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Abstract 

This paper presents the first comparison of the accuracy of density forecasts for stock prices. 

Six sets of forecasts are evaluated for DJIA stocks, across four forecast horizons. Two 

forecasts are risk-neutral densities implied by the Black-Scholes and Heston models. The 

third set are historical lognormal densities with dispersion determined by forecasts of realized 

variances obtained from 5-minute returns. Three further sets are defined by transforming 

risk-neutral and historical densities into real-world densities. The most accurate method 

applies the risk transformation to the Black-Scholes densities. This method outperforms all 

others for 87% of the comparisons made using the likelihood criterion. 

 

 

The authors thank the editor, the referee and participants at the EFMA 2015 conference for 

their helpful advice and comments. 

 

                                                             
* Contact author. Tel.: +44 (0)1792 602671. Email: Rui.Fan@swansea.ac.uk (R. Fan). 

a School of Management, Swansea University, Bay Campus, Fabian Way, Swansea, Wales, SA1 8EN. 

b Department of Accounting and Finance, Lancaster University Management School, LA1 4YX, UK. 

 



2 
 

1. Introduction 

 

Density forecasts for future asset prices are of importance to central bankers, risk managers 

and other decision makers for activities such as policy-making, risk management and 

derivatives pricing. They can also be used to assess market beliefs about economic and 

political events when derived from option prices. 

Our contribution in this paper is to provide the first comparison of density forecasts for 

the future prices of individual stocks. We compare forecasts obtained from option prices and 

the pricing models of Black and Scholes (1973) and Heston (1993) with forecasts obtained 

from high-frequency historical returns and the regression model of Corsi (2009). We 

recommend to decision makers that the best predictive densities are provided by firstly using 

option prices, secondly using simple models to define risk-neutral densities and thirdly 

transforming the risk-neutral densities into real-world densities. Our conclusions differ from 

those in prior research for other assets. 

We investigate density forecasts for the prices of seventeen constituents of the Dow 

Jones Industrial Average (DJIA) for the period from 2003 to 2012, for four horizons ranging 

from one day to one month. Previously, equity market comparisons have been made by Liu et 

al. (2007) for FTSE 100 futures, Shackleton et al. (2010) for S & P 500 futures and Yun 

(2014) for the S&P-500 index. Comparisons for other asset classes include Høg and Tsiaras 

(2011) for crude oil futures and Trujillo-Barrera et al. (2012) for lean hog futures, while 

related studies of Euribor interest rate futures are Gutiérrez and Vincent-Humphreys (2012), 

Vergote and Gutiérrez (2012) and Ivanova and Gutiérrez (2014). 

As option prices reflect both historical and forward-looking information, forecasters are 

motivated to prefer forecasts derived from option market data. Evidence for superior 

predictions using option prices is widespread. Regarding volatility forecasts, Blair et al. 
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(2001), Jiang and Tian (2005), Giot and Laurent (2007) and Busch et al. (2011) all state that 

option forecasts are more informative and accurate than historical forecasts of index volatility 

even when the historical information set includes intraday, high-frequency returns.1 Chang et 

al. (2012) show option-implied betas have significant predictive power compared with 

historical betas, while Kempf et al. (2015) show that option prices can be used to enhance 

portfolio optimization. Liu et al. (2007) provide the first evidence that option prices provide 

density forecasts that are superior to forecasts which rely solely on historical prices. 

We show that options prices are more informative than intraday, high-frequency returns 

when constructing density forecasts for our selection of DJIA stocks, for all forecast horizons 

varying from one day to one month. This contrasts with the index results of Shackleton et al. 

(2010), which favor option-based methods for two-week and four-week horizons but 

high-frequency methods for forecasts one-day ahead. We note that option-based density 

forecasts generally outperform historical forecasts obtained from daily returns for a 

one-month horizon, according to Liu et al. (2007), Høg and Tsiaras (2011) and 

Trujillo-Barrera et al. (2012). Furthermore, Yun (2014) shows that “options & returns” 

models outperform “only returns” models for all horizons from one day to four weeks.  

Many methods have been proposed to obtain risk-neutral densities from option prices. 

Almost all methods only provide distributions for horizons which match option expiry dates2. 

We instead estimate a stochastic process for the underlying asset price, by matching 

theoretical and market option prices for all expiry dates, to obtain densities for all horizons. 

We estimate the mean-reverting, square-root, stochastic volatility process of Heston (1993) 

which provides a closed form solution for option prices and a tractable density formula based 

on inverting characteristic functions. More complicated specifications including jumps (e.g. 

                                                             
1 Further comparisons are in Poon and Granger (2003), Martens and Zein (2004) and Taylor et al. (2010). 

2 For example, applying methodologies such as explicit parametric distributions (Ritchey, 1990; Madan and 

Milne, 1994; Anagnou-Basioudis et al., 2005), discrete probabilities (Jackwerth and Rubinstein, 1996), a 

nonparametric kernel regression (Aït-Sahalia and Lo, 1998) and implied volatility splines (Bliss and 

Panigirtzoglou, 2002). 
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Duffie et al., 2000; Eraker, 2004) are not evaluated, because Shackleton et al. (2010) find that 

adding jumps does not significantly improve their forecasting results because their risk 

transformations systematically improve mis-specified risk-neutral densities. 

We compare density forecasts derived from option prices using the Black-Scholes (1973) 

and Heston (1993) models with forecasts obtained from historical time series using the Corsi 

(2009) heterogeneous autoregressive model of realized variance (HAR-RV). However, the 

risk-neutral density is a suboptimal forecast of the future distribution of the asset price as 

there is no risk premium in the risk neutral world, while in reality investors are risk-averse. 

Hence we need to use economic models and/or econometric methods to transform 

risk-neutral densities into real-world3 densities. Economic theory motivates pricing kernel 

transformations using power and/or exponential utility functions (Bakshi et al., 2003; Bliss 

and Panigirtzoglou, 2004; Liu et al., 2007) and the hyperbolic absolute risk aversion (HARA) 

function (Kang and Kim, 2006). Liu et al. (2007) use both utility and statistical calibration 

transformations, and they find that a statistical, parametric calibration gives a higher 

log-likelihood for observed outcomes than a utility transformation. Shackleton et al. (2010) 

compare parametric and nonparametric econometric transformations, obtaining the best 

diagnostic test results for the latter. The nonparametric method avoids making assumptions 

about the correct transformation and relies on learning from past outcomes how best to 

change measure from risk-neutral to real-world. Following Shackleton et al. (2010), Høg and 

Tsiaras (2011) and Ivanova and Gutiérrez (2014), we also transform risk-neutral densities 

into real-world densities using a nonparametric transformation. Some further parametric 

transformation results are provided in Yun (2014). 

This paper is structured as follows. Section 2 describes the density forecasting methods, 

                                                             
3 Like Liu et al. (2007), we use “real-world” rather than other alternative adjectives, such as “risk-adjusted”, 

“statistical”, “empirical”, “physical”, “true”, “subjective” and “objective”, etc., which are all used in the 

literature to indicate that the price distributions incorporate risk preferences. 
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namely the Black-Scholes (1973) and Heston (1993) models for densities inferred from 

option prices, the Corsi (2009) HAR-RV model for density forecasts obtained from historical 

high-frequency stock prices and the nonparametric transformation of Shackleton et al. (2010). 

It also includes the econometric methods used to obtain ex-ante parameters and evaluate 

density forecasts. Section 3 describes the DJIA stock and option prices data employed in the 

study. Section 4 focuses on the empirical analysis. Section 5 summarizes the findings and 

concludes. 

 

2. Methodology 

 

2.1 Option pricing with stochastic volatility 

We extract risk-neutral densities from option prices and a specific pricing model. A realistic 

stochastic process for an individual stock price must incorporate a stochastic volatility 

component, whose increments are correlated with the price increments. We need to calculate 

an enormous number of theoretical option prices, so fast calculations are essential. The 

stochastic volatility process of Heston (1993) meets all our requirements as it has closed-form 

densities and option prices. Furthermore, the Heston pricing formula provides a generally 

satisfactory match to observed implied volatilities and it is a significant improvement on the 

Black-Scholes formula in empirical research (e.g. Bakshi et al., 1997; Lin et al., 2001; 

Dupoyet, 2006). More complicated affine jump-diffusion processes are described by Duffie et 

al. (2000) and these can fit implied volatilities even better. We do not consider these 

extensions, noting that Shackleton et al. (2010) obtained no forecasting advantages from 

including price jumps in their study. 

The risk-neutral price dynamics for the stock price 𝑆, which incorporate the stochastic 

variance 𝑉, are defined by 
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𝑑𝑆

𝑆
= (𝑟 −  𝑞)𝑑𝑡 + √𝑉𝑑𝑊1                        (1) 

and 

𝑑𝑉 = 𝜅(𝜃 − 𝑉)𝑑𝑡 + 𝜎√𝑉𝑑𝑊2,                       (2) 

 

where 𝑟 is the risk-free interest rate and 𝑞 is the dividend yield. We let 𝜌 denote the 

correlation between the two Wiener processes 𝑊1 and 𝑊2, while 𝜃 is the level towards 

which the stochastic variance 𝑉 reverts and 𝜅 denotes the rate of reversion of 𝑉 towards 

𝜃. The volatility of volatility parameter 𝜎 controls the kurtosis of the returns.  

Similar to the Black-Scholes formula, the Heston call price formula depends on two 

prices, the initial volatility, two discount factors and two probabilities: 

𝐶(𝑆0, 𝑉0) = 𝑆0𝑒−𝑞𝑇𝑃1 − 𝐾𝑒−𝑟𝑇𝑃2.                     (3) 

Here 𝑆0 is the current spot price, 𝐾 is the strike price of an European option and T is the 

time to expiry. Each 𝑃𝑗 in equation (3) is a conditional probability that the call option 

expires in-the-money. The term 𝑃2 is for the risk-neutral measure 𝑄, while 𝑃1 is for a 

related measure 𝑄∗ having different drift rates. All probabilities and density functions are 

provided by integrals of functions of the characteristic function of log(𝑆𝑇), conditional on 

the initial state values 𝑆0 and 𝑉0, see Heston (1993) or the textbook explanation in Taylor 

(2005, Section 14.6). 

 

2.2 High-frequency HAR methods 

The HAR-RV model of Corsi (2009) is an AR-type model for the realized variance which 

combines volatility components calculated over different time horizons. The model uses the 

multiperiod realized variance, which is the total of one-period measures denoted as 

𝑅𝑉𝑡,𝑡+ℎ = 𝑅𝑉𝑡+1 + 𝑅𝑉𝑡+2 + ⋯ + 𝑅𝑉𝑡+ℎ, ℎ ≥ 1.                (4) 
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By definition 𝑅𝑉𝑡,𝑡+1 ≡ 𝑅𝑉𝑡+1 and we use ℎ = 5 and ℎ = 22 to represent the weekly and 

monthly realized variance. Here the time period for volatility measures is from 𝑡 to 𝑡 + ℎ, 

both counting trading days. In contrast, our options notation is a time period from 0 to  𝑇, 

both measured in years. 

As the logarithmic daily realized variances are approximately unconditionally normally 

distributed, Andersen et al. (2007) predict the logarithm of the realized variance for the next 

h-day period by applying the regression specification: 

log(𝑅𝑉𝑡,𝑡+ℎ) = 𝛽0,ℎ + 𝛽𝐷,ℎ log(𝑅𝑉𝑡−1,𝑡) + 𝛽𝑊,ℎ log(𝑅𝑉𝑡−5,𝑡) + 𝛽𝑀,ℎ log(𝑅𝑉𝑡−22,𝑡)

+  𝜀𝑡,𝑡+ℎ.                                                    (5) 

We also use this logarithmic specification. As noted by Pong et al. (2004), following Granger 

and Newbold (1976) an unbiased prediction of 𝑅𝑉𝑡,𝑡+ℎ is provided by the exponential of the 

forecast of log (𝑅𝑉𝑡,𝑡+ℎ)  multiplied by exp (
1

2
𝑆2(ℎ))  with 𝑆2(ℎ)  an estimate of the 

variance of 𝜀𝑡,𝑡+ℎ, here assuming log (𝑅𝑉𝑡,𝑡+ℎ) is a Gaussian process. This is a standard 

assumption for realized variance, first shown to be appropriate for equities by Andersen et al. 

(2001). 

 

2.3 Lognormal densities, from the Black-Scholes model and HAR-RV forecasts 

In the Black-Scholes model, we assume the risk-neutral dynamics is a geometric Brownian 

motion: 

𝑑𝑆 𝑆⁄ = (𝑟 − 𝑞)𝑑𝑡 + 𝜎𝑑𝑊.                       (6) 

The risk-neutral distribution of log (𝑆𝑇) is then normal: 

log(𝑆𝑇) ~𝑁 (log(𝑆0) + (𝑟 − 𝑞)𝑇 −
1

2
𝜎2𝑇, 𝜎2𝑇), 

and 

𝐸𝑄[𝑆𝑇] = 𝑆0𝑒(𝑟−𝑞)𝑇 = 𝐹,                       (7) 
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where 𝐹 is the no-arbitrage, futures price for time 𝑇. 

The risk-neutral density of 𝑆𝑇 then depends on three parameters (𝐹, 𝜎, 𝑇) and is given 

by the lognormal density 

𝜓(𝑥|𝐹, 𝜎, 𝑇) =
1

𝑥𝜎√2𝜋𝑇
𝑒

−
1
2

(
log(𝑥)−[log(𝐹)−

1
2

𝜎2𝑇]

𝜎√𝑇
)

2

.              (8) 

Similarly, a risk-neutral, lognormal density from the HAR-RV model is given by replacing 

𝜎√𝑇 by a term √𝑅�̂�𝑡,𝑡+ℎ to give: 

𝜓(𝑥|𝐹, 𝑅�̂�𝑡,𝑡+ℎ) =
1

𝑥√2𝜋𝑅�̂�𝑡,𝑡+ℎ

𝑒

−
1
2

(
log(𝑥)−[log(𝐹)−

1
2

𝑅�̂�𝑡,𝑡+ℎ]

√𝑅�̂�𝑡,𝑡+ℎ

)

2

.         (9) 

The quantity 𝑅�̂�𝑡,𝑡+ℎ is calculated from (5) and the stated bias correction, with the horizon 

ℎ (measured in trading days) matching the calendar time 𝑇 (measured in years). The 

lognormal assumption for the distribution of 𝑆𝑇  in (9) can again be motivated by the 

empirical evidence in Andersen et al. (2001). 

 

2.4 Nonparametric transformations 

The risk-neutral, Q-densities are not satisfactory specifications of the real-world densities. 

One reason is that the Q-variance obtained from option prices is usually higher than the 

real-world variance, because there is a negative volatility risk premium (Carr and Wu, 2009). 

Consequently there are fewer observations than predicted in the tails of the Q-densities. A 

second reason is that the equity risk premium is, by definition, absent from all the risk-neutral 

densities. Hence it is necessary to use some technique to transform risk-neutral densities into 

real-world densities. We reviewed parametric and nonparametric transformation 

methodologies in the introduction. We apply the nonparametric method of Shackleton et al. 

(2010) because firstly it makes less assumptions than all alternatives and secondly it relies on 
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standard density estimation theory, originally presented by Silverman (1986). The method is 

also applied and described by Høg and Tsiaras (2011) and Ivanova and Gutiérrez (2014). 

The nonparametric calibration method relies on learning from past outcomes how best to 

change measure from risk-neutral to real-world. It is well-known that the cumulative 

probabilities u of observed prices p are uniformly distributed for correctly specified densities 

(e.g. Diebold et al., 1998; Elliott and Timmermann, 2016). Observed deviations from 

uniformity can be exploited to transform risk-neutral densities, to obtain better descriptions of 

real-world outcomes. 

The nonparametric transformation calibration function for a selected horizon ℎ, and a 

selected risk-neutral method, is determined by a set of 𝑛 − ℎ  cumulative, risk-neutral 

probabilities 

𝑢𝑠+ℎ = 𝐹𝑄,𝑠,𝑇(𝑝𝑠+ℎ|𝛩𝑠), 1 ≤ 𝑠 ≤ 𝑛 − ℎ,               (10) 

with 𝑇  (years) matching ℎ  (trading days). Here 𝐹𝑄,𝑠,𝑇  is the cumulative distribution 

function (c.d.f.) of the stock price 𝑝𝑠+ℎ, with 𝛩𝑠 a vector of density parameters. The values 

of the variables 𝑢  for the Heston model are obtained by fast and accurate numerical 

integration, while 𝑢 for the HAR-RV and Black-Scholes models is simply a cumulative 

probability of the normal distribution.4 We note that the terms u are often called probability 

integral transform (PIT) values in the forecasting literature. 

Let 𝜑()  and 𝛷()  represent the density and the c.d.f. of the standard normal 

distribution. We transform the PIT values 𝑢𝑖, whose domain is from 0 to 1, to new variables 

𝑦𝑖 = 𝛷−1(𝑢𝑖) , and then estimate a nonparametric kernel density from the set 

{𝑦ℎ+1, 𝑦ℎ+2, … , 𝑦𝑛}. We use a Gaussian kernel with bandwidth 𝐵 to obtain the kernel density 

and c.d.f.: 

                                                             
4 When calculating densities and variables 𝑢, we replace the risk-neutral expectation F in (8) and (9) by the 

synthetic futures price on day 𝑠 for a future transaction at time 𝑠 + ℎ. We evaluate the options-on-futures 

version of the Heston model, for which q equals r and the initial asset price is the synthetic futures price. 
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ℎ̂𝑇(𝑦) =
1

(𝑛 − ℎ)𝐵
∑ 𝜑

𝑛

𝑖=ℎ+1

(
𝑦 − 𝑦𝑖

𝐵
), 

�̂�𝑇(𝑦) =
1

𝑛 − ℎ
∑ 𝛷

𝑛

𝑖=ℎ+1

(
𝑦 − 𝑦𝑖

𝐵
).                    (11) 

We apply the standard bandwidth formula given by 𝐵 = 0.9𝜎𝑦 (𝑛 − ℎ)0.2⁄ , where 𝜎𝑦 is the 

standard deviation of the terms 𝑦𝑖. The empirical calibration function, which is the estimated 

real-world c.d.f. of the risk-neutral PIT values, is then 

�̂�𝑇(𝑢) = �̂�𝑇(𝛷−1(𝑢))                        (12) 

and its derivative is the calibration density 

�̂�𝑇(𝑢) =
𝑑

𝑑𝑢
�̂�𝑇(𝑢) =

ℎ̂𝑇(𝑦)

𝜑(𝑦)
,                     (13) 

with 𝑦 = 𝛷−1(𝑢). 

At time t, the risk-neutral c.d.f. of 𝑝𝑡+ℎ , denoted 𝐹𝑄,𝑇(𝑥), is transformed into the 

real-world c.d.f. of 𝑝𝑡+ℎ, denoted 𝐹𝑃,𝑇(𝑥), by the equation: 

𝐹𝑃,𝑇(𝑥) = �̂�𝑇 (𝐹𝑄,𝑇(𝑥)).                       (14) 

Calculus then shows that the transformation of the risk-neutral density into the real-world 

density, from 𝑓𝑄,𝑇(𝑥) to 𝑓𝑃,𝑇(𝑥), is given by: 

𝑓𝑃,𝑇(𝑥) =
𝑓𝑄,𝑇(𝑥)ℎ̂𝑇(𝑦)

𝜑(𝑦)
,                       (15) 

with 𝑦 = 𝛷−1(𝐹𝑄,𝑇(𝑥)). 

 

2.5 Parameter estimation 

The densities are all evaluated out-of-sample because all the parameter values are obtained ex 

ante, i.e. the values at time t are estimated from the information available at time t. For the 

HAR variances we estimate all parameters from regressions over five-year windows. For 
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Black-Scholes lognormal densities, we use the nearest-the-money, nearest-to-expiry, option 

implied volatility. 

For the Heston model, we estimate the risk-neutral parameters of the asset price 

dynamics every day. On each day, we estimate the initial variance 𝑉𝑡, the rate of reversion 𝜅𝑡, 

the unconditional expectation of stochastic variance 𝜃𝑡, the volatility of volatility 𝜎𝑡, and the 

correlation 𝜌𝑡  between the two Wiener processes. Suppose we use 𝑁𝑡  European, call5 

option contracts on day 𝑡, denoted by 𝑖 = 1, … , 𝑁𝑡, and the market prices are 𝑐𝑡,𝑖, for strike 

prices 𝐾𝑡,𝑖, and expiry times 𝑇𝑡,𝑖. We let 𝑝𝑡,𝑖 denote a futures price for the asset, calculated 

for a synthetic futures contract which expires in 𝑇𝑡,𝑖 years. Then we calibrate the five 

risk-neutral Heston parameters by minimizing the total squared errors in 

∑(𝑐𝑡,𝑖 − 𝑐(𝑝𝑡,𝑖, 𝐾𝑡,𝑖, 𝑇𝑡,𝑖, 𝑉𝑡, 𝜅𝑡, 𝜃𝑡 , 𝜎𝑡, 𝜌𝑡))2

𝑁𝑡

𝑖=1

             (16) 

with 𝑐(. ) the Heston solution for the European call option price given in (3).6,
7 

 

2.6 Econometric methods 

Elliott and Timmermann (2016, Chapter 18) provide a recent survey of methods for 

evaluating density forecasts in economics research. We apply these methods to stock prices. 

 

2.6.1 Ranking forecasts 

There are several ways to rank density forecasts, and we will use the standard log-likelihood 

criterion previously employed by Bao et. al (2007), Liu et. al (2007) and Shackleton et al. 

                                                             
5 Some call prices are derived from put prices and put-call parity, as discussed in Section 3.2. 

6 Christoffersen and Jacobs (2004) conclude that the squared pricing error is a “good general-purpose loss 

function in option valuation applications”. Christoffersen et al. (2010) also employed it in a study of S&P 500 

dynamics. 

7 We assume the same price dynamics and parameter values apply to the set of contemporaneous futures 

contracts. The Appendix explains why this assumption is reasonable. 
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(2010). For a given horizon ℎ, assume method 𝑚 gives densities 𝑓𝑚,𝑡(𝑥) at times 𝑖, … , 𝑗 

for the asset price at times 𝑖 + ℎ, … , 𝑗 + ℎ . Our goal is to find the method which maximizes 

the out-of-sample log-likelihood of observed asset prices, which for method 𝑚 is given by 

𝐿𝑚 = ∑ log (𝑓𝑚,𝑡(𝑝𝑡+ℎ))

𝑗

𝑡=𝑖

.                        (17) 

To compare any two different methods we apply a version of the log-likelihood ratio test 

in Amisano and Giacomini (2007). The null hypothesis states that two different density 

forecasting methods 𝑚 and 𝑛 have equal expected log-likelihood. The test is based on the 

log-likelihood differences 

𝑑𝑡 = log (𝑓𝑚,𝑡(𝑝𝑡+ℎ)) − log (𝑓𝑛,𝑡(𝑝𝑡+ℎ)) , 𝑖 ≤ 𝑡 ≤ 𝑗.          (18) 

Amisano and Giacomini (2007) in their application follow Diebold and Mariano (1995) and 

add the assumption that the differences are uncorrelated; thus they ignore all covariance terms 

when estimating the variance of the sample mean �̅�. Hence the basic AG test statistic is 

𝑡𝑖,𝑗 =
�̅�

𝑠𝑑 √(𝑗 − 𝑖 + 1)⁄
=

𝐿𝑚 − 𝐿𝑛

𝑠𝑑√(𝑗 − 𝑖 + 1)
.                (19) 

This statistic follows an asymptotic standard normal distribution, where �̅� is the mean and 

𝑠𝑑 is the standard deviation of the terms 𝑑𝑡. When ℎ > 1 the forecasts overlap and it is 

plausible to expect some autocorrelation in the differences up to lag ℎ − 1. A Newey-West 

adjustment should then be made, replacing the estimated variance of �̅� by  

𝑠𝑑
2

𝑛
[1 + 2𝜔1�̂�1 + ⋯ + 2𝜔ℎ−1�̂�ℎ−1]                   (20) 

where the sample autocorrelations are �̂�𝜏 = cor(𝑑𝑡, 𝑑𝑡+𝜏). We use the standard set of weights 

given by 𝜔𝜏 = (ℎ − 𝜏)/ℎ, 1 ≤ 𝜏 ≤ ℎ − 1. 
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2.6.2 Diagnostic tests 

Appropriate diagnostic tests for density forecasts use PIT values, defined for a method m by 

the cumulative probabilities 𝑢𝑡+ℎ = 𝐹𝑚,𝑡(𝑝𝑡+ℎ). These PIT values are independent and 

uniformly distributed for non-overlapping, correctly specified densities. 

The Kolmogorov-Smirnov (KS) test assesses uniformity by using the maximum 

difference between the empirical and theoretical cumulative functions. For forecasts made at 

times 𝑖 ≤ 𝑡 ≤ 𝑗, the sample c.d.f. of {𝑢𝑖+ℎ, … , 𝑢𝑗+ℎ}, evaluated at 𝑢, is the proportion of 

values less than or equal to 𝑢, i.e. 

�̃�(𝑢) =
1

𝑗 − 𝑖 + 1
∑ 𝑆(𝑢 − 𝑢𝑡)

𝑗+ℎ

𝑡=𝑖+ℎ

                 (21) 

with 𝑆(𝑥) = 1 if 𝑥 ≥ 0, and 𝑆(𝑥) = 0 if 𝑥 < 0. The test statistic is given by 

𝐾𝑆 = sup
0≤𝑢≤1

|�̃�(𝑢) − 𝑢|.                      (22) 

Although widely applied, we need to be cautious when interpreting KS statistics, as the KS 

test checks for uniformity under the i.i.d. assumption rather than testing i.i.d. and uniformity 

jointly.  

Berkowitz (2001) proposed the BK test, which has the advantage that it tests 

independence and uniformity jointly; applications include Clements and Smith (2000), 

Clements (2004), Guidolin and Timmermann (2005), Shackleton et al. (2010) and Høg and 

Tsiaras (2011). 

The BK method transforms the observations 𝑢𝑡+ℎ to new variables 𝑦𝑡+ℎ = 𝛷−1(𝑢𝑡+ℎ). 

The null hypothesis of the original test is that the values of 𝑦 are i.i.d. and follow a standard 

normal distribution, against the alternative hypothesis that 𝑦 is a stationary, Gaussian, AR(1) 

process with no restrictions on the mean, variance and autoregressive parameters. However, 

when ℎ > 1 we have overlapping forecasts and must therefore expect correlated forecast 

errors, specifically cor(𝑦𝑡, 𝑦𝑡+𝜏) > 0  for 1 ≤ 𝜏 ≤ ℎ − 1 . To implement the test we 
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therefore estimate 

𝑦𝑡 − 𝜇 = 𝜌(𝑦𝑡−ℎ − 𝜇) + 𝜀𝑡.                    (23) 

Then the null hypothesis is 𝜇 = 0, 𝜌 = 0, and 𝜎2 = var(𝜀𝑡) = 1. The log-likelihood ratio 

test statistic (LR3) is 

𝐿𝑅3 = 2(𝐿1 − 𝐿0) = 2(𝐿(�̂�, �̂�2, �̂�) − 𝐿(0, 1, 0)).            (24) 

Here hats denote maximum-likelihood values, 𝐿0 and 𝐿1 are the maximum log-likelihoods 

for the null and alternative hypotheses, and the test statistic has an asymptotic 𝜒3
2 

distribution. One disadvantage of the BK test is that models cannot be easily compared if they 

are all accepted or rejected. The AG test, which we discussed before, compares the 

log-likelihoods between models and may resolve this problem. 

 

3. Data 

 

3.1 Option data 

We investigate a majority of the Dow Jones Industrial Average (DJIA) stocks for 10 years 

from 1st January 2003 to 31st December 2012. The data preparation and parameter 

estimation tasks are both time consuming8. Consequently we only report results for the 17 

stocks which have straightforward and complete data. We find the 17 stocks are sufficient to 

determine the most accurate density forecasting method, because the comparisons reported in 

Section 4.4 show the same method clearly outperforms all others regardless of the forecast 

horizon chosen. Table 1 lists the stocks studied, which were all DJIA constituents at the end 

of our sample period. 

The option data are obtained from Ivy DB OptionMetrics, which includes price 

information for all U.S. listed equity options, based on daily closing quotes at the CBOE. The 

                                                             
8 The estimation of the parameters for the Heston model is particularly time demanding. 
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OptionMetrics database also includes information about end-of-day security prices and 

zero-coupon interest rate curves. The security price file provides the closing price for each 

security on each day from CRSP. We calculate the interest rate corresponding to each option’s 

expiry by linear interpolation of the two closest zero-coupon rates supplied by Ivy DB 

OptionMetrics. 

 

3.2 Option prices 

To filter option price records, we follow the criteria of Carr and Wu (2003, 2009 and 2010) 

and Huang and Wu (2004). We delete an option record when the bid price is zero, negative or 

more than the ask price. We eliminate all data for options which have maturity either less than 

eight calendar days or more than one year. 

All the equity options are American. OptionMetrics provides implied volatilities, 

calculated from binomial trees which incorporate dividends and permit early exercise. We use 

equivalent European option prices defined by assuming the European and American implied 

volatilities are equal. This method assumes the early exercise premium can be obtained from 

constant volatility pricing models. The assumption is particularly reasonable for 

out-of-the-money options which have small early exercise premia. 

European call and put prices for the same strike and maturity theoretically contain the 

same information. Either the call option or the put option will be out-of-the-money (OTM), or 

under rare circumstances both are at-the-money (ATM). Options are ATM when the strike 

price equals the stock price (𝑆 = 𝐾), calls are OTM when 𝑆 < 𝐾 and puts are OTM when 

𝑆 > 𝐾. We choose to only use the information given by the prices of OTM and ATM options, 

because in-the-money options are less liquid and have higher early exercise premia. We use 

put-call parity to obtain equivalent European call prices from the European OTM put prices. 

The Black-Scholes lognormal densities are defined by using the implied volatility of the 
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nearest-the-money, nearest-to-expiry contract, for which |𝑆 − 𝐾| is nearer zero than for all 

other contemporaneous strikes. 

 

3.3 IBM example 

We use IBM to illustrate our data and results; its market capitalization is near the median and 

average across all DJIA stocks during the sample period. A total of 109,111 IBM option 

prices are investigated in our sample period. The average number of option prices used per 

day is 44, consisting of 19 OTM calls and 25 OTM puts. Table 2 summarizes the quantity, 

moneyness and maturity of the option contracts. 

 

3.4 Futures prices 

We calculate synthetic futures prices, for futures which have the same expiry dates as the 

options, from the usual no-arbitrage equation. Let D denote the present value of all the 

dividends expected until the option expiry time 𝑇. The no-arbitrage relationship between the 

current spot price S and the futures price F is then  

𝐹 = 𝑒𝑟𝑇(𝑆 − 𝐷).                           (25) 

 

3.5 High-frequency stock prices 

We use the transaction prices of DJIA 30 Index stocks for ten years during the period between 

1st January 1998 and 31st December 2012, obtained from pricedata.com. The prices provided 

are the last prices in one-minute intervals. After an inspection of the high-frequency data, we 

find a number of problematic days which do not have complete trading records. We set the 

price equal to that for the previous minute when there is a missing record, and we delete a 

day when there are more than 40 consecutive missing prices. The days deleted are usually 

close to holidays such as New Year’s Day, Easter, Independence Day, Thanksgiving Day and 
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Christmas. 

Between 2003 and 2012, 17 days are deleted because of missing high-frequency prices 

and these days usually only have prices for half a day. There are also 8 days with 

unsatisfactory option price data. All 25 days are deleted from the high-frequency and option 

files leaving a sample of 2488 days for each firm for the ten-year period ending on 31st 

December 2012. 

The stocks are traded for six-and-a-half-hours, from 9:30 EST to 16:00 EST. We 

calculate realized variances from 5-minute returns. This popular method is motivated by 

Bandi and Russell (2006) who show that the 5-minute frequency can provide a satisfactory 

trade-off between maximizing the accuracy of volatility estimates and minimizing the bias 

from microstructure effects. Recently, Liu et al. (2015) compare hundreds of estimators of 

asset price variation for many asset classes and find that it is difficult to outperform 5-minute 

realized variance, particularly when forecasts of future variation are compared. 

As usual, returns are changes in log prices. We have 77 5-minute intraday returns for 

each day after deleting the data in the first five minutes to avoid any opening effects. The 

realized variance for day 𝑡 is the sum of the squares of the 5-minute returns 𝑟𝑡,𝑖: 

𝑅𝑉𝑡 = ∑ 𝑟𝑡,𝑖
2

77

𝑖=1

.                             (26) 

However, this calculation of realized variance is downward biased as a measurement of 

close-to-close volatility over a 24-hour period. This is inevitable because we only use the 

information during the trading period, so the variation overnight (from close-to-open) is 

excluded. We thus need to multiply forecasts from the HAR-RV model by a scaling factor. 

The denominator of the scaling factor is the sum of the squares of the 5-minute returns 

representing the open market period, while the numerator is the sum of the squares of the 

daily returns representing open and closed market periods. We use a rolling window for the 
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scaling factor, hence if we forecast the future realized variance on day t, then we use the 

information about returns up to and including day 𝑡 to calculate 

𝑅�̂�𝑡,𝑡+ℎ (
∑ 𝑟𝑡

2𝑡
𝑖=1

∑ ∑ 𝑟𝑡,𝑗
277

𝑗=1
𝑡
𝑖=1

).                      (27) 

This quantity replaces 𝑅�̂�𝑡,𝑡+ℎ  in (9) when the high-frequency, lognormal densities are 

evaluated. 

 

4. Empirical results 

 

4.1 Heston risk-neutral parameters 

Table 3 shows the summary statistics for risk-neutral parameters, obtained for each day in our 

sample period, firstly for IBM and secondly across all stocks. The risk-neutral parameters 

minimize the mean squared error (MSE) of option prices on each day. 

For IBM, our median estimate of the stochastic variance 𝜃 is 0.3457, equivalent to an 

annualized volatility level of 58.80%. The mean estimate of the rate of reversion 𝜅 is 1.6861, 

for which the half-life parameter of the variance process is then about 5 months. The median 

estimate of the volatility of volatility parameter 𝜎, which controls the kurtosis of returns, is 

0.8617. Also the median estimate of the correlation 𝜌 is -0.6652, consistent with estimates in 

the literature. 

 

4.2 Examples of risk-neutral density forecasts 

Illustrative one-day ahead Heston, Black-Scholes and HAR densities for IBM, calculated at 

the beginning of the option dataset on January 2nd 2003, are shown in Figure 1. The Heston 

density is negatively skewed while the lognormal, Black-Scholes density is slightly positively 

skewed. The lognormal HAR density is seen to have less variance than the Heston and 
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Black-Scholes densities. The one-month ahead densities for IBM calculated on the same day 

are shown in Figure 2 and they display similar properties. 

 

4.3 Examples of cumulative probabilities and nonparametric transformations 

From the one-day ahead risk-neutral cumulative distribution functions and the stock prices 

𝑝𝑡+1, we find the observed risk-neutral probabilities 𝑢𝑡+1 = 𝐹𝑄,𝑡(𝑝𝑡+1) are not consistent 

with uniform probabilities. This is expected because risk-neutral distributions ignore the risk 

premia incorporated into real-world distributions. 

The sample cumulative probabilities �̃�(𝑢) are calculated using (21). The deviations 

between the sample c.d.f. and a uniform c.d.f., namely �̃�(𝑢) − 𝑢, are plotted in Figure 3 for 

IBM from 2003 to 2012, for the three sets of risk-neutral, one-day-ahead forecasts. For the 

Heston model we can observe from the figure that there are relatively few observations 𝑢 

close to either zero or one; only 5.1% of the variables 𝑢 are below 0.1 and only 7.3% of 

them are above 0.9. The KS test statistic is the maximum value of |�̃�(𝑢) − 𝑢|, which is equal 

to 7.1%, hence the null hypothesis of a uniform distribution is rejected at the 0.01% 

significance level. The shape of the Heston curve may be explained by the fact that the 

historical volatility is lower than the risk-neutral volatility, hence the risk-neutral probabilities 

of large price changes exceed the real-world probabilities. The corresponding plots for IBM 

for one-day-ahead forecasts obtained from Black-Scholes and HAR lognormal densities are 

also shown in Figure 3. 

The nonparametric estimate of the density of the risk-neutral probability 𝑢𝑡+1 is given 

by (13). This calibration density �̂�(𝑢) multiplies the next-day, risk-neutral density 𝑓𝑄,𝑡(𝑥) 

to produce the next-day, real-world density 𝑓𝑃,𝑡(𝑥), with 𝑢 = 𝐹𝑄,𝑡(𝑥), from (11), (13) and 

(15). 

The full-period calibration densities �̂�(𝑢), for one-day ahead Heston, Black-Scholes and 
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HAR lognormal forecasts are shown in Figure 4; these densities use the values of 𝑢 for all 

10 years from 2003 to 2012. It is seen that the option-based calibration densities are more 

than 1 when u is between 0.25 and 0.75, while they are less than 1 in the left and right tails. 

The real-world densities then have higher peaks and thinner tails than the risk-neutral 

densities and consequently the transformation from risk-neutral to real-world reduces the 

variance. The high-frequency HAR calibration density is much flatter and its main effect is to 

adjust the probabilities of extreme values. 

The purpose of the calibration transformation is to create real-world densities which 

have uniformly distributed observed probabilities 𝑢𝑡+1 . The differences �̃�(𝑢) − 𝑢  after 

applying the nonparametric calibration method for one-day ahead forecasts from Heston, 

Black-Scholes and HAR lognormal densities are also shown in Figure 3. The differences for 

these real-world densities are near zero for all values of u and therefore their cumulative 

probabilities are almost uniform, unlike the results for the risk-neutral densities. Comparable 

figures and results are obtained for longer horizon density forecasts. 

 

4.4 Log-likelihood comparisons 

Table 4 presents the out-of-sample, log-likelihoods for IBM, and the averages across all 

seventeen stocks from 2003 to 2012, for our three risk-neutral and three real-world 

forecasting methods. The density forecasts are for four horizons, namely one day, one week 

(5 trading days), two weeks (10) and one month (22).9 Overlapping forecasts are evaluated 

for horizons exceeding one day. The log-likelihood of the untransformed HAR model is 

selected to define the benchmark level. The log-likelihoods of the other five density 

forecasting methods in excess of the benchmark level are summarized in the table. 

For IBM stock, the transformed real-world densities derived from the lognormal 

                                                             
9 For a horizon ℎ trading days, we set 𝑇 = ℎ/252 to calculate option implied densities. 
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Black-Scholes model give the highest log-likelihoods for all four horizons ranging from one 

day to one month; the Black-Scholes method is also best for the risk-neutral densities for 

three horizons. The HAR model and the Heston model give similar log-likelihoods for all 

four horizons after applying transformations. The log-likelihoods after nonparametric 

transformations are higher than those under the risk-neutral measure for all methods and 

horizons, and the differences range from 66.3 to 192.8. 

Similarly, for the averages across seventeen stocks, the lognormal Black-Scholes model 

gives the highest log-likelihoods for all four horizons, both for untransformed risk-neutral 

and transformed real-world densities. The HAR model produces higher average 

log-likelihoods than the Heston model for almost all horizons both before and after applying 

transformations, with the exception of the risk-neutral densities for the one week horizon. 

The log-likelihoods after applying the nonparametric transformation are always higher than 

those under the risk-neutral measure for all stocks, methods and horizons, and the average 

differences vary between 85.8 and 202.0. 

Table 5 lists the number of times that each method has the highest log-likelihood for the 

selected forecast horizon across seventeen stocks. For transformed real-world densities, the 

lognormal Black-Scholes model gives the highest log-likelihoods for 59 out of 68 

combinations from seventeen stocks and four horizons. The lognormal Black-Scholes model 

also gives the highest log-likelihoods 51 times for untransformed risk-neutral densities. The 

HAR model and the Heston model give the highest log-likelihoods for a similar number of 

times for risk-neutral densities, while the HAR model obtains the highest log-likelihoods 

more often than the Heston model for transformed real-world densities.  

Table 6 summarizes significant differences between methods using the Amisano and 

Giacomini (AG) test. It shows the number of times that the row method provides statistically 

better forecasts than the column method at the 5% significance level for all seventeen stocks 
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when the Newey-West adjustment is made to the estimated variance of �̅�  and 20 

autocorrelations are used. For all four horizons, the nonparametric transformation of the 

Black-Scholes lognormal method has the largest number of times that it is statistically better 

than the other five density forecasting methods; furthermore, no method is ever statistically 

better than this top-ranked method. The number of times that each method is statistically 

better than the remaining methods decreases as the forecast horizon increases from one day to 

one week, two weeks and one month. The Newey-West adjustments are important and 

necessary for the AG test when the horizon is more than one day; without the adjustment for 

autocorrelation among the likelihood differences many more test results would appear to be 

significant. The nonparametric methods are more often significantly better than the 

parametric methods. At the one-day horizon, there are 17 × 9 = 153 possible comparisons 

between 𝑃 and 𝑄 distributions of which 124 have 𝑃 significantly better than 𝑄. 

Table 7 summarizes the AG test statistics for IBM. At the one day horizon, two of the 

AG test statistics are insignificant at the 5% level when the best method, transformed 

Black-Scholes lognormal, is compared to the five alternatives; the AG test statistics equal 

0.33 and 0.99 for tests against transformed HAR and transformed Heston methods. The AG 

test results show that the best method for the one week horizon is significantly better than one 

of the remaining five methods at the 5% level, and the best method is statistically better than 

two methods at the 5% level for the two weeks horizon, while the best method has no 

significant differences at the longest, one month, horizon. 

 

4.5 Diagnostic tests 

The KS statistic tests if the densities are correctly specified under the i.i.d. assumption. Table 

8 summarizes the p-values for the KS test for the six density forecasting methods and the four 

horizons for IBM. All the risk-neutral measure p-values are less than 0.5% and hence reject 
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the null hypothesis at the 0.5% significance level, which can be explained by mis-specified 

risk-neutral densities which have higher variance than real-world densities. The 

untransformed HAR densities are also mis-specified, as they are conditionally normal. All 

sets of densities obtained by nonparametric transformations have satisfactory p-values greater 

than 50%. 

Table 9 gives the number of times that the null hypothesis is rejected at the 5% 

significance level for the KS test across the seventeen stocks. All the nonparametric 

transformations pass the KS test while the null hypothesis is rejected for almost all risk 

neutral and untransformed cases when the significance level is 5%. 

The Berkowitz LR3 statistic, for horizon equal to ℎ days, tests the null hypothesis that 

the variables 𝑦𝑖 = 𝛷−1(𝑢𝑖) follow a standard normal distribution and are independent of 

𝑦𝑖−ℎ. Table 10 presents the LR3 test statistic, and the estimates of the variance and AR 

parameters for the six density forecasting methods and the four horizons for IBM. 

For IBM stock, the MLEs of the autoregressive parameters are between -0.01 and 0.01 

for the one-day horizon, hence there is no significant evidence of time-series dependence. 

However, the MLEs for the one-week horizon range between -0.04 and -0.08, thus four of 

them reject the null hypothesis that the autoregressive parameter is zero at the 5% 

significance level. The longer two-weeks and one-month horizons also provide no evidence 

of dependent observations. The MLEs of the variance parameter are near one for correctly 

specified densities. The low estimates for one-day Black-Scholes and Heston forecasts under 

the 𝑄 measure can be explained by the fact that the risk-neutral standard deviations are on 

average higher than the historical standard deviations. 

The LR3 test statistic is significant at the 5% level when it exceeds 7.81. Table 10 

indicates that the null hypothesis is rejected for all IBM risk-neutral forecasts and all 

one-week forecasts. The null hypothesis is accepted for all real-world forecasts for one day, 
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two-weeks and one-month horizons. The significant values of the LR3 test statistic are 

attributed to the negative estimates of the AR parameter for the one-week horizon and the 

mis-specified risk-neutral densities which have higher variances than the real-world levels. 

Table 11 shows the number of times that the LR3 test rejects the null hypothesis at the 5% 

significance level for all seventeen stocks. The majority of the transformed distributions pass 

the LR3 test while the null hypothesis is rejected for almost all risk neutral specifications at 

the 5% significance level. The number of times that the null is rejected at the 5% level are 

similar across different horizons. 

 

5. Conclusions 

 

We compare density forecasts for the prices of DJIA stocks, obtained from 5-minute 

high-frequency returns and daily option prices by using Heston, lognormal Black-Scholes, 

lognormal HAR-RV and transformed densities. Our comparison criterion is the out-of-sample, 

log-likelihood of observed stock prices. For the 68 combinations from 17 stocks for 4 

forecast horizons, the transformed lognormal Black-Scholes model gives the highest 

log-likelihoods for 59 combinations during the 10-year period from 2003 to 2012. The 

HAR-RV model and the Heston model have similar forecast accuracy for different horizons, 

either before or after applying a transformation which enhances the densities. 

Our methodology follows that of Shackleton et al. (2010) but obtains some conclusions 

for DJIA stocks which are different to those presented in their study of the S&P 500 index. 

Firstly, we find that density forecasts obtained from option prices outperform high-frequency 

forecasts for all forecast horizons. This contrasts with high-frequency forecasts being superior 

for the S&P 500 index at the one-day horizon, although they are inferior to option forecasts at 

horizons of two or more weeks. Secondly, we find that simple option methods relying on 
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Black-Scholes implied volatilities outperform sophisticated methods which apply more 

advanced option pricing formulae. This contrasts with superior index forecasts from the 

Heston formula. Options are traded for many index strikes during a single day but for far 

fewer strikes for individual firms. We attribute the relatively unsatisfactory performance of 

the Heston model for our firms to the lower liquidity of their out-of-the-money options. 

We use a nonparametric transformation to transform the risk-neutral densities into 

real-world densities. The log-likelihoods after the nonparametric transformation are always 

higher than those under the risk-neutral measure, for all methods and horizons. The 

nonparametric transformation also gives better diagnostic test results. Hence central banks, 

risk managers and other decision makers should not merely look at risk-neutral densities, but 

should also obtain more accurate predictions by using risk transformations applied to 

risk-neutral densities. 

 

Appendix. Assumptions about prices, dividends and options 

 

There are no jumps in the Heston dynamics, (1) and (2), so they are not applicable to any 

stock which pays dividends. We apply the Heston dynamics instead to synthetic futures prices 

which do not jump when dividends are paid. We need to assume all futures prices have the 

same dynamics, by which we mean that (1) and (2) apply to all contemporaneous futures 

prices with identical parameter values for all contracts. We can use the same dynamics for all 

futures by making simple dividend assumptions, outlined below; this is easy for continuous 

dividends but more complicated for discrete dividends.  

We assume futures and options contracts expire at time 𝑇1, and there is a dividend at 

time 𝜏1 between times 0 and 𝑇1. The second expiry time for futures and options is 𝑇2 and 

there is another dividend at 𝜏2 between times 𝑇1 and 𝑇2. We denote the futures price at 𝑡 
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for delivery at 𝑇 to be 𝐹𝑡,𝑇. 

Our discussion refers to multiplicative dividend factors 𝑎1, 𝑎2, …, which do not need to 

be calculated. We assume, at time 𝑡 before time 𝜏𝑖, that the expected dividends are 

𝐸𝑡[dividend at 𝜏𝑖] = 𝑎1𝑒𝑟(𝜏1−𝑡)𝑆𝑡                        𝑖 = 1, 𝑡 < 𝜏1, 

= 𝑎2(1 − 𝑎1)𝑒𝑟(𝜏2−𝑡)𝑆𝑡                 𝑖 = 2, 𝑡 < 𝜏2, 

= 𝑎3(1 − 𝑎1)(1 − 𝑎2)𝑒𝑟(𝜏3−𝑡)𝑆𝑡          𝑖 = 3, 𝑡 < 𝜏3, 

etc. We assume futures prices are set by no-arbitrage conditions, so 

𝐹𝑡,𝑇 = 𝑒𝑟(𝑇−𝑡)[𝑆𝑡 − PV(expected dividends from 𝑡 to 𝑇)]. 

Then for the first contract 

𝐹𝑡,𝑇1
= 𝑒𝑟(𝑇1−𝑡)[𝑆𝑡 − 𝑒−𝑟(𝜏1−𝑡)𝑎1𝑒𝑟(𝜏1−𝑡)𝑆𝑡] = (1 − 𝑎1)𝑒𝑟(𝑇1−𝑡)𝑆𝑡       0 ≤ 𝑡 < 𝜏1, 

= 𝑒𝑟(𝑇1−𝑡)𝑆𝑡                                             𝜏1 ≤ 𝑡 ≤ 𝑇1, 

so that 

log(𝐹𝑡,𝑇1
𝑆𝑡⁄ ) = log(1 − 𝑎1) + 𝑟(𝑇1 − 𝑡)             0 ≤ 𝑡 < 𝜏1, 

= 𝑟(𝑇1 − 𝑡)                       𝜏1 ≤ 𝑡 ≤ 𝑇1. 

Thus 

𝑑(log𝐹𝑡,𝑇1
) = 𝑑(log𝑆𝑡) − 𝑟𝑑𝑡,                    𝑡 ≠ 𝜏1. 

Also 𝑆𝑡 jumps down by 𝑎1𝑆𝜏1
 at time 𝑡 = 𝜏1, but 𝐹𝑡,𝑇1

 does not jump at 𝑡 = 𝜏1. 

Similarly, for the second contract 

𝐹𝑡,𝑇2
= 𝑒𝑟(𝑇2−𝑡)[𝑆𝑡 − 𝑒−𝑟(𝜏1−𝑡)𝑎1𝑒𝑟(𝜏1−𝑡)𝑆𝑡 − 𝑒−𝑟(𝜏2−𝑡)𝑎2(1 − 𝑎1)𝑒𝑟(𝜏2−𝑡)𝑆𝑡] 

= 𝑒𝑟(𝑇2−𝑡)(1 − 𝑎1)(1 − 𝑎2)𝑆𝑡                               0 ≤ 𝑡 < 𝜏1, 

= 𝑒𝑟(𝑇2−𝑡)(1 − 𝑎2)𝑆𝑡                                     𝜏1 ≤ 𝑡 < 𝜏2, 

= 𝑒𝑟(𝑇2−𝑡)𝑆𝑡                                            𝜏2 ≤ 𝑡 ≤ 𝑇2. 

Hence we have 

𝑑(log𝐹𝑡,𝑇2
) = 𝑑(log𝑆𝑡) − 𝑟𝑑𝑡                 𝑡 ≠ 𝜏1, 𝜏2, 
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= 𝑑(log𝐹𝑡,𝑇1
)                   0 ≤ 𝑡 ≤ 𝑇1. 

And we also have 

𝐹𝑡,𝑇2

𝐹𝑡,𝑇1

= 𝑒𝑟(𝑇2−𝑇1)(1 − 𝑎2)              0 ≤ 𝑡 ≤ 𝑇1. 

We see that the synthetic futures contracts have the same dynamics. 

We estimate the Heston parameters from the prices 𝑐𝑖,𝑗 of European options which 

expire at 𝑇1, 𝑇2, …, 𝑇𝑁, and have strike prices 𝐾𝑖,𝑗, with 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 𝑛𝑖. Our 

target is to estimate the Heston parameters 𝜃 as: 

𝜃 = arg min
𝜃

∑ ∑ [𝑐𝑖,𝑗 − 𝑐𝐻𝑒𝑠𝑡𝑜𝑛(𝐹0,𝑇𝑖
, 𝑇𝑖, 𝐾𝑖,𝑗, 𝑟, 𝜃)]

2
𝑗𝑖 . 

At time 0 and for any future time 𝜏, we can obtain the density of 𝑆𝜏 = 𝐹𝜏,𝜏 by evaluating the 

Heston density with initial price 𝐹0,𝜏 and parameters 𝜃. 
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Table 1 

List of 17 DJIA constituent stocks studied. 

Number Company Exchange Symbol Industry Date Added 

1 Alcoa NYSE AA Aluminum 1959/6/1 

2 American Express NYSE AXP Consumer finance 1982/8/30 

3 AT&T NYSE T Telecommunication 1999/11/1 

4 Boeing NYSE BA Aerospace and defense 1987/3/12 

5 Cisco Systems NASDAQ CSCO Computer networking 2009/6/8 

6 General Electric NYSE GE Conglomerate 1907/11/7 

7 Hewlett-Packard NYSE HPQ Computers & technology 1997/3/17 

8 The Home Depot NYSE HD Home improvement retailer 1999/11/1 

9 Intel NASDAQ INTC Semiconductors 1999/11/1 

10 IBM NYSE IBM Computers & technology 1979/6/29 

11 Johnson & Johnson NYSE JNJ Pharmaceuticals 1997/3/17 

12 JPMorgan Chase NYSE JPM Banking 1991/5/6 

13 McDonald's NYSE MCD Fast food 1985/10/30 

14 Merck NYSE MRK Pharmaceuticals 1979/6/29 

15 Pfizer NYSE PFE Pharmaceuticals 2004/4/8 

16 Wal-Mart NYSE WMT Retail 1997/3/17 

17 Walt Disney NYSE DIS Broadcasting and entertainment 1991/5/6 
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Table 2 

Summary statistics for IBM option data. Information about out-of-the-money (OTM) and 

at-the-money (ATM) options on IBM stock from 2003 to 2012. 

 

Total Average per day Maximum per day Minimum per day 

 Calls 47709 19 46 6 

 Puts 61402 25 74 5 

 Total 109111 44 115 12 

 

      

   

Maturity 

  

  

<1 month Between 1 and 6 months >6 months Subtotal 

Moneyness S/K 

    Deep OTM put >1.05 6462 30100 13596 50158 

  

5.92% 27.59% 12.46% 45.97% 

OTM put 1.01-1.05 2040 5123 1839 9002 

  

1.87% 4.70% 1.69% 8.25% 

At/near the money 0.99-1.01 1049 2641 973 4663 

  

0.96% 2.42% 0.89% 4.27% 

OTM call 0.95-0.99 2278 5733 2330 10341 

  

2.09% 5.25% 2.14% 9.48% 

Deep OTM call <0.95 3168 20393 11386 34947 

  

2.90% 18.69% 10.44% 32.03% 

Subtotal 

 

14997 63990 30124 109111 

  

13.74% 58.65% 27.61% 100.00% 
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Table 3 

Summary statistics for risk-neutral calibrated parameters for IBM and across all stocks. 

Estimates are summarized for the risk-neutral dynamics (2). The parameters are estimated 

each day from 2003 to 2012, from the OTM and ATM options, by minimizing the MSE of the 

fitted option prices. We apply the constraints 0 ≤ 𝜅 ≤ 36, 0 ≤ 𝜃 ≤ 1, 𝜎 ≥ 0, −1 ≤ 𝜌 ≤ 1, 

0 ≤ 𝑉0 ≤ 1. 

 
κ θ σ ρ V0 

IBM 
     

Mean 1.6861  0.5042  1.2038  -0.6723  0.0653  

Median 0.1661  0.3457  0.8617  -0.6652  0.0444  

Standard deviation 3.6779  0.4201  2.1596  0.1051  0.0726  

      
Averages across all firms 

     
Mean 3.0401  0.4037  1.9675  -0.6331  0.1081  

Median 1.1136  0.2308  1.0267  -0.6305  0.0692  

Standard deviation 5.2434  0.3594  5.6694  0.1462  0.1206  
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Table 4 

Log-likelihoods for IBM and the average log-likelihoods across 17 stocks, from 2003 to 2012. 

The forecast horizons are 1, 5, 10 and 22 trading days ahead. Overlapping forecasts are 

evaluated for horizons beyond one day. The numbers shown are the log-likelihoods of the 

HAR untransformed density forecasts (0 for the average across 17 stocks) and the 

log-likelihoods of the other forecasts in excess of the HAR benchmark values. The letter 𝑄 

defines untransformed and risk-neutral densities, while the letter 𝑃 denotes nonparametric 

transformation of the 𝑄 densities defined by (15). The numbers in bold in each row refer to 

the best method, which has the highest log-likelihood for the selected forecast horizon. 

Horizon Forecasts HAR Black-Scholes Heston 

  
Q P Q P Q P 

IBM 
       

1 day 2487 -4312.5  124.1  33.0  128.5  -9.3  113.2  

1 week 2483 -6419.1  157.3  100.1  217.4  100.9  167.2  

2 weeks 2478 -7222.1  189.3  78.1  270.9  76.1  176.2  

1 month 2466 -8232.5  179.9  77.2  257.6  65.7  151.1  

        
Average 

       
1 day 2487 0 202.0  95.3  213.3  -12.2  152.1  

1 week 2483 0 144.1  129.6  215.4  8.9  112.8  

2 weeks 2478 0 126.6  58.4  172.0  -64.1  58.9  

1 month 2466 0 149.0  56.5  195.8  -114.5  61.4  

 

Table 5 

Best methods. Each count is the frequency that the method has the highest log-likelihood for 

the selected forecast horizon across 17 stocks. Separate counts are shown for risk-neutral (𝑄) 

and transformed (𝑃) densities. The log-likelihood always increases after transforming from 

𝑄 to 𝑃, for all stocks, horizons and methods. 

Horizon Forecasts 
 

Q 
  

P 
 

  
HAR Black-Scholes Heston HAR Black-Scholes Heston 

        
1 day 2487 1 14 2 4 12 1 

1 week 2483 0 14 3 0 17 0 

2 weeks 2478 2 13 2 1 16 0 

1 month 2466 4 10 3 3 14 0 

Total 
 

7 51 10 8 59 1 
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Table 6 

Amisano and Giacomini test results for overlapping forecasts when the Newey-West 

adjustment is made and 20 autocorrelations are used. The numbers are the times that the 

log-likelihood for the row method is statistically better than the column method at the 5% 

level for 17 stocks. 

1 day HAR-Q HAR-P BS-Q BS-P Heston-Q Heston-P Total 

HAR-Q / 0 0 0 2 1 3 

HAR-P 15 / 11 0 15 3 44 

BS-Q 10 0 / 0 10 2 22 

BS-P 14 5 16 / 17 7 59 

Heston-Q 3 0 0 0 / 0 3 

Heston-P 13 1 7 0 16 / 37 

        
1 week HAR-Q HAR-P BS-Q BS-P Heston-Q Heston-P Total 

HAR-Q / 0 0 0 1 1 2 

HAR-P 3 / 1 0 3 2 9 

BS-Q 1 1 / 0 5 1 8 

BS-P 4 6 7 / 11 5 33 

Heston-Q 0 0 1 0 / 0 1 

Heston-P 0 2 1 0 9 / 12 

        
2 weeks HAR-Q HAR-P BS-Q BS-P Heston-Q Heston-P Total 

HAR-Q / 0 0 0 1 1 2 

HAR-P 0 / 0 0 3 2 5 

BS-Q 0 0 / 0 2 1 3 

BS-P 1 2 1 / 9 3 16 

Heston-Q 0 0 0 0 / 0 0 

Heston-P 0 0 0 0 6 / 6 

        
1 month HAR-Q HAR-P BS-Q BS-P Heston-Q Heston-P Total 

HAR-Q / 0 0 0 0 0 0 

HAR-P 0 / 0 0 0 0 0 

BS-Q 0 1 / 0 0 0 1 

BS-P 0 1 0 / 0 0 1 

Heston-Q 0 0 0 0 / 0 0 

Heston-P 0 0 0 0 1 / 1 
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Table 7 

Amisano and Giacomini test results for IBM overlapping forecasts when the Newey-West 

adjustment is made to the estimated variance of �̅� and 20 autocorrelations are used. The null 

hypothesis states that two different density forecasting methods have equal expected 

log-likelihood. The numbers are the test statistics. Positive values imply the row method has 

higher log-likelihood than the column method. * indicates that the null hypothesis is rejected 

at the 5% significance level when |𝑡| > 1.96. 

1 day HAR-P BS-Q BS-P Heston-Q Heston-P 

HAR-Q -3.17*  -1.01  -3.27*  0.26  -2.96*  

HAR-P 
 

2.98*  -0.33  3.68*  0.56  

BS-Q 
  

-4.05*  2.75*  -3.32*  

BS-P 
   

4.40*  0.99  

Heston-Q 
    

-4.34*  

      
1 week HAR-P BS-Q BS-P Heston-Q Heston-P 

HAR-Q -0.96  -0.83  -1.25  -0.61  -1.01  

HAR-P 
 

0.73  -1.73  1.06  -0.29  

BS-Q 
  

-1.69  -0.01  -1.00  

BS-P 
   

2.56*  1.83  

Heston-Q 
    

-2.38*  

      
2 weeks HAR-P BS-Q BS-P Heston-Q Heston-P 

HAR-Q -0.68  -0.54  -0.93  -0.26  -0.64  

HAR-P 
 

0.60  -1.58  1.61  0.24  

BS-Q 
  

-1.10  0.01  -0.60  

BS-P 
   

2.87*  2.10*  

Heston-Q 
    

-2.38*  

      
1 month HAR-P BS-Q BS-P Heston-Q Heston-P 

HAR-Q -0.53  -0.40  -0.69  -0.17  -0.41  

HAR-P 
 

0.46  -0.95  0.93  0.22  

BS-Q 
  

-0.82  0.04  -0.33  

BS-P 
   

1.73  1.08  

Heston-Q 
    

-1.34  
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Table 8 

Kolmogorov-Smirnov test results for IBM overlapping forecasts. The numbers are the 

percentage p-values of the KS test for the null hypothesis that the terms 𝑢𝑡 are uniformly 

distributed. The letter 𝑄 defines untransformed and risk-neutral densities, while the letter 𝑃 

denotes nonparametric transformation of the 𝑄 densities, defined by (15). * indicates that 

the p-value is greater than 50%. The null hypothesis is rejected at the 𝛼 significance level 

when 𝑝 < 𝛼. 

Horizon Forecasts HAR(%) Black-Scholes(%) Heston(%) 

  

Q P Q P Q P 

1 day 2487 0.42 * 0.00 * 0.00 * 

1 week 2483 0.01 * 0.00 * 0.00 * 

2 weeks 2478 0.00 * 0.00 * 0.00 * 

1 month 2466 0.00 * 0.00 * 0.00 * 

 

 

 

Table 9 

Kolmogorov-Smirnov test results for overlapping forecasts. The numbers are the frequencies 

that the null hypothesis is rejected at the 5% significance level for 17 stocks. 

Forecast horizon HAR Black-Scholes Heston 

 
Q P Q P Q P 

1 day 13 0 17 0 17 0 

1 week 16 0 16 0 16 0 

2 weeks 14 0 17 0 16 0 

1 month 17 0 17 0 16 0 
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Table 10 

Berkowitz LR3 test results for IBM overlapping forecasts. The null hypothesis states that the 

variables 𝑦𝑖 = 𝛷−1(𝑢𝑖) are Gaussian with mean 0, variance 1 and are independent of 𝑦𝑖−ℎ. 

The tabulated numbers are the LR3 test statistic defined by (24), and the estimates of the 

variance and AR parameters. * indicates that the null hypothesis is rejected at the 5% 

significance level when LR3 > 7.81. 

Forecast horizon 

 

HAR Black-Scholes Heston 

  

Q P Q P Q P 

1 day AR -0.01 -0.01 0.01 0.00 0.01 0.00 

 

variance 1.17 0.97 0.79 0.97 0.78 0.97 

 

LR3 42.19* 1.74 74.23* 1.36 75.42* 1.47 

1 week AR -0.04 -0.07 -0.06 -0.08 -0.05 -0.06 

 

variance 1.18 0.96 0.86 0.96 0.84 0.96 

 

LR3 50.06* 15.07* 44.06* 19.08* 44.69* 11.08* 

2 weeks AR 0.01 0.00 0.01 0.00 0.01 0.01 

 

variance 1.11 0.96 0.82 0.96 0.81 0.96 

 

LR3 30.61* 2.42 67.22* 2.51 56.32* 2.54 

1 month AR 0.01 -0.02 0.01 -0.02 -0.02 -0.01 

 

variance 1.12 0.96 0.86 0.96 0.90 0.96 

 

LR3 44.77* 3.42 62.91* 4.12 23.80* 2.64 

 

 

Table 11 

Berkowitz LR3 test results for overlapping forecasts. The numbers are the frequencies that 

the null hypothesis is rejected at the 5% significance level for 17 stocks. 

Forecast horizon HAR Black-Scholes Heston 

 
Q P Q P Q P 

1 day 16 4 15 4 17 4 

1 week 15 6 15 9 14 6 

2 weeks 16 3 16 4 15 3 

1 month 17 4 15 5 17 6 
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Figure 1. Black-Scholes, Heston and HAR one-day ahead density forecasts for IBM on January 2nd 2003. 
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Figure 2. Black-Scholes, Heston and HAR one-month ahead density forecasts for IBM on January 2nd 2003. 
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Figure 3. Function �̃�(𝑢) − 𝑢  for one-day ahead forecasts from the risk-neutral HAR, Black-Scholes and Heston models, and their 

nonparametric real-world transformations, for IBM. 
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Figure 4. Nonparametric calibration densities �̂�(𝑢) estimated from one-day ahead HAR, Black-Scholes and Heston forecasts for IBM. 
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