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Abstract 

Currently, there is a large interest in the labeling of neural stem cells (NSCs) with iron oxide 

nanoparticles (IONPs) to allow MRI-guided detection after transplantation in regenerative 

medicine. For such biomedical applications, excluding nanotoxicity is key. Nanosafety is 

primarily evaluated in vitro where an immortalized or cancer cell line of murine origin is 

often applied, which is not necessarily an ideal cell model. Previous work revealed clear 

neurotoxic effects of PMA-coated IONPs in distinct cell types that could potentially be 

applied for nanosafety studies regarding neural cell labeling. Here, we aimed to assess if 

DMSA-coated IONPs could be regarded as a safer alternative for this purpose and how the 

cell model impacted our nanosafety optimization study. Hereto, we evaluated cytotoxicity, 

ROS production, calcium levels, mitochondrial homeostasis and cell morphology in six 

related neural cell types, namely neural stem cells, an immortalized cell line and a cancer cell 

line from human and murine origin. The cell lines mostly showed similar responses to both 

IONPs, which were frequently more pronounced for the PMA-IONPs. Of note, ROS and 

calcium levels showed opposite trends in the human and murine NSCs, indicating the 

importance of the species. Indeed, the human cell models were overall more sensitive than 

their murine counterpart. Despite the clear cell type-specific nanotoxicity profiles, our 

multiparametric approach revealed that the DMSA-IONPs outperformed the PMA-IONPs in 

terms of biocompatibility in each cell type. However, major cell type-dependent variations in 

the observed effects additionally warrant the use of relevant human cell models.  

 

Keywords 

IONP, DMSA, PMA, neural stem cell, cell line, multiparametric  

 



  

3 
 

Introduction 

Nanotechnology yields numerous nanomaterials with interesting properties, which can be 

exploited in a plethora of possible applications. The biomedical field, for instance, aims to 

apply these materials to develop novel or improve existing diagnostic and/or therapeutic 

strategies.[1-4] 

A category of inorganic nanoparticles (NPs) for biomedical use that has received much 

attention over the last two decades, are iron oxide (IO)NPs.[5] By creating nanosized iron 

oxide particles, the material acquires superparamagnetic properties, which allows its 

implementation in biomarker and pathogen detection assays[6-8], protein sequestration[8], 

cell sorting[9], drug delivery[10] and cancer treatment through hyperthermia.[5, 11] 

Importantly, IONPs can also be applied as contrast agents for magnetic resonance imaging 

(MRI).[12, 13] In this regard, FDA-approved dextran-coated IONPs (USA: Feridex®, EU: 

Endorem®) have been clinically applied for the MRI-guided detection of liver lesions and 

tumors, before the production was discontinued in 2009.[14, 15] This MRI susceptibility can 

furthermore be exploited for regenerative cell therapy, where stem cells are transplanted 

into damaged tissues to replace the latter or promote cell survival and tissue repair via the 

secretion of specific factors.[16, 17] To monitor the cell distribution and engraftment, such 

therapies require a non-invasive method to track the transplanted cells in vivo, which can be 

accomplished by ex vivo cell labeling prior to the transplantation.[16, 18] 

In the context of regenerative medicine, there is a large interest in IONP labeling of neural 

stem cells before transplantation into the neural trauma site.[17, 19, 20] Since IONP with a 

diameter below 10 nm are typically applied for this purpose, we synthesized IONPs with a 

core diameter of ˜4 nm.[21] Overall, cell survival is an inherent drawback to this therapeutic 

modality and IONPs should persist inside the cells to allow long-term cell tracking, they may 



  

4 
 

not negatively affect cellular homeostasis.[18] Hence, IONP optimization in terms of 

nanosafety is of key importance. Previous work from our group on IONPs coated with 

poly(isobutylene-alt-maleic anhydride) grafted with dodecylamine (PMA) showed a 

disturbed cellular homeostasis at sublethal doses, making this construct less ideal for the 

labeling of neural cells.[22] Coating with the ligand 2,3-meso-dimercaptosuccinic acid 

(DMSA) could be a valuable alternative to improve the nanosafety profile. Indeed, DMSA is 

an FDA-approved chelator applied in case of lead intoxication and DMSA-IONPs show good 

biocompatibility both to neural cells in vitro and neural tissue in vivo.[23-25] 

In general, many hazard identification studies are initially performed in vitro applying cell 

lines given their easy accessibility and applicability.[26-29] However, we and other groups 

have demonstrated that primary cells or stem cells often respond differently to NP exposure 

as compared to the cell line counterpart.[22, 30-32] In addition, murine cell types are 

regularly applied despite reported species-related variations in NP-induced effects, which 

impede the extrapolation of results towards possible human scenarios.[33-35] Although 

several groups investigated either the species or cell type associated diversity in NP-evoked 

responses,[36-38] such studies remain rare for neural cell types. Previous work from our 

group revealed cell type specific neurotoxicity profiles in response to PMA-IONPs.[22] Given 

the clear perturbation of cell homeostasis, the PMA-IONPs were considered less fit for 

neural stem cell labeling in the context of regenerative medicine. Hence, we set out to 

optimize the IONPs by applying a different coating. To investigate whether the cell type 

equally impacts nanosafety optimization studies we compared the nanosafety profile of 

DMSA-coated IONPs to the previously applied PMA-IONPs. Please note that the same PMA-

IONP sample was applied as described in our previous work.[22] In short, we evaluated the 

cellular responses in neural cell types that could possibly be selected as an in vitro model for 



  

5 
 

neural stem cell labeling prior to transplantation in regenerative medicine, namely neural 

stem cells (NSCs), a neural immortalized (progenitor) cell line and neuroblastoma 

(cancerous) cell line from both humans and mice.[26-28] This setup will allow us to rationally 

guide the cell type selection for future nanosafety studies in the context of biomedical 

applications.  

 

Materials & methods 

1. IONP synthesis and characterization 

IONPs were synthesized and coated with either the meso-2,3-dimercaptosuccinic acid 

(DMSA) ligand or the polymer poly(isobutylene-alt-maleic anhydride) grafted with 

dodecylamine (PMA) according to established protocols previously applied by our group.[22, 

25, 39-41] Following synthesis, the core diameter was measured using transmission electron 

microscopy (TEM, Jeol JEM3010). UV/VIS absorption spectroscopy (Agilent 8453 UV-visible 

Spectroscopy System) was applied to evaluate the spectral characteristics, and the 

concentrations of the dispersions were determined via UV/VIS absorption spectroscopy and 

inductively coupled plasma mass spectrometry (ICP-MS, 7700 Series ICP-MS from Agilent 

Technologies). Finally, the hydrodynamic diameter and zeta-potential were measured using 

a Zetasizer Nano ZS (Malvern Instruments). Detailed information on the synthesis and 

characterization procedures is provided in the Supplementary Information.  

 

2. Cell culture 

The human NSCs (hNSCs [42]) were purchased from Invitrogen (Belgium). Both the murine 

NSCs (mNSCs [42]) and human progenitor cell line (ReNcell VM [43]) were obtained from 

Millipore (Belgium). Sigma (Belgium) provided the murine progenitor (C17.2 [44]) and 
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neuroblastoma (Neuro-2a [45]) cell line. Finally, the human neuroblastoma cell line (LA-N-2 

[46]) was retrieved through the European Collection of Cell Cultures. 

All cell types were cultured according to the manufacturers guidelines and kept at 37 °C in a 

humidified atmosphere completed with 5% CO2. Every other day, cells received fresh cell 

medium until 80% confluence was reached and the cells were passaged. Hereto, the cells 

were detached using 0.05% trypsin–EDTA (Invitrogen, Belgium), centrifuged 4 minutes at 

300 g and seeded at appropriate densities. Experiments were performed on cells with a 

passage number below 20. Detailed cell culture protocols are provided in the Supplementary 

Information.  

 

3. Cytotoxicity 

Cells were seeded in opaque 96-well plates at a density of 25000 cells/well and were allowed 

to settle overnight. The subsequent 24 hours, cells were exposed to 3.5, 7, 14, 35, 70 and 

140 nM IONP dispersions. Subsequently, the CellTiter-GLO® assay (Promega, Belgium) was 

performed according to the manufacturer’s instructions. Hereto, 100 µL of the assay buffer 

was added to each sample, plates were shaken during 2 minutes and following a 10-minute 

incubation, the signal was measured using a GloMax® 96 Luminometer (Promega, Belgium). 

 

4. ROS and intracellular free calcium  

Cells were seeded in 24-well plates at appropriate densities (Supplementary Information). 

The cells were allowed to settle overnight before being exposed to 7, 14, 35, 70 or 140 nM 

IONP dispersions for 24 hours. Notably, since the applied NP dispersion volume was adjusted 

according to the cell density, the NP number/volume cell medium/cell number remained 

equal in all experiments (Table S1).  
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After discarding the IONP containing medium, the cells were labelled with CellROX® green 

and Rhodamine-2 AM (Molecular Probes, Belgium) to allow visualization of reactive oxygen 

species (ROS) and free calcium present in the cytosol, respectively. Both were detected using 

the IN Cell analyser 2000 (GE Healthcare Life Sciences, Belgium) and the acquired data were 

analysed using in house developed protocols with the IN Cell Developer Toolbox software 

(GE Healthcare Life Sciences, Belgium). Detailed staining and analysis protocols are provided 

in the Supplementary Information.  

 

5. Mitochondria and cell morphology 

Cells were seeded at appropriate densities as described in the previous paragraph. The cells 

were allowed to settle overnight and were subsequently exposed to 3.5, 7, 14, 35 and 70 nM 

IONP dispersions. After a 24-hour incubation period, the NP dispersions were discarded and 

the mitochondria and cell cytoplasm were respectively labelled with Mitotracker® CMX-ROS 

Red and HCS CellMask™ Blue (both Molecular Probes, Belgium). Data were obtained with the 

IN Cell Analyzer 2000 and analysed with the IN Cell Developer Toolbox software. Detailed 

information on the staining procedure, data acquisition and data analysis is provided in the 

Supplementary Information.  

 

6. Statistics 

Cytotoxicity data are expressed as the mean ± standard error of the mean (SEM, n=3). IN Cell 

data are presented as the mean normalized against the untreated control ± SEM for two 

independent replicates, with a minimum of 10000 cells being analysed per replicate. 

Statistical analysis was performed using the 6th version of the GraphPad Prism software. 

Treated samples were compared with the untreated control by means of one-way ANOVA 
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combined with the post-hoc Dunnett test. Additionally, responses induced by the differently 

coated IONPs were compared with two-way ANOVA followed by the Bonferroni post-hoc 

test.  

 

Results  

1. IONP characterization 

The core diameter (dc) of the synthesized IONPs was quantified with transmission electron 

microscopy (TEM), which showed a mean value of 3.8 nm (Figure 1c & 1d). Next, the IONPs 

were coated with a ligand or polymer, respectively meso-2,3-dimercaptosuccinic acid 

(DMSA, Figure 1a) and poly-(isobutylene-alt-maleic) anhydride grafted with dodecylamine 

(PMA, Figure 1b).[22] As measured with dynamic light scattering, the hydrodynamic 

diameter in number distribution (dh) was 11.83 ± 0.61 and 12.33 ± 0.75 nm with a 

polydispersity index of 0.185 and 0.308 for the DMSA- and PMA-coated IONPs, respectively. 

In addition, both IONPs showed a strong, negative charge of -55.5 ± 0.9 mV for the IONP-

DMSA and -54 ± 2.2 mV for the IONP-PMA.[22] Further characterization in terms of the 

absorption spectra, molecular extinction coefficient, initial NP dispersion concentration and 

electrophoretic mobility is provided in the Supplementary Information (Tables S2 and S3, 

Figures S4 and S5). 

 

2. Cytotoxicity 

In a first set of cell-based experiments we evaluated the IONP-induced cell injury. Upon 

exposure to higher doses, several cell types experienced cell damage, which was most 

pronounced in the hNSCs (Figure 2). In contrast, the murine Neuro-2a neuroblastoma cell 

line was most resilient to IONP exposure, as only the highest dose of PMA-IONPs evoked a 
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minor, though significant, effect. In the majority of the cell types (the hNSCs, mNSCs and the 

murine C17.2 and Neuro-2a cell lines), the PMA-IONPs induced more severe effects than the 

DMSA-IONPs. However, in the ReNcell and LA-N-2 cell line, the opposite was true. Finally, 

when comparing the human cell types to their murine counterpart, the former appeared to 

be more sensitive, irrespective of the coating. 

 

3. ROS production 

To assess whether IONP exposure could affect the cell homeostasis at sublethal doses, we 

first looked into the effect of ROS production via staining with the CellROX® green probe.[47] 

This is especially important in neural cells since (i) ROS is a key player in the initiation and 

progression of several neurodegenerative disorders and (ii) neural cells are especially 

sensitive to oxidative stress given their high metabolic rate and low anti-oxidative 

capacity.[48] Three responses could be distinguished; an increase, a decline or a steady state 

(Figure 3). In case of the first two responses, the induced effects were IONP-concentration 

dependent. Similar to the cell damage, the observed changes in ROS levels were most 

pronounced in the NSCs. For instance, in the hNSCs the DMSA-coated IONPs evoked a three-

fold ROS induction at the highest concentration tested, whereas a decline was induced by 

the IONP-PMA. Notably, exact opposite trends were obtained in the mNSCs, indicating 

species-specific effects. Likewise, in the human progenitor cell line (ReNcell), both IONPs 

caused ROS induction whereas a decline was seen in the murine counterpart (C17.2). In 

contrast, in both neuroblastoma cell lines only the PMA-coated IONPs significantly reduced 

ROS. Overall, the PMA-IONPs evoked more severe effects in the included cell lines but no 

general statements can be made on the interspecies variations.  
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4. Cytoplasmic calcium signal 

Next, we evaluated the Ca2+ homeostasis in terms of the cytosolic free calcium concentration 

([Ca2+]c) through Rhodamine-2 AM staining.[47] The latter is an important indicator of cell 

function, especially in neural cells, given its involvement in numerous intracellular processes 

(metabolic activity, gene expression, neurotransmitter release, cell proliferation and cell 

death, etc.).[49-52] Similar to the results on ROS production, we found either a 

concentration dependent decline or augmentation in [Ca2+]c or no significant changes (Figure 

4). In both NSCs and the C17.2 cell line, the differentially coated IONPs induced opposite 

effects. Where the PMA-IONPs caused an elevated [Ca2+]c in the hNSCs and C17.2 cells, a 

significant decrease was noted for the DMSA-IONPs. Again, the opposite was true for the 

mNSCs. In the human progenitor cell line (ReNcell), Ca2+-levels were significantly elevated by 

both IONPs and the PMA-IONPs, which once more evoked stronger responses. In the murine 

Neuro-2a cell line, both IONPs induced a significant decline, which was significantly greater 

for the IONP-DMSA. In the LA-N-2 cell line this response was only observed for the PMA-

IONPs, as the DMSA-IONPs did not induce a significant effect. Here, less pronounced 

responses were detected in the murine NSCs and C17.2 cell line compared to their human 

counterparts. 

 

5. Mitochondrial homeostasis 

In turn, the mitochondria provide the bulk of the cellular energy, require Ca2+ signaling for 

their function, produce significant amounts of ROS and are associated with programmed cell 

death.[53, 54] In addition, the ΔΨm is a known effector in neurodegenerative disorders.[55] 

When the ΔΨm is compromised, the mitochondria fail to produce ATP and cytochrome C can 

be released, followed by the initiation of apoptosis.[53, 56] These organelles were labeled 
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with Mitotracker® CMX-ROS Red, which accumulates in the organelle based on the 

mitochondrial membrane potential (ΔΨm). When the ΔΨm is compromised due to NPs directly 

interacting with the mitochondrial membrane or ROS-induced membrane damage, the dye 

can no longer accumulate and the mitochondrial signal area relative to the total cell area 

decreases.[57] Figure 5 shows the relative signal area to be reduced or unaffected by IONP 

exposure. The latter was true for both IONPs in the Neuro-2a cell line and the C17.2 cells 

exposed to DMSA-IONPs. In all other cases the IONPs significantly reduced the ΔΨm. Notably, 

the ReNcells were most severely affected by both IONPs, followed by the hNSCs. Similar to 

the cytotoxicity observations, the human cell types were more sensitive to IONP exposure 

than the murine counterparts. On the whole, the onset of the effect occurred at lower doses 

for the IONP-PMA and effects were significantly more severe as compared to the DMSA-

IONPs, except in the LA-N-2 neuroblastoma cells where no significant differences were 

detected between both IONPs.  

 

6. Cell morphology 

Following cell labeling with HCS CellMask™ Blue, cell morphology was evaluated in terms of 

cell area and cell circularity.[22] The latter is defined as a value between zero and one, with 

one representing a perfect sphere. Thus, a lower value corresponds to a more complex cell 

morphology whereas an increase due to IONP exposure points to cell rounding and loss of 

specific morphological features, such as neurite outgrowths.[22] Cell morphology is a 

convenient parameter to include in a multiparametric analysis, as cell death has specific 

morphological features whereas minor alterations to cytoskeleton building blocks can impair 

cell functions that require signaling via these components.[48, 50, 58, 59] Figure 6 reveals 

that the effect of the PMA-IONPs on cell morphology was overall more severe, with the 
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exception of the mNSCs. In the latter, both cell area and circularity were significantly 

affected by the lowest and highest dose of DMSA-IONPs and PMA-IONPs, respectively. 

Likewise, the hNSCs and ReNcells became smaller and more spherical starting from 14 nM 

PMA-IONPs, whereas DMSA-IONPs only significantly altered morphology at 70 nM. Cell 

circularity of the C17.2 cells was not significantly affected but the PMA-IONPs and DMSA-

IONPs did reduce the cell area starting from the lowest and highest dose tested, 

respectively. The cell circularity of the Neuro-2a cells was elevated by both IONPs, while only 

the PMA-IONPs reduced the cell area at higher doses. Finally, since LA-N-2 cells tend to grow 

in clusters, the morphology was analyzed in terms of cluster area and cells per cluster. Here, 

the PMA-IONPs caused a significant concentration dependent decrease in both the average 

cluster area and number of cells per cluster at lower doses compared to the DMSA-IONPs 

(Figure 7). 

 

Discussion  

In this study, we evaluated the extent at which DMSA- and PMA-coated IONPs induced 

adverse effects in six neural cell types, namely NSCs, a progenitor cell line and a cancer cell 

line from murine and human origin. Please note that the same PMA-IONP sample was 

applied as in previous work, where we observed clear dose- and cell type-dependent 

neurotoxicity.[22] The specific aim of this work was to evaluate if such adverse effects could 

be similarly alleviated in the distinct cell types by applying a different coating strategy. The 

cell types were selected based on an important future application of the IONPs, i.e. neural 

cell labeling to allow MRI-guided in vivo cell tracking following transplantation in the context 

of regenerative cell therapy for neural lesions. Multiple studies regarding this topic apply 

various cell models without clearly specifying the species and or cell type (immortalized or 
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cancer cell line, primary cells, stem cells).[26-28] Since NP-evoked effects can differ widely 

amongst various cell models,[33, 35] we evaluated the impact of the cell model on 

nanosafety optimization studies. Hereto, we looked into the impact of both the cell type and 

species in one single study in contrast to previous reports focusing on a single variable.[34, 

37, 38]  

IONP characterization showed that DMSA- and PMA-IONPs had similar basic 

physicochemical properties, in line with previous reports.[22, 25, 39, 60] This was desirable as 

potentially distinct cell responses could be explained in terms of how the cell models 

interact with the NPs, rather than by the intrinsic physicochemical properties of the IONPs. 

Overall, we found the DMSA-IONPs to evoke less extensive responses than the PMA-IONPs. 

In four out of six cell types DMSA-IONPs induced less cytotoxicity than the PMA-IONPs, as 

expected based on recent literature.[23-25] However, the observed toxicity for DMSA-IONPs 

was slightly more severe than anticipated, possibly due to the greater sensitivity of neural 

cells towards NP exposure in general.[16] Cell homeostasis was furthermore perturbed at 

sublethal IONP doses in nearly all combinations tested. In correspondence with previous 

reports, we witnessed unaffected, decreased or induced ROS levels, [55, 61, 62] which was 

more outspoken for the PMA-IONPs. The decreased ROS levels can be explained in terms of 

the intrinsic scavenging potential of intact IONPs or the cellular adaptation to the response 

of foreign materials.[63, 64] The steady state observed for DMSA-IONPs in the cancer cell 

lines can be attributed to the chelating capacity of DMSA, preventing leached iron ions from 

inducing ROS.[14, 23, 25] Still, the DMSA-IONPs were found to significantly induce ROS in the 

hNSCs and ReNcells, possibly indicating that the extent of ion leaching outweighed the 

DMSA chelating capacity or that ROS induction in part occurred through alternate 

mechanisms. Moreover, ROS induction is an acute event depending on the kinetics of NP 
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uptake, intracellular trafficking, the stability of the applied coating and ion leaching.[14, 65] 

Hence, variations in any of these processes could in part explain the distinct responses. 

Finally, variations between human and murine cell types may stem from differences in the 

anti-oxidative capacity, which was reported to be elevated in mice.[66] In addition, the 

DMSA-IONPs most often showed less pronounced responses on the level of the calcium and 

mitochondrial homeostasis and cell morphology. Since all responses can to a certain extent 

be correlated to ROS production,[65, 67] the chelating capacity of DMSA may in part be 

accountable for the improved nanosafety profile. However, additional elements may impact 

the safety profiles. For one, different coating materials will acquire different proteins at their 

surface. This differential protein corona can in turn influence the extent of NP uptake, the 

exploited uptake pathway(s) and subsequent cellular processing.[68] In addition, not all 

coating materials equally protect the IONP surface against the acidic pH and hydrolases in 

the lysosomes.[69] Of note, the coating itself may in turn be sensitive to lysosomal 

degradation and released degradation products can also affect the cell homeostasis.[70] 

Hence, further research will be required to unveil the exact mechanism behind the improved 

biocompatibility of DMSA-IONPs.  

From the multiparametric data set in each cell type alone it would be concluded that the 

DMSA-IONPs are the preferred candidate for further optimization since they generally 

evoked less severe effects, regardless of the distinct culture medium composition for the 

different cell types. The cell media could potentially influence IONP uptake through an 

impact on the colloidal stability and the formation of a protein corona.[71, 72] Such 

variations in IONP uptake could certainly impact the evoked effects, although a linear 

relationship between the intracellular NP dose and the cytotoxicity is not always evident.[35] 

Hence, these parameters were not investigated in detail since we preferentially focused on 
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investigating how various cell models (i.e. the cell type and its optimal medium) respond to 

IONP exposure. Furthermore, adequate IONP uptake and colloidal stability were previously 

documented for the applied coating materials.[24, 47, 73] Nevertheless, further 

characterization of the protein corona and IONP uptake in the applied cell models would 

improve our understanding of the observed adverse events.[74]  

Most importantly, a correct conclusion on the preferable IONP coating for the envisioned 

application could only be reached when a multiparametric approach was applied, as in rare 

cases the DMSA-IONPs more severely perturbed cell homeostasis. Overall, a distinct 

nanotoxicity profile was obtained in each applied cell model. The sensitivity of the cell model 

was furthermore clearly species-related, as human cell types were more sensitive towards 

DMSA-IONP-induced effects. Likewise, Zhang et al. found human macrophages to be more 

sensitive towards DMSA-IONPs than the murine alternative.[75] Secondly, the cell type was 

a major factor since for both the human and murine cell types the NSCs were found to be 

most sensitive towards both IONPs, whereas the cancer cell lines were most resilient. This is 

in agreement with the observation that tumor cells have several characteristics making them 

less prone to NP-induced effects, as cell transformation or immortalization is accompanied 

by phenotypical changes on the level of cell morphology, metabolic rate, proliferation rate, 

etc.[33, 76] Hence, intrinsic variations between cell types can at least in part be held 

accountable for the observed variations, as more elaborately described previously.[77] 

Finally, not all cell models showed a similar sensitivity on all evaluated end points. For 

instance, no significant differences could be detected in IONP-induced mitochondrial 

damage in the cancer cell lines, while this was true for all other cell types. Hence, nanosafety 

screenings to define suitable NPs for a certain application should be performed in a 
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multiparametric fashion evaluating sensitive and informative end points in sufficiently 

sensitive cell types.  

To progress towards a clinical application, we should further investigate whether our cell 

labeling protocol allows sufficient IONP internalization to allow cell detection through MRI, 

as labeling parameters are reported to influence the MRI visibility.[78] IONP-labeled cells can 

generally be detected starting from 10-30 pg iron per cell.[79] However, the MRI signal is 

reported to decrease as a function of time due to IONP dilution through cell division and 

lysosomal degradation of the IONPs.[80-82] Thus, we should evaluate if sufficiently high 

intracellular IONP levels can be safely obtained with the sublethal IONP doses to ensure 

long-term cell tracking. Moreover, further testing would be required to establish the 

importance of the detected adverse events on long-term cell function and rule out delayed 

cytotoxicity, as this was previously observed for the DMSA-IONP labeling of primary 

neurons.[83] Based on our observations we suggest that NSCs are the preferred model for 

further investigation given the selected application. In preference the hNSCs should be 

applied since both NSCs showed opposite effects on the level of ROS and Ca2+ in response to 

DMSA-IONP labeling.  

 

Conclusion 

IONPs are of interest as MRI contrast agents for the labeling of transplanted neural stem 

cells (NSCs), albeit that nanotoxicity remains a concern. Cell-nanoparticle interactions of 

DMSA- and PMA-coated IONPs were investigated in human and murine NSC, neural 

progenitor and neuroblastoma cells. The overall nanosafety profile of the DMSA-IONPs was 

superior compared to the PMA-IONPs. Importantly, a multiparametric approach was 

required to reach this conclusion. In the cell lines we predominantly found both IONPs to 
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evoke similar responses. In contrast, clear interspecies variations were detected on ROS 

production and Ca2+ homeostasis in the NSCs, where both IONPs were found to evoke 

opposite effects. This is an important observation, as the hNSCs are considered to be the 

most representative model for the envisioned application. Thus, the DMSA-coating could not 

in all cell types equally alleviate the induced nanotoxicity compared to the PMA-IONPs. 

Overall, sufficiently sensitive cell lines can be applied when performing a multiparametric 

screening to define suitable candidates for a certain biomedical application. However, 

further thorough safety evaluations should be performed on a non-cancerous human cell 

model most closely resembling the target cell or tissue whenever possible.  
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Figure Captions 
 
Figure 1: DMSA- and PMA-coated IONPs.  
(a) DMSA-IONPs, (b) PMA-IONPs, (c) TEM image (scale bar corresponds to 20 nm) of the bare 
IONPs and (d) the corresponding size distribution histogram of the iron oxide cores N(dc).  
 
Figure 2: Human cell types experience stronger dose dependent cytotoxicity.   

Cytotoxicity as determined with the CellTiter GLO® assay following 24 hours exposure to 

DMSA- (black) and PMA-coated (white) IONPs. Statistical significance with regard to the 

untreated control is indicated when appropriate (* p < 0.05) in black for the DMSA-IONPs 

and grey for the PMA-coated IONPs. (NTC = not treated control) 

  

Figure 3: IONP exposure affects ROS production.  

The influence of 24 hours DMSA-IONP (black bars) and PMA-IONP (white bars) exposure on 

reactive oxygen species (ROS) production as detected with the CellROX® green probe, with 

the latter generally evoking stronger responses. When appropriate, statistical significance 

with respect to the untreated control is indicated in grey for the PMA-IONPs and in black for 

the DMSA-IONPs (* p < 0.05). (NTC = not treated control) 

 

Figure 4: Increased or declined [Ca2+]c by IONPs.  

The cytosolic free calcium concentration ([Ca2+]c) was visualized with Rhod-2 AM following 

24 hours exposure to DMSA-IONPs (black bars) and PMA-IONPs (white bars). Grey and black 

* represent significant alterations when compared to the untreated control (* p < 0.05) 

induced by respectively PMA-IONPs and DMSA-IONPs. (NTC = not treated control) 

 

Figure 5: Mitochondria are more severely affected in the human cell types.  

DMSA-IONP (black bars) and PMA-IONP (white bars) induced effects on mitochondrial 

homeostasis in terms of the relative mitochondrial area as visualized with Mitotracker® 

CMX-ROS. Statistical significance with regard to the untreated control is indicated when 

appropriate (* p < 0.05), in black for significant effects evoked by IONP-DMSA and in gray for 

the PMA-coated IONP. (NTC = not treated control) 

 

Figure 6: DMSA-IONPs have a minor impact on cell morphology.  

The effect on cell morphology of 24 hours exposure to DMSA-IONPs (top row) and PMA-

IONPs (lower row) represented as changes in relative cell area (black bars) and cell circularity 

(blue lines). In general cell circularity is a more sensitive parameter and DMSA-IONPs induce 

least severe effects. Statistical significance with regard to the untreated control is indicated 

when appropriate in the corresponding color, black for cell area and blue for circularity (* p < 

0.05). (NTC = not treated control) 
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Figure 7: LA-N-2 cell morphology is most affected by IONP-PMA exposure.  

The effect of both IONPs on the LA-N-2 cell line in terms of the total cluster area (black bars) 

and cells per cluster (white bars). Grey and black * represent significant alterations when 

compared to the untreated control (* p < 0.05) for respectively cluster area and cells per 

cluster. (NTC = not treated control) 
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FIGURES 

Graphical abstract 

Figure 1: DMSA- and PMA-coated IONPs. 

Figure 2: Human cell types experience stronger dose dependent acute cell damage.   

Figure 3: IONP exposure affects ROS production.  

Figure 4: Increased or declined [Ca2+]c by IONPs. 

Figure 5: Mitochondria are more severely affected in the human cell types. 

Figure 6: DMSA-IONPs have a minor impact on cell morphology.  

Figure 7: LA-N-2 cell morphology is least affected by DMSA-IONP exposure. 
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Graphical abstract 

 

 
Figure 1: DMSA- and PMA-coated IONPs.  

(a) DMSA-IONPs, (b) PMA-IONPs, (c) TEM image (scale bar corresponds to 20 nm) of the bare 
IONPs and (d) the corresponding size distribution histogram of the iron oxide cores N(dc).  
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Figure 2: Human cell types experience stronger dose dependent acute cell damage.   

Cytotoxicity as determined with the CellTiter GLO® assay following 24 hours exposure to 
DMSA- (black) and PMA-coated (white) IONPs. Statistical significance with regard to the 
untreated control is indicated when appropriate (* p < 0.05) in black for the DMSA-IONPs 
and grey for the PMA-coated IONPs. (NTC = not treated control) 
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Figure 3: IONP exposure affects ROS production.  

The influence of 24 hours DMSA-IONP (black bars) and PMA-IONP (white bars) exposure on 

reactive oxygen species (ROS) production as detected with the CellROX® green probe, with 

the latter generally evoking stronger responses. When appropriate, statistical significance 

with respect to the untreated control is indicated in grey for the PMA-IONPs and in black for 

the DMSA-IONPs (* p < 0.05). (NTC = not treated control) 
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Figure 4: Increased or declined [Ca2+]c by IONPs. 

The cytosolic free calcium concentration ([Ca2+]c) was visualized with Rhod-2 AM following 

24 hours exposure to DMSA-IONPs (black bars) and PMA-IONPs (white bars). Grey and black 

* represent significant alterations when compared to the untreated control (* p < 0.05) 

induced by respectively IONP-PMA and DMSA-IONPs. (NTC = not treated control) 
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Figure 5: Mitochondria are more severely affected in the human cell types. 

DMSA-IONP (black bars) and PMA-IONP (white bars) induced effects on mitochondrial 
homeostasis in terms of the relative mitochondrial area as visualized with Mitotracker® 
CMX-ROS. Statistical significance with regard to the untreated control is indicated when 
appropriate (* p < 0.05), in black for significant effects evoked by IONP-DMSA and in gray for 
the PMA-coated IONP. (NTC = not treated control) 
 
 

 
Figure 6: DMSA-IONPs have a minor impact on cell morphology.  

The effect on cell morphology of 24 hours exposure to DMSA-IONPs (top row) and PMA-

IONPs (lower row) represented as changes in relative cell area (black bars) and cell circularity 
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(blue lines). In general cell circularity is a more sensitive parameter and DMSA-IONPs induce 

least severe effects. Statistical significance with regard to the untreated control is indicated 

when appropriate in the corresponding color, black for cell area and blue for circularity (* p < 

0.05). (NTC = not treated control) 

 

 

 
Figure 7: LA-N-2 cell morphology is least affected by DMSA-IONP exposure. 

The effect of both IONPs on the LA-N-2 cell line in terms of the total cluster area (black bars) 

and cells per cluster (white bars). Grey and black * represent significant alterations when 

compared to the untreated control (* p < 0.05) for respectively cluster area and cells per 

cluster. (NTC = not treated control) 
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STATEMENT OF SIGNIFICANCE 

 

Inorganic nanoparticle (NP) optimization is chiefly performed in vitro. For the optimization of 
iron oxide (IO)NPs for neural stem cell labeling in the context of regenerative medicine 
human or rodent neural stem cells, immortalized or cancer cell lines are applied. However, 
the use of certain cell models can be questioned as they phenotypically differ from the 
target cell. The impact of the neural cell model on nanosafety remains relatively unexplored. 
Here we evaluated cell homeostasis upon exposure to PMA- and DMSA-coated IONPs. Of 
note, the DMSA-IONPs outperformed the PMA-IONPs in each cell type. However, distinct cell 
type-specific effects were witnessed indicating that nanosafety should be evaluated in a 
human cell model that represents the target cell as closely as possible.   
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