then
Lw is the associated tropical linear space, but for any w we can consider the submodule Lw ⊂ V
and the quotient module V∨ � Qw. While the former is very natural to study from the geometric
perspective, one of the insights of this paper is that, from the algebraic perspective the latter is a
more natural object to work with.

Example 4.3.2. Consider the graphic matroid M(K4) on the complete graph with four vertices. This
has a geometric representation given by the following diagram [Oxl11, Appendix p.640]:

1

2

3

4

5

6

FIGURE 2. A geometric representation of the graphic matroid M(K4).

The bases are therefore the 16 triples

B =
(

[6]
3

)
\{{1,2,3},{1,4,5},{2,5,6},{3,4,6}}.

The tropical Plücker vector is w = ∑I∈B eI ∈
∧3B6, and the linear map

−∧w : B6→
∧4

B6 ∼= B15
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is given by the matrix 

e1 e2 e3 e4 e5 e6
e1234 0 0 0 −∞ −∞ −∞

e1235 0 0 0 −∞ −∞ −∞

e1236 0 0 0 −∞ −∞ −∞

e1245 0 −∞ −∞ 0 0 −∞

e1246 0 0 −∞ 0 −∞ 0
e1256 −∞ 0 −∞ −∞ 0 0
e1345 0 −∞ −∞ 0 0 −∞

e1346 −∞ −∞ 0 0 −∞ 0
e1356 0 −∞ 0 −∞ 0 0
e1456 0 −∞ −∞ 0 0 −∞

e2345 −∞ 0 0 0 0 −∞

e2346 −∞ −∞ 0 0 −∞ 0
e2356 −∞ 0 −∞ −∞ 0 0
e2456 −∞ 0 −∞ −∞ 0 0
e3456 −∞ −∞ 0 0 −∞ 0


Each row of this matrix determines a linear form, for instance the first row yields x1 + x2 + x3,

and the tropical linear space Lw ⊂ B6 is the intersection of the 15 tropical hyperplanes defined by
these linear forms (of course, there are redundancies in this intersection). On the other hand, the
module Qw is the quotient of the free module on x1, . . . ,x6 by the bend relations determined by each
of these linear forms; for instance, the first row yields the relations x1 + x2 ∼ x1 + x3 ∼ x2 + x3. We
shall return to this example later.

Remark 4.3.3. As discussed in §2.4, we have Q∨w ∼= Lw for any w. When d = n−1, so that Lw is a
tropical hyperplane, we proved in [GG13, Theorem 5.2.2] that Qw ∼= L∨w, and it seems likely that
this holds for all d, at least when S is in a certain class of well-behaved idempotent semifields that
includes T and B.

In the next subsection we shall study the notion of tropical orthogonality and use it to explore
another relation between Lw and Qw.

4.4. Dualities, the tropical Hodge star, and generators for tropical linear spaces. Here we
review the duality theory of tropical linear spaces and discuss its relation with a tropical Hodge star
operator that we introduce.

Given a submodule L⊂V , it’s orthogonal dual L⊥ ⊂V∨ is the submodule defined by

L⊥ =
⋂

α∈L

tropker(α).

Note that for arbitrary submodules, we always have L⊂ L⊥⊥, although this inclusion need not be
an equality unless L is a tropical linear space, as we will see below.

Example 4.4.1. Consider the submodule L = span {e1 + e2,e2 + e3} in V = S3. We then have
L⊥ = span{x1 + x2 + x3}, but L⊥⊥ = span{e1 + e2,e2 + e3,e1 + e3}, so L is strictly contained in
L⊥⊥.

Fix an identification ∧nV ∼= S. The wedge product of complementary degrees gives a perfect
pairing

∧dV ×
∧n−dV →

∧nV ∼= S, and so we obtain an identification

(4.4.1) ? :
∧n−d

V ∼=
∧d

V∨.

which we will call the tropical Hodge star. Concretely, fixing e1∧·· ·∧ en as the generator of
∧nV ,

the map ? is given by eI 7→ xIc , where Ic := [n]r I.
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Dress [Dre86] and Speyer [Spe08] introduced a duality for valuated matroids, extending the
orthogonal dual for ordinary matroids; in terms of the Hodge star, it defined as

w 7→ ?w.

One can verify that if w satisfies the tropical Plücker relations then so does ?w.

Consider the maps

F =−∧w : V →
∧d+1

V,

and
G =−∧?w : V∨→

∧n−d+1
V∨.

The image of the dual F∨ is spanned by the vectors

αJ = ∑
i∈J

wJ−ixi ∈V∨,

for J ∈
( [n]

d+1

)
, and the image of G∨ is spanned by the vectors

βK = ∑
i∈Kc

wK+iei ∈V,

for K ∈
( [n]

d−1

)
. We will occassionally write α(w)J and β (w)K when we need to make the dependence

on w explicit. Note that the α vectors associated with w are precisely equal to the β vectors
associated with ?w, and vice versa, via the correspondences

α(w)J = β (?w)Jc and β (w)K = α(?w)Kc .

When w is a tropical Plücker vector the vectors αJ are the called the valuated circuits of w and the
vectors βK are called the valuated cocircuits of w.

Proposition 4.4.2. The following are equivalent:

(1) w is a tropical Plücker vector,
(2) im(F∨)⊂ tropker(G),
(3) im(G∨)⊂ tropker(F).

Proof. Since tropker(G) =
⋂

K β⊥K and im(F∨) is spanned by the vectors αJ , we have im(F∨)⊂
tropker(G) if and only if αJ ∈ β⊥K for all J and K, which is equivalent to βK ∈ α⊥J for all J,K.
These conditions are precisely the tropical Plücker relations. �

By definition, regardless of whether or not w is a tropical Plücker vector, the vectors αJ give the
equations that describe Lw = tropker(F), which is to say that tropker(F) = ∩Jα⊥J . A fundamental
result about tropical linear spaces (first proved in [MT01, Theorem 3.8], and later given a different
proof in [Fre13, Proposition 4.1.9]) is that when w is a tropical Plücker vector then the inclusions
of Proposition 4.4.2 above are actually equalities; i.e.,

Theorem 4.4.3. If w is a tropical Plücker vector then the valuated cocircuit vectors βK span the
associated tropical linear space Lw, and so im(F∨) = tropker(G) and im(G∨) = tropker(F).

A standard corollary of this result is the following statement.

Corollary 4.4.4. Let w ∈
∧dV be a tropical Plücker vector. Then

(Lw)⊥ = L?w,

and hence L⊥⊥w = Lw.

Proof. If Lw is spanned by the valuated cocircuit vectors βK then L⊥w = ∩Kβ⊥K = L?w. Thus
L⊥⊥w = L⊥?w = L??w = Lw. �
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From the above facts we obtain direct formulae for passing between a tropical linear space Lw
and the associated quotient module Qw.

Corollary 4.4.5. When w ∈
∧dV is a tropical Plücker vector then Lw = Q∨w, and the module Qw

can be recovered directly from the associated tropical linear space Lw by the formula

Qw = V∨/B(L⊥w ).

Proof. By definition, Qw is the quotient of V∨ by the bend relations of the image of F∨, where
F =−∧w, and by Theorem 4.4.3, the image of F∨ spans L⊥w . �

As mentioned in Remark 4.3.3, when d = n−1, and conjecturally for all d, we also have the
formula Qw = L∨w.

5. STABLE UNIONS OF TROPICAL LINEAR SPACES

Speyer defined the stable intersection of tropical linear spaces in essence by tropicalizing the
formula for the Plücker vector of a transverse intersection of linear subspaces. He showed that this
yields an intersection of tropical linear spaces which always yields the expected dimension, when
it is non-negative, at least in the tropical torus Rn ⊂ Tn [Spe08, §3]. A stable intersection with
this dimension property extends to tropical varieties of arbitrary degree [RGST05, Mik06], and by
using orthogonal duality of tropical linear spaces it determines a dimension-additive stable union of
tropical linear spaces, which has appeared in [FR15, Mur00]. In this section we first translate the
stable union into our tropical Grassmann setting and then explore some consequences and related
constructions.

5.1. Stable union. Let w ∈ S(n
d) and w′ ∈ S( n

d′) be tropical Plücker vectors such that there exists
nonzero coordinates wI,w′J with disjoint indices I,J ⊂ [n] (so in particular, d +d′ ≤ n). The stable
union Lw∪st Lw′ of the corresponding tropical linear spaces has tropical Plücker coordinates with
Kth entry ∑ItJ=K wIw′J; Fink-Rincón observe that these coordinates indeed form a tropical Plücker
vector in S( n

d+d′) [FR15, §3.1]. This formula has a simple description in terms of the tropical
Grassmann algebra.

Proposition 5.1.1. For tropical Plücker vectors w ∈
∧dV and w′ ∈

∧d′V , the stable union has
tropical Plücker vector w∧w′ ∈

∧d+d′V .

Proof. Write w = ∑wIeI and w′ = ∑w′JeJ . Then

w∧w′ = ∑
I,J

wIw′JeI ∧ eJ.

The only nonzero terms here are those for which I and J are disjoint. �

Note that w∧w′ = 0 if and only if the disjoint index condition on the pair w,w′ is not satisfied.

5.2. Stiefel spaces and transversal matroids. Fink and Rincón define a Stiefel tropical linear
space to be any tropical linear space associated to the vector of maximal minors of a tropical matrix,
assuming not all these minors vanish [FR15]. They observe that such a vector indeed satisfies the
tropical Plücker relations by choosing a lift of the tropical matrix to a valued field and then noting
that if this lift is sufficiently generic then valuation commutes taking minors. This argument applies
to any idempotent semifield S for which there exists a field k and surjective valuation ν : k � S with
sufficiently large fibers. The following result characterizes the tropical Plücker vectors arising this
way in terms of their tensor decomposition in the Grassmann algebra. We call an element w ∈

∧dV
totally decomposable if it factors into a wedge product of d elements of V .
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Proposition 5.2.1. An element of
∧dV is totally decomposable if and only if its coordinates in the

standard basis are the maximal minors of a d×n matrix. Thus, the locus of Stiefel tropical linear
spaces is in natural bijection with the locus of totally decomposable tensors in P

(∧dV
)

.

Proof. The first statement follows immediately from Proposition 3.1.4, and the second statement
follows immediately from the first. �

Remark 5.2.2. This result is in stark contrast to the classical case where every Plücker vector
is totally decomposable. Indeed, over a field k, the Plücker vector of a linear subspace is the
wedge product of the vectors in any basis, and the bijection between linear subspaces and totally
decomposable tensors yields the Plücker embedding Gr(d,n) ↪→ P

(∧dkn
)

of the Grassmannian.
It would be interesting to study tensor factorization of tropical Plücker vectors with the goal of
understanding when a tropical linear space decomposes as a non-trivial stable union.

Since the tropical Plücker relations are trivial in rank one, and any wedge product of tropical
Plücker vectors is a tropical Plücker vector if it is nonzero, Proposition 5.2.1 gives an alternate
proof, extending to arbitrary S and avoiding the use of valuations, of the statement that the maximal
minors of a tropical matrix satisfy the tropical Plücker relations. By combining with Proposition
5.1.1, it also provides an alternate proof of [FR15, Proposition 3.4], which says that the condition
of being Stiefel is equivalent to being a stable union of 1-dimensional spaces. Specializing to the
case S = B, where the stable union becomes the usual matroid union, we see from this discussion
and [Oxl11, Proposition 12.3.7] that a matroid is transversal if and only if, when viewed as a tensor,
it is totally decomposable.

5.3. Elongation. Murota in [Mur97, §2] extends the notion of matroid elongation to valuated
matroids as follows. Given integers 1≤ d ≤ d′ ≤ n and a rank d tropical Plücker vector (wI)∈ S([n]

d ),
the elongation is the rank d′ tropical Plücker vector defined by w′J = ∑I⊂J wI . That this formula
yields a vector satisfying the tropical Plücker relations is [Mur97, Theorem 2.1(2)].

Proposition 5.3.1. The elongation of the tropical Plücker vector w = ∑wIeI ∈
∧dV is

w∧

(
∑

|K|=d′−d
eK

)
∈
∧d′

V.

Proof. This follows immediately from the fact that eI ∧ eK = 0 if and only if I∩K 6= ∅. �

Remark 5.3.2. This gives a simpler proof that the tropical Plücker relations are satisfied for
elongation, since ∑eK is clearly a tropical Plücker vector, in addition to the geometric interpretation
furnished by Proposition 5.1.1: the elongation of a tropical linear space is its stable union with the
tropical linear space associated to the uniform matroid.

6. TOP EXTERIOR POWERS

In this section we will show how the tropical Grassmann algebra provides a novel algebraic
reformulation of the tropical Plücker relations. This also provides a direct way of recovering the
tropical Plücker vector from its associated tropical linear space.
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6.1. A reformulation of the tropical Plücker relations. Recall that in §4.3 we have defined, for
any w = ∑wIeI ∈

∧dV , a quotient module Qw := V∨/B(−∧w).

Theorem 6.1.1. A nonzero w∈
∧dV satisfies the tropical Plücker relations if and only if the module∧dQw is free of rank one.

Before presenting the proof, let us first note that the theorem is only about quotients arising from
wedging with a d-multivector. Indeed, there exist quotients V∨→ (V∨/∼) = Q such that

∧dQ is
free of rank one but Q is not of the form Qw for any w ∈

∧dV .

Example 6.1.2. Consider V∨ free rank 3 with basis x1,x2,x3 and let Q be the quotient of V by the
relations

x1 + x2 = x1 + x3 and x2 + x3 = x2.

Observe that
∧2Q is free rank 1, spanned by x1x2 = x1x3 with x2x3 = 0. This is because in

∧2Q we
have

x1x2 = x1(x1 + x2) = x1(x1 + x3) = x1x3

and
x2x3 = x2(x2 + x3) = x2

2 = 0,

and by enumerating all other relations one can check that they all can be deduced from these. On
the other hand, if w ∈

∧2V is nonzero then −∧w : V →
∧3V ∼= S is a linear form and Lw = Q∨w is a

tropical hyperplane, whereas Q∨ is clearly not, so we cannot have Q = Qw for any 2-multivector w.

Moving on to the proof, we begin with a couple lemmas.

Lemma 6.1.3. For any nonzero w ∈
∧dV , the module

∧dQw is presented as the quotient of
∧dV∨

by the congruence generated by the bend relations of the expressions

(6.1.1) ∑
i∈ArB

wA−ixB+i

for A ∈
( [n]

d+1

)
and B ∈

( [n]
d−1

)
. In particular, taking B = A r{p,q} yields the relation

(6.1.2) wA−pxA−q = wA−qxA−p.

Proof. We saw in the proof of Proposition 4.2.1 that the module im((−∧w)∨)⊂V∨ is spanned
by the linear forms ∑i∈A wA−ix j, so by definition the congruence B(−∧w) on V∨ is generated
by the bend relations of these linear forms. Thus, by Lemma 3.2.2, the congruence kernel of∧dV∨→

∧dQw is generated by the bend relations of the expressions of the form

xB∧

(
∑
i∈A

wA−ix j

)
for B ∈

( [n]
d−1

)
. Since the squares of the xi vanish, this expression becomes ∑i∈ArB wA−ixB+i. �

Lemma 6.1.4. For any nonzero w ∈
∧dV , in

∧dQw we have that xI = 0 if and only if wI = 0.

Proof. We first show that wI = 0 implies xI = 0. Let supp(w) := {I ∈
([n]

d

)
| wI 6= 0}. Suppose

I /∈ supp(w), and define
‖I‖w := min

K∈supp(w)
|I r K|.

We will prove that xI = 0 for all I /∈ supp(w) by induction on ‖I‖w. If ‖I‖w = 1 then there exists
K ∈ supp(w) with |I r K|= 1. Then (6.1.2) gives

wKxI = wIxK .

Since wK 6= 0 and wI = 0, it follows that xI = 0. Now suppose xI = 0 for all I with 0 < ‖I‖w < m.
Given I such that ‖I‖w = m, let K ∈ supp(w) be an element such that |I rK|= m, and consider the
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bend relations of the expression (6.1.1) for A = K + j and B = I− j for some j ∈ I r K. This gives
the bend relations of the expression

wKxI + ∑
i∈KrI

wK+ j−ixI+i− j.

Since ‖I + i− j‖w = m−1, the inductive hypothesis says that each term in this summation over
K r I is zero. For the bend relations of the full expression to be satisfied, we must then have that
wKxI = 0, and since wK 6= 0, this implies that xI = 0.

The other direction follows from essentially the same argument with the roles of x and w reversed.
Let supp(x) := {I ∈

([n]
d

)
| xI 6= 0} and define ‖I‖x := minK∈supp(x) |I rK|. If ‖I‖x = 1 then there is

some K ∈ supp(x) realizing this distance, and in the relation

wIxK = wKxI

xI is zero but xK is nonzero, so wI must be zero. Now suppose inductively that wI = 0 for all I
with 0 < ‖I‖x < m. Given an I such that ‖I‖x = m, let K ∈ supp(x) realize this distance and set
A = I + j and B = K− j for some arbitrary j ∈ K r I. Then the bend relations of the expression

wIxK + ∑
i∈IrK

wI+ j−ixK+i− j

are satisfied. For each i, ‖I + j− i‖x = m− 1, so wI+ j−i = 0 by inductive hypothesis, and xK is
nonzero, so it must be the case that wI = 0. �

Proof of the main theorem. The argument is by manipulation of the presentation from Lemma
6.1.3. As in the preceding proof, we set supp(w) := {I ∈

([n]
d

)
| wI 6= 0}.

Suppose first that w is a tropical Plücker vector, so by definition, for any X ,Y with |Y |= d +1
and |X |= d−1, the bend relations of the summation

∑
i∈YrX

wY−iwX+i

are satisfied.

We first show that these tropical Plücker relations ensure that if I and I′ are both in supp(w) then

(6.1.3) xI′ = (wI′/wI)xI,

so xI and xI′ are identified up to a scalar; by Lemma 6.1.4, xJ = 0 for all J /∈ supp(w), so we will
conclude that

∧dQw is generated by a single element.

From the form of the tropical Plücker relations above one can show that if I, I′ ∈ supp(w) are
such that |I r I′|= m then there exists at least one pair J,J′ ∈ supp(w) such that

|I r J|= |I′r J′|= 1,

|I r J′|= |I′r J|= m−1.

To see this, take X = I− j and Y = I′+ j for some j ∈ I r I′. The i = j term in the above sum is
wIwI′ , and the remaining terms are all of the form wJwJ′ for J,J′ as above, and the bend relations
imply that if one term in the sum is nonvanishing then at least one other must also be nonvanishing.
Repeating this m times, we find a chain from I to I′ along which (6.1.2) can be iteratively applied
to yield (6.1.3). Thus xI and xI′ are proportional if I, I′ ∈ supp(w). Therefore

∧dQw is generated by
a single element.

It remains to show that it is in fact free. By Lemma 6.1.3, it sufices to show that when we use the
equation (6.1.2) to transform each expression (6.1.1) into an expression purely in terms of some
single xI0 , the coefficient will be expressed as a sum for which the bend relations are satisfied.
Consider an expression

∑
i∈ArB

wA−ixB+i;
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If all of the xB+i appearing in the sum vanish then the entire expression is zero and hence its bend
relations cannot yield a nontrivial relation between distinct multiples of any xI , so assume there is
some j ∈ A r B for which xB+ j 6= 0. Multiplying by wB+ j and using (6.1.2) yields the expression(

∑
i∈ArB

wA−iwB+i

)
xB+ j,

and the bend relations of the sum appearing as the coefficient here are indeed satisfied precisely
because w is a tropical Plücker vector. Thus we have shown that

∧dLw is indeed free rank 1.

Now assume that
∧dQw is free of rank one. There must exist at least one I0 ∈

([n]
d

)
such that xI0

is nonzero in
∧dQw, and any other monomial xI′ must be equal to a (possibly zero) scalar times xI0 .

In the expression (6.1.1), if there is some j such that xB+ j is nonzero then multiplying through by
wB+ j and applying (6.1.2), we find that the bend relations of the expression ∑i∈ArB wA−iwB+ixB+ j

are satisfied. By the hypothesis that
∧dQw is free, it follows that the bend relations of

∑
i∈ArB

wA−iwB+i

are satisfied. If xB+i = 0 for all i ∈ ArB then by Lemma 6.1.4, each wB+i is also zero, and so the
bend relations of ∑i∈ArB wA−iwB+i are trivially satisfied. �

Example 6.1.5. Let us return to the graphic matroid M(K4) from Example 4.3.2. As mentioned
there, the module Qw is the quotient of the free module on x1, . . . ,x6 by the bend relations of
the linear forms corresponding to the rows in the matrix depicted in that example. By Lemma
6.1.4, in

∧3Qw we have xI = −∞ for precisely the four hyperplanes (in the matroid sense) I =
{1,2,3},{1,4,5},{2,5,6},{3,4,6}. For instance, to see that x123 ∼ −∞ we can take the bend
relations from the first row, namely x1 + x2 ∼ x1 + x3 ∼ x2 + x3, and wedge these with x12. On the
other hand, all the variables corresponding to basis elements are identified: xI = xJ for all I,J ∈B.
For instance, wedging the bend relations of the first row with x34 shows that x134 ∼ x234. Thus∧3Qw ∼= B is free of rank one, and it is generated by xI for any basis I ∈B of the matroid.

Generalizing the previous example, we see that for any matroid with set of bases B⊂
([n]

d

)
, the

module
∧dQw ∼= B, where w = ∑I∈B eI , identifies all xI for I ∈B with the unique generator of this

module and identifies xI for I a matroid hyperplane with −∞.

6.2. Recovering the Plücker vector of a tropical linear space. Let Lw ⊂V be a rank d tropical
linear space associated to a tropical Plücker vector w ∈ P

(∧dV
)

. Speyer used the perspective of
matroid polytopes to prove that w is uniquely determined by Lw, at least when S = T (and when
the underlying matroid is uniform, though this latter assumption was removed in [MS15]) [Spe08,
Proposition 2.8]. We shall provide a computational method for producing w from Lw which more
closely mimics the classical situation.

Recall that if L⊂ kn is a linear subspace of dimension d, then
∧dL⊂

∧dkn is one-dimensional,
and the coefficients expressing a generator for this one-dimensional subspace in the standard basis
form the Plücker vector for L. Since our exterior algebra is defined for quotients rather than
submodules, a duality is necessary to translate the top tropical wedge power into a vector.

Proposition 6.2.1. Let Lw ⊂V be a tropical linear space of rank d. The linear dual of the quotient

map
∧dV∨ �

∧dQw identifies
(∧dQw

)∨
with the tropical Plücker vector w ∈ P

(∧dV
)

.

Proof. We have shown in Theorem 6.1.1 that
∧dQw ∼= S, so it indeed dualizes to a rank one

submodule of
∧dV and hence a point of the projectivization. That this point coincides with w

follows immediately from Lemma 6.1.4 and equation (6.1.3). �
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7. THE PAIRING ON
∧

Qw

For each rank d tropical linear space, encoded by a d-multivector w ∈
∧dV , we have a graded

S-algebra
∧

Qw satisfying
∧kQw = 0 for k > d and

∧dQw ∼= S. It is natural then to consider, for
each 1≤ k ≤ d, the bilinear map∧k

Qw×
∧d−k

Qw→
∧d

Qw ∼= S,

and in particular to ask whether this is a perfect pairing. Felipe Rincón has found a counterexample
with k = 1 to this general assertion and he has kindly allowed us to describe it here.

Example 7.0.2. Consider U3,4, the uniform matroid of rank 3 on [4] = {1,2,3,4}. This corresponds
to the multivector w = e123 + e124 + e134 + e234 ∈

∧3V , where V ∼= S4. If the pairing∧2
Qw×

∧1
Qw→

∧3
Qw ∼= S

were perfect then the map
∧2Q2→ Q∨w = Lw would be an isomorphism, but we see as follows that

it is not injective. We have

(x12 + x34)∧ x1 = x134

(x12 + x34)∧ x2 = x234

(x12 + x34)∧ x3 = x123

(x12 + x34)∧ x4 = x124

and all these xi jk are identified under the quotient map
∧3V �

∧3Qw∼= S, so the element x12 +x34 ∈∧2Qw gets mapped to e1 +e2 +e3 +e4 ∈
∧3Qw. The same reasoning shows that x13 +x24 also gets

sent to e1 + e2 + e3 + e4, so it suffices to show that x12 + x34 and x13 + x24 remain distinct under the
quotient map

∧2V �
∧2Qw. Now Qw = V∨/B(x1 + x2 + x3 + x4) so by Lemma 3.2.2 the relations

in
∧2Qw are generated by those of the form xi j + xik = xi j + xil and xik + x jk = xik + x jk + xkl ; since

the only binomials in these involve pairs of indices with an index in common, they cannot not imply
the relation x12 + x34 = x13 + x24.

On the other hand, while injectivity can fail for k = 1, surjectivity always holds.

Proposition 7.0.3. The map
∧d−1Qw→ Q∨w = Lw is surjective.

Proof. Since Lw is spanned by the valuated cocircuit vectors of w, it suffices to show that any
valuated cocircuit vector is in the image of the composition∧d−1

V∨→
∧d−1

Qw→ Q∨w = Lw.

Fix a generator xK ∈
∧dQw, and recall that we have the relations xJ = (wJ/wK)xK . Given I ∈

( [n]
d−1

)
,

this map sends xI to the element of Q∨w given by

x j 7→ xI+ j =
(

wI+ j

wK

)
xK .

In other words, xI is sent to the vector uI := ∑ j

(
wI+ j
wK

)
e j ∈V . As I ranges over the d−1 element

subsets of the ground set [n], the vectors uI range over all the valuated cocircuit vectors of w, which
span Lw by Theorem 4.4.3. �

An interesting open question is to give some kind of explicit description of the module of linear
relations among the valuated cocircuits of a tropical Plücker vector w. Since

∧d−1Qw is presented
as an explicit quotient of the free module with one generator for each size d−1 subset K of [n]
(i.e., one generator for each cocircuit vector βK), the question can be reformulated as asking for an
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explicit description of the congruence kernel of the map
∧d−1Qw→ Q∨w = Lw. We leave this as an

open question.
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II, Eur. Math. Soc., Zürich, 2006, pp. 827–852.
[Min78] Henryk Minc, Permanents, Encyclopedia of Mathematics and its Applications, vol. 6, Addison-Wesley

Publishing Co., Reading, Mass., 1978, With a foreword by Marvin Marcus.
[MS15] Diane Maclagan and Bernd Sturmfels, Introduction to tropical geometry, Graduate Studies in Mathematics,

vol. 161, American Mathematical Society, Providence, RI, 2015.
[MT01] Kazuo Murota and Akihisa Tamura, On circuit valuation of matroids, Adv. in Appl. Math. 26 (2001), no. 3,

192–225.
[Mur97] Kazuo Murota, Matroid valuation on independent sets, J. Combin. Theory Ser. B 69 (1997), no. 1, 59–78.
[Mur00] , Matrices and matroids for systems analysis, Algorithms and Combinatorics, vol. 20, Springer-

Verlag, Berlin, 2000.
[OS80] Peter Orlik and Louis Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math.

56 (1980), no. 2, 167–189.
[Oxl11] James Oxley, Matroid theory, second ed., Oxford Graduate Texts in Mathematics, vol. 21, Oxford University

Press, Oxford, 2011.
[Pay09] Sam Payne, Analytification is the limit of all tropicalizations, Math. Res. Lett. 16 (2009), no. 3, 543–556.
[RGST05] Jürgen Richter-Gebert, Bernd Sturmfels, and Thorsten Theobald, First steps in tropical geometry, Idempotent

mathematics and mathematical physics, Contemp. Math., vol. 377, Amer. Math. Soc., Providence, RI, 2005,
pp. 289–317.

[Spe08] David Speyer, Tropical linear spaces, SIAM J. Discrete Math. 22 (2008), no. 4, 1527–1558.
[SS04] David Speyer and Bernd Sturmfels, The tropical Grassmannian, Adv. Geom. 4 (2004), no. 3, 389–411.
[Whi86] Neil White (ed.), Theory of matroids, Encyclopedia of Mathematics and its Applications, vol. 26, Cambridge

University Press, Cambridge, 1986.
[Whi92] Neil White (ed.), Matroid applications, Encyclopedia of Mathematics and its Applications, vol. 40, Cam-

bridge University Press, Cambridge, 1992.


